aboutsummaryrefslogtreecommitdiff
path: root/src/go/types/predicates.go
blob: 2f4ef9dace0d743583095e162c7abc10532b3e5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements commonly used type predicates.

package types

// isNamed reports whether typ has a name.
// isNamed may be called with types that are not fully set up.
func isNamed(typ Type) bool {
	switch typ.(type) {
	case *Basic, *Named, *TypeParam:
		return true
	}
	return false
}

// isGeneric reports whether a type is a generic, uninstantiated type (generic
// signatures are not included).
func isGeneric(typ Type) bool {
	// A parameterized type is only instantiated if it doesn't have an instantiation already.
	named, _ := typ.(*Named)
	return named != nil && named.obj != nil && named.targs == nil && named.TParams() != nil
}

func is(typ Type, what BasicInfo) bool {
	switch t := under(typ).(type) {
	case *Basic:
		return t.info&what != 0
	case *TypeParam:
		return t.underIs(func(typ Type) bool { return is(typ, what) })
	}
	return false
}

func isBoolean(typ Type) bool  { return is(typ, IsBoolean) }
func isInteger(typ Type) bool  { return is(typ, IsInteger) }
func isUnsigned(typ Type) bool { return is(typ, IsUnsigned) }
func isFloat(typ Type) bool    { return is(typ, IsFloat) }
func isComplex(typ Type) bool  { return is(typ, IsComplex) }
func isNumeric(typ Type) bool  { return is(typ, IsNumeric) }
func isString(typ Type) bool   { return is(typ, IsString) }

// Note that if typ is a type parameter, isInteger(typ) || isFloat(typ) does not
// produce the expected result because a type list that contains both an integer
// and a floating-point type is neither (all) integers, nor (all) floats.
// Use isIntegerOrFloat instead.
func isIntegerOrFloat(typ Type) bool { return is(typ, IsInteger|IsFloat) }

// isNumericOrString is the equivalent of isIntegerOrFloat for isNumeric(typ) || isString(typ).
func isNumericOrString(typ Type) bool { return is(typ, IsNumeric|IsString) }

// isTyped reports whether typ is typed; i.e., not an untyped
// constant or boolean. isTyped may be called with types that
// are not fully set up.
func isTyped(typ Type) bool {
	// isTyped is called with types that are not fully
	// set up. Must not call asBasic()!
	t, _ := typ.(*Basic)
	return t == nil || t.info&IsUntyped == 0
}

// isUntyped(typ) is the same as !isTyped(typ).
func isUntyped(typ Type) bool {
	return !isTyped(typ)
}

func isOrdered(typ Type) bool { return is(typ, IsOrdered) }

func isConstType(typ Type) bool {
	// Type parameters are never const types.
	t, _ := under(typ).(*Basic)
	return t != nil && t.info&IsConstType != 0
}

// IsInterface reports whether typ is an interface type.
func IsInterface(typ Type) bool {
	return asInterface(typ) != nil
}

// Comparable reports whether values of type T are comparable.
func Comparable(T Type) bool {
	return comparable(T, nil)
}

func comparable(T Type, seen map[Type]bool) bool {
	if seen[T] {
		return true
	}
	if seen == nil {
		seen = make(map[Type]bool)
	}
	seen[T] = true

	switch t := under(T).(type) {
	case *Basic:
		// assume invalid types to be comparable
		// to avoid follow-up errors
		return t.kind != UntypedNil
	case *Pointer, *Interface, *Chan:
		return true
	case *Struct:
		for _, f := range t.fields {
			if !comparable(f.typ, seen) {
				return false
			}
		}
		return true
	case *Array:
		return comparable(t.elem, seen)
	case *TypeParam:
		return t.iface().IsComparable()
	}
	return false
}

// hasNil reports whether a type includes the nil value.
func hasNil(typ Type) bool {
	switch t := under(typ).(type) {
	case *Basic:
		return t.kind == UnsafePointer
	case *Slice, *Pointer, *Signature, *Interface, *Map, *Chan:
		return true
	case *TypeParam:
		return t.underIs(hasNil)
	}
	return false
}

// An ifacePair is a node in a stack of interface type pairs compared for identity.
type ifacePair struct {
	x, y *Interface
	prev *ifacePair
}

func (p *ifacePair) identical(q *ifacePair) bool {
	return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x
}

// For changes to this code the corresponding changes should be made to unifier.nify.
func identical(x, y Type, cmpTags bool, p *ifacePair) bool {
	if x == y {
		return true
	}

	switch x := x.(type) {
	case *Basic:
		// Basic types are singletons except for the rune and byte
		// aliases, thus we cannot solely rely on the x == y check
		// above. See also comment in TypeName.IsAlias.
		if y, ok := y.(*Basic); ok {
			return x.kind == y.kind
		}

	case *Array:
		// Two array types are identical if they have identical element types
		// and the same array length.
		if y, ok := y.(*Array); ok {
			// If one or both array lengths are unknown (< 0) due to some error,
			// assume they are the same to avoid spurious follow-on errors.
			return (x.len < 0 || y.len < 0 || x.len == y.len) && identical(x.elem, y.elem, cmpTags, p)
		}

	case *Slice:
		// Two slice types are identical if they have identical element types.
		if y, ok := y.(*Slice); ok {
			return identical(x.elem, y.elem, cmpTags, p)
		}

	case *Struct:
		// Two struct types are identical if they have the same sequence of fields,
		// and if corresponding fields have the same names, and identical types,
		// and identical tags. Two embedded fields are considered to have the same
		// name. Lower-case field names from different packages are always different.
		if y, ok := y.(*Struct); ok {
			if x.NumFields() == y.NumFields() {
				for i, f := range x.fields {
					g := y.fields[i]
					if f.embedded != g.embedded ||
						cmpTags && x.Tag(i) != y.Tag(i) ||
						!f.sameId(g.pkg, g.name) ||
						!identical(f.typ, g.typ, cmpTags, p) {
						return false
					}
				}
				return true
			}
		}

	case *Pointer:
		// Two pointer types are identical if they have identical base types.
		if y, ok := y.(*Pointer); ok {
			return identical(x.base, y.base, cmpTags, p)
		}

	case *Tuple:
		// Two tuples types are identical if they have the same number of elements
		// and corresponding elements have identical types.
		if y, ok := y.(*Tuple); ok {
			if x.Len() == y.Len() {
				if x != nil {
					for i, v := range x.vars {
						w := y.vars[i]
						if !identical(v.typ, w.typ, cmpTags, p) {
							return false
						}
					}
				}
				return true
			}
		}

	case *Signature:
		// Two function types are identical if they have the same number of parameters
		// and result values, corresponding parameter and result types are identical,
		// and either both functions are variadic or neither is. Parameter and result
		// names are not required to match.
		// Generic functions must also have matching type parameter lists, but for the
		// parameter names.
		if y, ok := y.(*Signature); ok {
			return x.variadic == y.variadic &&
				identicalTParams(x.TParams().list(), y.TParams().list(), cmpTags, p) &&
				identical(x.params, y.params, cmpTags, p) &&
				identical(x.results, y.results, cmpTags, p)
		}

	case *Interface:
		// Two interface types are identical if they describe the same type sets.
		// With the existing implementation restriction, this simplifies to:
		//
		// Two interface types are identical if they have the same set of methods with
		// the same names and identical function types, and if any type restrictions
		// are the same. Lower-case method names from different packages are always
		// different. The order of the methods is irrelevant.
		if y, ok := y.(*Interface); ok {
			xset := x.typeSet()
			yset := y.typeSet()
			if !xset.terms.equal(yset.terms) {
				return false
			}
			a := xset.methods
			b := yset.methods
			if len(a) == len(b) {
				// Interface types are the only types where cycles can occur
				// that are not "terminated" via named types; and such cycles
				// can only be created via method parameter types that are
				// anonymous interfaces (directly or indirectly) embedding
				// the current interface. Example:
				//
				//    type T interface {
				//        m() interface{T}
				//    }
				//
				// If two such (differently named) interfaces are compared,
				// endless recursion occurs if the cycle is not detected.
				//
				// If x and y were compared before, they must be equal
				// (if they were not, the recursion would have stopped);
				// search the ifacePair stack for the same pair.
				//
				// This is a quadratic algorithm, but in practice these stacks
				// are extremely short (bounded by the nesting depth of interface
				// type declarations that recur via parameter types, an extremely
				// rare occurrence). An alternative implementation might use a
				// "visited" map, but that is probably less efficient overall.
				q := &ifacePair{x, y, p}
				for p != nil {
					if p.identical(q) {
						return true // same pair was compared before
					}
					p = p.prev
				}
				if debug {
					assertSortedMethods(a)
					assertSortedMethods(b)
				}
				for i, f := range a {
					g := b[i]
					if f.Id() != g.Id() || !identical(f.typ, g.typ, cmpTags, q) {
						return false
					}
				}
				return true
			}
		}

	case *Map:
		// Two map types are identical if they have identical key and value types.
		if y, ok := y.(*Map); ok {
			return identical(x.key, y.key, cmpTags, p) && identical(x.elem, y.elem, cmpTags, p)
		}

	case *Chan:
		// Two channel types are identical if they have identical value types
		// and the same direction.
		if y, ok := y.(*Chan); ok {
			return x.dir == y.dir && identical(x.elem, y.elem, cmpTags, p)
		}

	case *Named:
		// Two named types are identical if their type names originate
		// in the same type declaration.
		if y, ok := y.(*Named); ok {
			x.expand(nil)
			y.expand(nil)

			xargs := x.TArgs().list()
			yargs := y.TArgs().list()

			if len(xargs) != len(yargs) {
				return false
			}

			if nargs := len(xargs); nargs > 0 {
				// Instances are identical if their original type and type arguments
				// are identical.
				if !Identical(x.orig, y.orig) {
					return false
				}
				for i := 0; i < nargs; i++ {
					xa := xargs[i]
					ya := yargs[i]
					if !Identical(xa, ya) {
						return false
					}
				}
				return true
			}

			// TODO(gri) Why is x == y not sufficient? And if it is,
			//           we can just return false here because x == y
			//           is caught in the very beginning of this function.
			return x.obj == y.obj
		}

	case *TypeParam:
		// nothing to do (x and y being equal is caught in the very beginning of this function)

	case *top:
		// Either both types are theTop in which case the initial x == y check
		// will have caught them. Otherwise they are not identical.

	case nil:
		// avoid a crash in case of nil type

	default:
		unreachable()
	}

	return false
}

func identicalTParams(x, y []*TypeParam, cmpTags bool, p *ifacePair) bool {
	if len(x) != len(y) {
		return false
	}
	for i, x := range x {
		y := y[i]
		if !identical(x.bound, y.bound, cmpTags, p) {
			return false
		}
	}
	return true
}

// Default returns the default "typed" type for an "untyped" type;
// it returns the incoming type for all other types. The default type
// for untyped nil is untyped nil.
//
func Default(typ Type) Type {
	if t, ok := typ.(*Basic); ok {
		switch t.kind {
		case UntypedBool:
			return Typ[Bool]
		case UntypedInt:
			return Typ[Int]
		case UntypedRune:
			return universeRune // use 'rune' name
		case UntypedFloat:
			return Typ[Float64]
		case UntypedComplex:
			return Typ[Complex128]
		case UntypedString:
			return Typ[String]
		}
	}
	return typ
}