aboutsummaryrefslogtreecommitdiff
path: root/src/fmt/print.go
blob: 778b5b0938f9babaa30aa19a3ed92b23a52dafaf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package fmt

import (
	"internal/fmtsort"
	"io"
	"os"
	"reflect"
	"sync"
	"unicode/utf8"
)

// Strings for use with buffer.WriteString.
// This is less overhead than using buffer.Write with byte arrays.
const (
	commaSpaceString  = ", "
	nilAngleString    = "<nil>"
	nilParenString    = "(nil)"
	nilString         = "nil"
	mapString         = "map["
	percentBangString = "%!"
	missingString     = "(MISSING)"
	badIndexString    = "(BADINDEX)"
	panicString       = "(PANIC="
	extraString       = "%!(EXTRA "
	badWidthString    = "%!(BADWIDTH)"
	badPrecString     = "%!(BADPREC)"
	noVerbString      = "%!(NOVERB)"
	invReflectString  = "<invalid reflect.Value>"
)

// State represents the printer state passed to custom formatters.
// It provides access to the io.Writer interface plus information about
// the flags and options for the operand's format specifier.
type State interface {
	// Write is the function to call to emit formatted output to be printed.
	Write(b []byte) (n int, err error)
	// Width returns the value of the width option and whether it has been set.
	Width() (wid int, ok bool)
	// Precision returns the value of the precision option and whether it has been set.
	Precision() (prec int, ok bool)

	// Flag reports whether the flag c, a character, has been set.
	Flag(c int) bool
}

// Formatter is the interface implemented by values with a custom formatter.
// The implementation of Format may call Sprint(f) or Fprint(f) etc.
// to generate its output.
type Formatter interface {
	Format(f State, c rune)
}

// Stringer is implemented by any value that has a String method,
// which defines the ``native'' format for that value.
// The String method is used to print values passed as an operand
// to any format that accepts a string or to an unformatted printer
// such as Print.
type Stringer interface {
	String() string
}

// GoStringer is implemented by any value that has a GoString method,
// which defines the Go syntax for that value.
// The GoString method is used to print values passed as an operand
// to a %#v format.
type GoStringer interface {
	GoString() string
}

// Use simple []byte instead of bytes.Buffer to avoid large dependency.
type buffer []byte

func (b *buffer) write(p []byte) {
	*b = append(*b, p...)
}

func (b *buffer) writeString(s string) {
	*b = append(*b, s...)
}

func (b *buffer) writeByte(c byte) {
	*b = append(*b, c)
}

func (bp *buffer) writeRune(r rune) {
	if r < utf8.RuneSelf {
		*bp = append(*bp, byte(r))
		return
	}

	b := *bp
	n := len(b)
	for n+utf8.UTFMax > cap(b) {
		b = append(b, 0)
	}
	w := utf8.EncodeRune(b[n:n+utf8.UTFMax], r)
	*bp = b[:n+w]
}

// pp is used to store a printer's state and is reused with sync.Pool to avoid allocations.
type pp struct {
	buf buffer

	// arg holds the current item, as an interface{}.
	arg interface{}

	// value is used instead of arg for reflect values.
	value reflect.Value

	// fmt is used to format basic items such as integers or strings.
	fmt fmt

	// reordered records whether the format string used argument reordering.
	reordered bool
	// goodArgNum records whether the most recent reordering directive was valid.
	goodArgNum bool
	// panicking is set by catchPanic to avoid infinite panic, recover, panic, ... recursion.
	panicking bool
	// erroring is set when printing an error string to guard against calling handleMethods.
	erroring bool
	// wrapErrs is set when the format string may contain a %w verb.
	wrapErrs bool
	// wrappedErr records the target of the %w verb.
	wrappedErr error
}

var ppFree = sync.Pool{
	New: func() interface{} { return new(pp) },
}

// newPrinter allocates a new pp struct or grabs a cached one.
func newPrinter() *pp {
	p := ppFree.Get().(*pp)
	p.panicking = false
	p.erroring = false
	p.wrapErrs = false
	p.fmt.init(&p.buf)
	return p
}

// free saves used pp structs in ppFree; avoids an allocation per invocation.
func (p *pp) free() {
	// Proper usage of a sync.Pool requires each entry to have approximately
	// the same memory cost. To obtain this property when the stored type
	// contains a variably-sized buffer, we add a hard limit on the maximum buffer
	// to place back in the pool.
	//
	// See https://golang.org/issue/23199
	if cap(p.buf) > 64<<10 {
		return
	}

	p.buf = p.buf[:0]
	p.arg = nil
	p.value = reflect.Value{}
	p.wrappedErr = nil
	ppFree.Put(p)
}

func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }

func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }

func (p *pp) Flag(b int) bool {
	switch b {
	case '-':
		return p.fmt.minus
	case '+':
		return p.fmt.plus || p.fmt.plusV
	case '#':
		return p.fmt.sharp || p.fmt.sharpV
	case ' ':
		return p.fmt.space
	case '0':
		return p.fmt.zero
	}
	return false
}

// Implement Write so we can call Fprintf on a pp (through State), for
// recursive use in custom verbs.
func (p *pp) Write(b []byte) (ret int, err error) {
	p.buf.write(b)
	return len(b), nil
}

// Implement WriteString so that we can call io.WriteString
// on a pp (through state), for efficiency.
func (p *pp) WriteString(s string) (ret int, err error) {
	p.buf.writeString(s)
	return len(s), nil
}

// These routines end in 'f' and take a format string.

// Fprintf formats according to a format specifier and writes to w.
// It returns the number of bytes written and any write error encountered.
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
	p := newPrinter()
	p.doPrintf(format, a)
	n, err = w.Write(p.buf)
	p.free()
	return
}

// Printf formats according to a format specifier and writes to standard output.
// It returns the number of bytes written and any write error encountered.
func Printf(format string, a ...interface{}) (n int, err error) {
	return Fprintf(os.Stdout, format, a...)
}

// Sprintf formats according to a format specifier and returns the resulting string.
func Sprintf(format string, a ...interface{}) string {
	p := newPrinter()
	p.doPrintf(format, a)
	s := string(p.buf)
	p.free()
	return s
}

// These routines do not take a format string

// Fprint formats using the default formats for its operands and writes to w.
// Spaces are added between operands when neither is a string.
// It returns the number of bytes written and any write error encountered.
func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
	p := newPrinter()
	p.doPrint(a)
	n, err = w.Write(p.buf)
	p.free()
	return
}

// Print formats using the default formats for its operands and writes to standard output.
// Spaces are added between operands when neither is a string.
// It returns the number of bytes written and any write error encountered.
func Print(a ...interface{}) (n int, err error) {
	return Fprint(os.Stdout, a...)
}

// Sprint formats using the default formats for its operands and returns the resulting string.
// Spaces are added between operands when neither is a string.
func Sprint(a ...interface{}) string {
	p := newPrinter()
	p.doPrint(a)
	s := string(p.buf)
	p.free()
	return s
}

// These routines end in 'ln', do not take a format string,
// always add spaces between operands, and add a newline
// after the last operand.

// Fprintln formats using the default formats for its operands and writes to w.
// Spaces are always added between operands and a newline is appended.
// It returns the number of bytes written and any write error encountered.
func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
	p := newPrinter()
	p.doPrintln(a)
	n, err = w.Write(p.buf)
	p.free()
	return
}

// Println formats using the default formats for its operands and writes to standard output.
// Spaces are always added between operands and a newline is appended.
// It returns the number of bytes written and any write error encountered.
func Println(a ...interface{}) (n int, err error) {
	return Fprintln(os.Stdout, a...)
}

// Sprintln formats using the default formats for its operands and returns the resulting string.
// Spaces are always added between operands and a newline is appended.
func Sprintln(a ...interface{}) string {
	p := newPrinter()
	p.doPrintln(a)
	s := string(p.buf)
	p.free()
	return s
}

// getField gets the i'th field of the struct value.
// If the field is itself is an interface, return a value for
// the thing inside the interface, not the interface itself.
func getField(v reflect.Value, i int) reflect.Value {
	val := v.Field(i)
	if val.Kind() == reflect.Interface && !val.IsNil() {
		val = val.Elem()
	}
	return val
}

// tooLarge reports whether the magnitude of the integer is
// too large to be used as a formatting width or precision.
func tooLarge(x int) bool {
	const max int = 1e6
	return x > max || x < -max
}

// parsenum converts ASCII to integer.  num is 0 (and isnum is false) if no number present.
func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
	if start >= end {
		return 0, false, end
	}
	for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
		if tooLarge(num) {
			return 0, false, end // Overflow; crazy long number most likely.
		}
		num = num*10 + int(s[newi]-'0')
		isnum = true
	}
	return
}

func (p *pp) unknownType(v reflect.Value) {
	if !v.IsValid() {
		p.buf.writeString(nilAngleString)
		return
	}
	p.buf.writeByte('?')
	p.buf.writeString(v.Type().String())
	p.buf.writeByte('?')
}

func (p *pp) badVerb(verb rune) {
	p.erroring = true
	p.buf.writeString(percentBangString)
	p.buf.writeRune(verb)
	p.buf.writeByte('(')
	switch {
	case p.arg != nil:
		p.buf.writeString(reflect.TypeOf(p.arg).String())
		p.buf.writeByte('=')
		p.printArg(p.arg, 'v')
	case p.value.IsValid():
		p.buf.writeString(p.value.Type().String())
		p.buf.writeByte('=')
		p.printValue(p.value, 'v', 0)
	default:
		p.buf.writeString(nilAngleString)
	}
	p.buf.writeByte(')')
	p.erroring = false
}

func (p *pp) fmtBool(v bool, verb rune) {
	switch verb {
	case 't', 'v':
		p.fmt.fmtBoolean(v)
	default:
		p.badVerb(verb)
	}
}

// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
// not, as requested, by temporarily setting the sharp flag.
func (p *pp) fmt0x64(v uint64, leading0x bool) {
	sharp := p.fmt.sharp
	p.fmt.sharp = leading0x
	p.fmt.fmtInteger(v, 16, unsigned, 'v', ldigits)
	p.fmt.sharp = sharp
}

// fmtInteger formats a signed or unsigned integer.
func (p *pp) fmtInteger(v uint64, isSigned bool, verb rune) {
	switch verb {
	case 'v':
		if p.fmt.sharpV && !isSigned {
			p.fmt0x64(v, true)
		} else {
			p.fmt.fmtInteger(v, 10, isSigned, verb, ldigits)
		}
	case 'd':
		p.fmt.fmtInteger(v, 10, isSigned, verb, ldigits)
	case 'b':
		p.fmt.fmtInteger(v, 2, isSigned, verb, ldigits)
	case 'o', 'O':
		p.fmt.fmtInteger(v, 8, isSigned, verb, ldigits)
	case 'x':
		p.fmt.fmtInteger(v, 16, isSigned, verb, ldigits)
	case 'X':
		p.fmt.fmtInteger(v, 16, isSigned, verb, udigits)
	case 'c':
		p.fmt.fmtC(v)
	case 'q':
		p.fmt.fmtQc(v)
	case 'U':
		p.fmt.fmtUnicode(v)
	default:
		p.badVerb(verb)
	}
}

// fmtFloat formats a float. The default precision for each verb
// is specified as last argument in the call to fmt_float.
func (p *pp) fmtFloat(v float64, size int, verb rune) {
	switch verb {
	case 'v':
		p.fmt.fmtFloat(v, size, 'g', -1)
	case 'b', 'g', 'G', 'x', 'X':
		p.fmt.fmtFloat(v, size, verb, -1)
	case 'f', 'e', 'E':
		p.fmt.fmtFloat(v, size, verb, 6)
	case 'F':
		p.fmt.fmtFloat(v, size, 'f', 6)
	default:
		p.badVerb(verb)
	}
}

// fmtComplex formats a complex number v with
// r = real(v) and j = imag(v) as (r+ji) using
// fmtFloat for r and j formatting.
func (p *pp) fmtComplex(v complex128, size int, verb rune) {
	// Make sure any unsupported verbs are found before the
	// calls to fmtFloat to not generate an incorrect error string.
	switch verb {
	case 'v', 'b', 'g', 'G', 'x', 'X', 'f', 'F', 'e', 'E':
		oldPlus := p.fmt.plus
		p.buf.writeByte('(')
		p.fmtFloat(real(v), size/2, verb)
		// Imaginary part always has a sign.
		p.fmt.plus = true
		p.fmtFloat(imag(v), size/2, verb)
		p.buf.writeString("i)")
		p.fmt.plus = oldPlus
	default:
		p.badVerb(verb)
	}
}

func (p *pp) fmtString(v string, verb rune) {
	switch verb {
	case 'v':
		if p.fmt.sharpV {
			p.fmt.fmtQ(v)
		} else {
			p.fmt.fmtS(v)
		}
	case 's':
		p.fmt.fmtS(v)
	case 'x':
		p.fmt.fmtSx(v, ldigits)
	case 'X':
		p.fmt.fmtSx(v, udigits)
	case 'q':
		p.fmt.fmtQ(v)
	default:
		p.badVerb(verb)
	}
}

func (p *pp) fmtBytes(v []byte, verb rune, typeString string) {
	switch verb {
	case 'v', 'd':
		if p.fmt.sharpV {
			p.buf.writeString(typeString)
			if v == nil {
				p.buf.writeString(nilParenString)
				return
			}
			p.buf.writeByte('{')
			for i, c := range v {
				if i > 0 {
					p.buf.writeString(commaSpaceString)
				}
				p.fmt0x64(uint64(c), true)
			}
			p.buf.writeByte('}')
		} else {
			p.buf.writeByte('[')
			for i, c := range v {
				if i > 0 {
					p.buf.writeByte(' ')
				}
				p.fmt.fmtInteger(uint64(c), 10, unsigned, verb, ldigits)
			}
			p.buf.writeByte(']')
		}
	case 's':
		p.fmt.fmtBs(v)
	case 'x':
		p.fmt.fmtBx(v, ldigits)
	case 'X':
		p.fmt.fmtBx(v, udigits)
	case 'q':
		p.fmt.fmtQ(string(v))
	default:
		p.printValue(reflect.ValueOf(v), verb, 0)
	}
}

func (p *pp) fmtPointer(value reflect.Value, verb rune) {
	var u uintptr
	switch value.Kind() {
	case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
		u = value.Pointer()
	default:
		p.badVerb(verb)
		return
	}

	switch verb {
	case 'v':
		if p.fmt.sharpV {
			p.buf.writeByte('(')
			p.buf.writeString(value.Type().String())
			p.buf.writeString(")(")
			if u == 0 {
				p.buf.writeString(nilString)
			} else {
				p.fmt0x64(uint64(u), true)
			}
			p.buf.writeByte(')')
		} else {
			if u == 0 {
				p.fmt.padString(nilAngleString)
			} else {
				p.fmt0x64(uint64(u), !p.fmt.sharp)
			}
		}
	case 'p':
		p.fmt0x64(uint64(u), !p.fmt.sharp)
	case 'b', 'o', 'd', 'x', 'X':
		p.fmtInteger(uint64(u), unsigned, verb)
	default:
		p.badVerb(verb)
	}
}

func (p *pp) catchPanic(arg interface{}, verb rune, method string) {
	if err := recover(); err != nil {
		// If it's a nil pointer, just say "<nil>". The likeliest causes are a
		// Stringer that fails to guard against nil or a nil pointer for a
		// value receiver, and in either case, "<nil>" is a nice result.
		if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() {
			p.buf.writeString(nilAngleString)
			return
		}
		// Otherwise print a concise panic message. Most of the time the panic
		// value will print itself nicely.
		if p.panicking {
			// Nested panics; the recursion in printArg cannot succeed.
			panic(err)
		}

		oldFlags := p.fmt.fmtFlags
		// For this output we want default behavior.
		p.fmt.clearflags()

		p.buf.writeString(percentBangString)
		p.buf.writeRune(verb)
		p.buf.writeString(panicString)
		p.buf.writeString(method)
		p.buf.writeString(" method: ")
		p.panicking = true
		p.printArg(err, 'v')
		p.panicking = false
		p.buf.writeByte(')')

		p.fmt.fmtFlags = oldFlags
	}
}

func (p *pp) handleMethods(verb rune) (handled bool) {
	if p.erroring {
		return
	}
	if verb == 'w' {
		// It is invalid to use %w other than with Errorf, more than once,
		// or with a non-error arg.
		err, ok := p.arg.(error)
		if !ok || !p.wrapErrs || p.wrappedErr != nil {
			p.wrappedErr = nil
			p.wrapErrs = false
			p.badVerb(verb)
			return true
		}
		p.wrappedErr = err
		// If the arg is a Formatter, pass 'v' as the verb to it.
		verb = 'v'
	}

	// Is it a Formatter?
	if formatter, ok := p.arg.(Formatter); ok {
		handled = true
		defer p.catchPanic(p.arg, verb, "Format")
		formatter.Format(p, verb)
		return
	}

	// If we're doing Go syntax and the argument knows how to supply it, take care of it now.
	if p.fmt.sharpV {
		if stringer, ok := p.arg.(GoStringer); ok {
			handled = true
			defer p.catchPanic(p.arg, verb, "GoString")
			// Print the result of GoString unadorned.
			p.fmt.fmtS(stringer.GoString())
			return
		}
	} else {
		// If a string is acceptable according to the format, see if
		// the value satisfies one of the string-valued interfaces.
		// Println etc. set verb to %v, which is "stringable".
		switch verb {
		case 'v', 's', 'x', 'X', 'q':
			// Is it an error or Stringer?
			// The duplication in the bodies is necessary:
			// setting handled and deferring catchPanic
			// must happen before calling the method.
			switch v := p.arg.(type) {
			case error:
				handled = true
				defer p.catchPanic(p.arg, verb, "Error")
				p.fmtString(v.Error(), verb)
				return

			case Stringer:
				handled = true
				defer p.catchPanic(p.arg, verb, "String")
				p.fmtString(v.String(), verb)
				return
			}
		}
	}
	return false
}

func (p *pp) printArg(arg interface{}, verb rune) {
	p.arg = arg
	p.value = reflect.Value{}

	if arg == nil {
		switch verb {
		case 'T', 'v':
			p.fmt.padString(nilAngleString)
		default:
			p.badVerb(verb)
		}
		return
	}

	// Special processing considerations.
	// %T (the value's type) and %p (its address) are special; we always do them first.
	switch verb {
	case 'T':
		p.fmt.fmtS(reflect.TypeOf(arg).String())
		return
	case 'p':
		p.fmtPointer(reflect.ValueOf(arg), 'p')
		return
	}

	// Some types can be done without reflection.
	switch f := arg.(type) {
	case bool:
		p.fmtBool(f, verb)
	case float32:
		p.fmtFloat(float64(f), 32, verb)
	case float64:
		p.fmtFloat(f, 64, verb)
	case complex64:
		p.fmtComplex(complex128(f), 64, verb)
	case complex128:
		p.fmtComplex(f, 128, verb)
	case int:
		p.fmtInteger(uint64(f), signed, verb)
	case int8:
		p.fmtInteger(uint64(f), signed, verb)
	case int16:
		p.fmtInteger(uint64(f), signed, verb)
	case int32:
		p.fmtInteger(uint64(f), signed, verb)
	case int64:
		p.fmtInteger(uint64(f), signed, verb)
	case uint:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint8:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint16:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint32:
		p.fmtInteger(uint64(f), unsigned, verb)
	case uint64:
		p.fmtInteger(f, unsigned, verb)
	case uintptr:
		p.fmtInteger(uint64(f), unsigned, verb)
	case string:
		p.fmtString(f, verb)
	case []byte:
		p.fmtBytes(f, verb, "[]byte")
	case reflect.Value:
		// Handle extractable values with special methods
		// since printValue does not handle them at depth 0.
		if f.IsValid() && f.CanInterface() {
			p.arg = f.Interface()
			if p.handleMethods(verb) {
				return
			}
		}
		p.printValue(f, verb, 0)
	default:
		// If the type is not simple, it might have methods.
		if !p.handleMethods(verb) {
			// Need to use reflection, since the type had no
			// interface methods that could be used for formatting.
			p.printValue(reflect.ValueOf(f), verb, 0)
		}
	}
}

// printValue is similar to printArg but starts with a reflect value, not an interface{} value.
// It does not handle 'p' and 'T' verbs because these should have been already handled by printArg.
func (p *pp) printValue(value reflect.Value, verb rune, depth int) {
	// Handle values with special methods if not already handled by printArg (depth == 0).
	if depth > 0 && value.IsValid() && value.CanInterface() {
		p.arg = value.Interface()
		if p.handleMethods(verb) {
			return
		}
	}
	p.arg = nil
	p.value = value

	switch f := value; value.Kind() {
	case reflect.Invalid:
		if depth == 0 {
			p.buf.writeString(invReflectString)
		} else {
			switch verb {
			case 'v':
				p.buf.writeString(nilAngleString)
			default:
				p.badVerb(verb)
			}
		}
	case reflect.Bool:
		p.fmtBool(f.Bool(), verb)
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		p.fmtInteger(uint64(f.Int()), signed, verb)
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		p.fmtInteger(f.Uint(), unsigned, verb)
	case reflect.Float32:
		p.fmtFloat(f.Float(), 32, verb)
	case reflect.Float64:
		p.fmtFloat(f.Float(), 64, verb)
	case reflect.Complex64:
		p.fmtComplex(f.Complex(), 64, verb)
	case reflect.Complex128:
		p.fmtComplex(f.Complex(), 128, verb)
	case reflect.String:
		p.fmtString(f.String(), verb)
	case reflect.Map:
		if p.fmt.sharpV {
			p.buf.writeString(f.Type().String())
			if f.IsNil() {
				p.buf.writeString(nilParenString)
				return
			}
			p.buf.writeByte('{')
		} else {
			p.buf.writeString(mapString)
		}
		sorted := fmtsort.Sort(f)
		for i, key := range sorted.Key {
			if i > 0 {
				if p.fmt.sharpV {
					p.buf.writeString(commaSpaceString)
				} else {
					p.buf.writeByte(' ')
				}
			}
			p.printValue(key, verb, depth+1)
			p.buf.writeByte(':')
			p.printValue(sorted.Value[i], verb, depth+1)
		}
		if p.fmt.sharpV {
			p.buf.writeByte('}')
		} else {
			p.buf.writeByte(']')
		}
	case reflect.Struct:
		if p.fmt.sharpV {
			p.buf.writeString(f.Type().String())
		}
		p.buf.writeByte('{')
		for i := 0; i < f.NumField(); i++ {
			if i > 0 {
				if p.fmt.sharpV {
					p.buf.writeString(commaSpaceString)
				} else {
					p.buf.writeByte(' ')
				}
			}
			if p.fmt.plusV || p.fmt.sharpV {
				if name := f.Type().Field(i).Name; name != "" {
					p.buf.writeString(name)
					p.buf.writeByte(':')
				}
			}
			p.printValue(getField(f, i), verb, depth+1)
		}
		p.buf.writeByte('}')
	case reflect.Interface:
		value := f.Elem()
		if !value.IsValid() {
			if p.fmt.sharpV {
				p.buf.writeString(f.Type().String())
				p.buf.writeString(nilParenString)
			} else {
				p.buf.writeString(nilAngleString)
			}
		} else {
			p.printValue(value, verb, depth+1)
		}
	case reflect.Array, reflect.Slice:
		switch verb {
		case 's', 'q', 'x', 'X':
			// Handle byte and uint8 slices and arrays special for the above verbs.
			t := f.Type()
			if t.Elem().Kind() == reflect.Uint8 {
				var bytes []byte
				if f.Kind() == reflect.Slice {
					bytes = f.Bytes()
				} else if f.CanAddr() {
					bytes = f.Slice(0, f.Len()).Bytes()
				} else {
					// We have an array, but we cannot Slice() a non-addressable array,
					// so we build a slice by hand. This is a rare case but it would be nice
					// if reflection could help a little more.
					bytes = make([]byte, f.Len())
					for i := range bytes {
						bytes[i] = byte(f.Index(i).Uint())
					}
				}
				p.fmtBytes(bytes, verb, t.String())
				return
			}
		}
		if p.fmt.sharpV {
			p.buf.writeString(f.Type().String())
			if f.Kind() == reflect.Slice && f.IsNil() {
				p.buf.writeString(nilParenString)
				return
			}
			p.buf.writeByte('{')
			for i := 0; i < f.Len(); i++ {
				if i > 0 {
					p.buf.writeString(commaSpaceString)
				}
				p.printValue(f.Index(i), verb, depth+1)
			}
			p.buf.writeByte('}')
		} else {
			p.buf.writeByte('[')
			for i := 0; i < f.Len(); i++ {
				if i > 0 {
					p.buf.writeByte(' ')
				}
				p.printValue(f.Index(i), verb, depth+1)
			}
			p.buf.writeByte(']')
		}
	case reflect.Ptr:
		// pointer to array or slice or struct? ok at top level
		// but not embedded (avoid loops)
		if depth == 0 && f.Pointer() != 0 {
			switch a := f.Elem(); a.Kind() {
			case reflect.Array, reflect.Slice, reflect.Struct, reflect.Map:
				p.buf.writeByte('&')
				p.printValue(a, verb, depth+1)
				return
			}
		}
		fallthrough
	case reflect.Chan, reflect.Func, reflect.UnsafePointer:
		p.fmtPointer(f, verb)
	default:
		p.unknownType(f)
	}
}

// intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has integer type.
func intFromArg(a []interface{}, argNum int) (num int, isInt bool, newArgNum int) {
	newArgNum = argNum
	if argNum < len(a) {
		num, isInt = a[argNum].(int) // Almost always OK.
		if !isInt {
			// Work harder.
			switch v := reflect.ValueOf(a[argNum]); v.Kind() {
			case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
				n := v.Int()
				if int64(int(n)) == n {
					num = int(n)
					isInt = true
				}
			case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
				n := v.Uint()
				if int64(n) >= 0 && uint64(int(n)) == n {
					num = int(n)
					isInt = true
				}
			default:
				// Already 0, false.
			}
		}
		newArgNum = argNum + 1
		if tooLarge(num) {
			num = 0
			isInt = false
		}
	}
	return
}

// parseArgNumber returns the value of the bracketed number, minus 1
// (explicit argument numbers are one-indexed but we want zero-indexed).
// The opening bracket is known to be present at format[0].
// The returned values are the index, the number of bytes to consume
// up to the closing paren, if present, and whether the number parsed
// ok. The bytes to consume will be 1 if no closing paren is present.
func parseArgNumber(format string) (index int, wid int, ok bool) {
	// There must be at least 3 bytes: [n].
	if len(format) < 3 {
		return 0, 1, false
	}

	// Find closing bracket.
	for i := 1; i < len(format); i++ {
		if format[i] == ']' {
			width, ok, newi := parsenum(format, 1, i)
			if !ok || newi != i {
				return 0, i + 1, false
			}
			return width - 1, i + 1, true // arg numbers are one-indexed and skip paren.
		}
	}
	return 0, 1, false
}

// argNumber returns the next argument to evaluate, which is either the value of the passed-in
// argNum or the value of the bracketed integer that begins format[i:]. It also returns
// the new value of i, that is, the index of the next byte of the format to process.
func (p *pp) argNumber(argNum int, format string, i int, numArgs int) (newArgNum, newi int, found bool) {
	if len(format) <= i || format[i] != '[' {
		return argNum, i, false
	}
	p.reordered = true
	index, wid, ok := parseArgNumber(format[i:])
	if ok && 0 <= index && index < numArgs {
		return index, i + wid, true
	}
	p.goodArgNum = false
	return argNum, i + wid, ok
}

func (p *pp) badArgNum(verb rune) {
	p.buf.writeString(percentBangString)
	p.buf.writeRune(verb)
	p.buf.writeString(badIndexString)
}

func (p *pp) missingArg(verb rune) {
	p.buf.writeString(percentBangString)
	p.buf.writeRune(verb)
	p.buf.writeString(missingString)
}

func (p *pp) doPrintf(format string, a []interface{}) {
	end := len(format)
	argNum := 0         // we process one argument per non-trivial format
	afterIndex := false // previous item in format was an index like [3].
	p.reordered = false
formatLoop:
	for i := 0; i < end; {
		p.goodArgNum = true
		lasti := i
		for i < end && format[i] != '%' {
			i++
		}
		if i > lasti {
			p.buf.writeString(format[lasti:i])
		}
		if i >= end {
			// done processing format string
			break
		}

		// Process one verb
		i++

		// Do we have flags?
		p.fmt.clearflags()
	simpleFormat:
		for ; i < end; i++ {
			c := format[i]
			switch c {
			case '#':
				p.fmt.sharp = true
			case '0':
				p.fmt.zero = !p.fmt.minus // Only allow zero padding to the left.
			case '+':
				p.fmt.plus = true
			case '-':
				p.fmt.minus = true
				p.fmt.zero = false // Do not pad with zeros to the right.
			case ' ':
				p.fmt.space = true
			default:
				// Fast path for common case of ascii lower case simple verbs
				// without precision or width or argument indices.
				if 'a' <= c && c <= 'z' && argNum < len(a) {
					if c == 'v' {
						// Go syntax
						p.fmt.sharpV = p.fmt.sharp
						p.fmt.sharp = false
						// Struct-field syntax
						p.fmt.plusV = p.fmt.plus
						p.fmt.plus = false
					}
					p.printArg(a[argNum], rune(c))
					argNum++
					i++
					continue formatLoop
				}
				// Format is more complex than simple flags and a verb or is malformed.
				break simpleFormat
			}
		}

		// Do we have an explicit argument index?
		argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))

		// Do we have width?
		if i < end && format[i] == '*' {
			i++
			p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum)

			if !p.fmt.widPresent {
				p.buf.writeString(badWidthString)
			}

			// We have a negative width, so take its value and ensure
			// that the minus flag is set
			if p.fmt.wid < 0 {
				p.fmt.wid = -p.fmt.wid
				p.fmt.minus = true
				p.fmt.zero = false // Do not pad with zeros to the right.
			}
			afterIndex = false
		} else {
			p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
			if afterIndex && p.fmt.widPresent { // "%[3]2d"
				p.goodArgNum = false
			}
		}

		// Do we have precision?
		if i+1 < end && format[i] == '.' {
			i++
			if afterIndex { // "%[3].2d"
				p.goodArgNum = false
			}
			argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
			if i < end && format[i] == '*' {
				i++
				p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum)
				// Negative precision arguments don't make sense
				if p.fmt.prec < 0 {
					p.fmt.prec = 0
					p.fmt.precPresent = false
				}
				if !p.fmt.precPresent {
					p.buf.writeString(badPrecString)
				}
				afterIndex = false
			} else {
				p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end)
				if !p.fmt.precPresent {
					p.fmt.prec = 0
					p.fmt.precPresent = true
				}
			}
		}

		if !afterIndex {
			argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
		}

		if i >= end {
			p.buf.writeString(noVerbString)
			break
		}

		verb, size := rune(format[i]), 1
		if verb >= utf8.RuneSelf {
			verb, size = utf8.DecodeRuneInString(format[i:])
		}
		i += size

		switch {
		case verb == '%': // Percent does not absorb operands and ignores f.wid and f.prec.
			p.buf.writeByte('%')
		case !p.goodArgNum:
			p.badArgNum(verb)
		case argNum >= len(a): // No argument left over to print for the current verb.
			p.missingArg(verb)
		case verb == 'v':
			// Go syntax
			p.fmt.sharpV = p.fmt.sharp
			p.fmt.sharp = false
			// Struct-field syntax
			p.fmt.plusV = p.fmt.plus
			p.fmt.plus = false
			fallthrough
		default:
			p.printArg(a[argNum], verb)
			argNum++
		}
	}

	// Check for extra arguments unless the call accessed the arguments
	// out of order, in which case it's too expensive to detect if they've all
	// been used and arguably OK if they're not.
	if !p.reordered && argNum < len(a) {
		p.fmt.clearflags()
		p.buf.writeString(extraString)
		for i, arg := range a[argNum:] {
			if i > 0 {
				p.buf.writeString(commaSpaceString)
			}
			if arg == nil {
				p.buf.writeString(nilAngleString)
			} else {
				p.buf.writeString(reflect.TypeOf(arg).String())
				p.buf.writeByte('=')
				p.printArg(arg, 'v')
			}
		}
		p.buf.writeByte(')')
	}
}

func (p *pp) doPrint(a []interface{}) {
	prevString := false
	for argNum, arg := range a {
		isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String
		// Add a space between two non-string arguments.
		if argNum > 0 && !isString && !prevString {
			p.buf.writeByte(' ')
		}
		p.printArg(arg, 'v')
		prevString = isString
	}
}

// doPrintln is like doPrint but always adds a space between arguments
// and a newline after the last argument.
func (p *pp) doPrintln(a []interface{}) {
	for argNum, arg := range a {
		if argNum > 0 {
			p.buf.writeByte(' ')
		}
		p.printArg(arg, 'v')
	}
	p.buf.writeByte('\n')
}