aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/elliptic/p256_generic.go
blob: 22dde23109f872dfe5890baacaa8d5558b4784f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

//go:build !amd64 && !arm64

package elliptic

// This file contains a constant-time, 32-bit implementation of P256.

import "math/big"

type p256Curve struct {
	*CurveParams
}

func (curve p256Curve) Params() *CurveParams {
	return curve.CurveParams
}

// p256GetScalar endian-swaps the big-endian scalar value from in and writes it
// to out. If the scalar is equal or greater than the order of the group, it's
// reduced modulo that order.
func p256GetScalar(out *[32]byte, in []byte) {
	n := new(big.Int).SetBytes(in)
	var scalarBytes []byte

	if n.Cmp(p256Params.N) >= 0 || len(in) > len(out) {
		n.Mod(n, p256Params.N)
		scalarBytes = n.Bytes()
	} else {
		scalarBytes = in
	}

	for i, v := range scalarBytes {
		out[len(scalarBytes)-(1+i)] = v
	}
}

func (p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
	var scalarReversed [32]byte
	p256GetScalar(&scalarReversed, scalar)

	var x1, y1, z1 [p256Limbs]uint32
	p256ScalarBaseMult(&x1, &y1, &z1, &scalarReversed)
	return p256ToAffine(&x1, &y1, &z1)
}

func (p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
	var scalarReversed [32]byte
	p256GetScalar(&scalarReversed, scalar)

	var px, py, x1, y1, z1 [p256Limbs]uint32
	p256FromBig(&px, bigX)
	p256FromBig(&py, bigY)
	p256ScalarMult(&x1, &y1, &z1, &px, &py, &scalarReversed)
	return p256ToAffine(&x1, &y1, &z1)
}

// p256Precomputed contains precomputed values to aid the calculation of scalar
// multiples of the base point, G. It's actually two, equal length, tables
// concatenated.
//
// The first table contains (x,y) field element pairs for 16 multiples of the
// base point, G.
//
//	Index  |  Index (binary) | Value
//	    0  |           0000  | 0G (all zeros, omitted)
//	    1  |           0001  | G
//	    2  |           0010  | 2**64G
//	    3  |           0011  | 2**64G + G
//	    4  |           0100  | 2**128G
//	    5  |           0101  | 2**128G + G
//	    6  |           0110  | 2**128G + 2**64G
//	    7  |           0111  | 2**128G + 2**64G + G
//	    8  |           1000  | 2**192G
//	    9  |           1001  | 2**192G + G
//	   10  |           1010  | 2**192G + 2**64G
//	   11  |           1011  | 2**192G + 2**64G + G
//	   12  |           1100  | 2**192G + 2**128G
//	   13  |           1101  | 2**192G + 2**128G + G
//	   14  |           1110  | 2**192G + 2**128G + 2**64G
//	   15  |           1111  | 2**192G + 2**128G + 2**64G + G
//
// The second table follows the same style, but the terms are 2**32G,
// 2**96G, 2**160G, 2**224G.
//
// This is ~2KB of data.
var p256Precomputed = [p256Limbs * 2 * 15 * 2]uint32{
	0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee,
	0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3,
	0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c,
	0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22,
	0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050,
	0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
	0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa,
	0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2,
	0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609,
	0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581,
	0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca,
	0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33,
	0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6,
	0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd,
	0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0,
	0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881,
	0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a,
	0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26,
	0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b,
	0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023,
	0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133,
	0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa,
	0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29,
	0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc,
	0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8,
	0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59,
	0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39,
	0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689,
	0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa,
	0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3,
	0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1,
	0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f,
	0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72,
	0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d,
	0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b,
	0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a,
	0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a,
	0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f,
	0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb,
	0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc,
	0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
	0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce,
	0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2,
	0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca,
	0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229,
	0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57,
	0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c,
	0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa,
	0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651,
	0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec,
	0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7,
	0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c,
	0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927,
	0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298,
	0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8,
	0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2,
	0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d,
	0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4,
	0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8,
	0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
}

// Group operations:
//
// Elements of the elliptic curve group are represented in Jacobian
// coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
// Jacobian form.

// p256PointDouble sets {xOut,yOut,zOut} = 2*{x,y,z}.
//
// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
func p256PointDouble(xOut, yOut, zOut, x, y, z *[p256Limbs]uint32) {
	var delta, gamma, alpha, beta, tmp, tmp2 [p256Limbs]uint32

	p256Square(&delta, z)
	p256Square(&gamma, y)
	p256Mul(&beta, x, &gamma)

	p256Sum(&tmp, x, &delta)
	p256Diff(&tmp2, x, &delta)
	p256Mul(&alpha, &tmp, &tmp2)
	p256Scalar3(&alpha)

	p256Sum(&tmp, y, z)
	p256Square(&tmp, &tmp)
	p256Diff(&tmp, &tmp, &gamma)
	p256Diff(zOut, &tmp, &delta)

	p256Scalar4(&beta)
	p256Square(xOut, &alpha)
	p256Diff(xOut, xOut, &beta)
	p256Diff(xOut, xOut, &beta)

	p256Diff(&tmp, &beta, xOut)
	p256Mul(&tmp, &alpha, &tmp)
	p256Square(&tmp2, &gamma)
	p256Scalar8(&tmp2)
	p256Diff(yOut, &tmp, &tmp2)
}

// p256PointAddMixed sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,1}.
// (i.e. the second point is affine.)
//
// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
//
// Note that this function does not handle P+P, infinity+P nor P+infinity
// correctly.
func p256PointAddMixed(xOut, yOut, zOut, x1, y1, z1, x2, y2 *[p256Limbs]uint32) {
	var z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32

	p256Square(&z1z1, z1)
	p256Sum(&tmp, z1, z1)

	p256Mul(&u2, x2, &z1z1)
	p256Mul(&z1z1z1, z1, &z1z1)
	p256Mul(&s2, y2, &z1z1z1)
	p256Diff(&h, &u2, x1)
	p256Sum(&i, &h, &h)
	p256Square(&i, &i)
	p256Mul(&j, &h, &i)
	p256Diff(&r, &s2, y1)
	p256Sum(&r, &r, &r)
	p256Mul(&v, x1, &i)

	p256Mul(zOut, &tmp, &h)
	p256Square(&rr, &r)
	p256Diff(xOut, &rr, &j)
	p256Diff(xOut, xOut, &v)
	p256Diff(xOut, xOut, &v)

	p256Diff(&tmp, &v, xOut)
	p256Mul(yOut, &tmp, &r)
	p256Mul(&tmp, y1, &j)
	p256Diff(yOut, yOut, &tmp)
	p256Diff(yOut, yOut, &tmp)
}

// p256PointAdd sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,z2}.
//
// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
//
// Note that this function does not handle P+P, infinity+P nor P+infinity
// correctly.
func p256PointAdd(xOut, yOut, zOut, x1, y1, z1, x2, y2, z2 *[p256Limbs]uint32) {
	var z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32

	p256Square(&z1z1, z1)
	p256Square(&z2z2, z2)
	p256Mul(&u1, x1, &z2z2)

	p256Sum(&tmp, z1, z2)
	p256Square(&tmp, &tmp)
	p256Diff(&tmp, &tmp, &z1z1)
	p256Diff(&tmp, &tmp, &z2z2)

	p256Mul(&z2z2z2, z2, &z2z2)
	p256Mul(&s1, y1, &z2z2z2)

	p256Mul(&u2, x2, &z1z1)
	p256Mul(&z1z1z1, z1, &z1z1)
	p256Mul(&s2, y2, &z1z1z1)
	p256Diff(&h, &u2, &u1)
	p256Sum(&i, &h, &h)
	p256Square(&i, &i)
	p256Mul(&j, &h, &i)
	p256Diff(&r, &s2, &s1)
	p256Sum(&r, &r, &r)
	p256Mul(&v, &u1, &i)

	p256Mul(zOut, &tmp, &h)
	p256Square(&rr, &r)
	p256Diff(xOut, &rr, &j)
	p256Diff(xOut, xOut, &v)
	p256Diff(xOut, xOut, &v)

	p256Diff(&tmp, &v, xOut)
	p256Mul(yOut, &tmp, &r)
	p256Mul(&tmp, &s1, &j)
	p256Diff(yOut, yOut, &tmp)
	p256Diff(yOut, yOut, &tmp)
}

// p256SelectAffinePoint sets {out_x,out_y} to the index'th entry of table.
//
// On entry: index < 16, table[0] must be zero.
func p256SelectAffinePoint(xOut, yOut *[p256Limbs]uint32, table []uint32, index uint32) {
	for i := range xOut {
		xOut[i] = 0
	}
	for i := range yOut {
		yOut[i] = 0
	}

	for i := uint32(1); i < 16; i++ {
		mask := i ^ index
		mask |= mask >> 2
		mask |= mask >> 1
		mask &= 1
		mask--
		for j := range xOut {
			xOut[j] |= table[0] & mask
			table = table[1:]
		}
		for j := range yOut {
			yOut[j] |= table[0] & mask
			table = table[1:]
		}
	}
}

// p256SelectJacobianPoint sets {out_x,out_y,out_z} to the index'th entry of
// table.
//
// On entry: index < 16, table[0] must be zero.
func p256SelectJacobianPoint(xOut, yOut, zOut *[p256Limbs]uint32, table *[16][3][p256Limbs]uint32, index uint32) {
	for i := range xOut {
		xOut[i] = 0
	}
	for i := range yOut {
		yOut[i] = 0
	}
	for i := range zOut {
		zOut[i] = 0
	}

	// The implicit value at index 0 is all zero. We don't need to perform that
	// iteration of the loop because we already set out_* to zero.
	for i := uint32(1); i < 16; i++ {
		mask := i ^ index
		mask |= mask >> 2
		mask |= mask >> 1
		mask &= 1
		mask--
		for j := range xOut {
			xOut[j] |= table[i][0][j] & mask
		}
		for j := range yOut {
			yOut[j] |= table[i][1][j] & mask
		}
		for j := range zOut {
			zOut[j] |= table[i][2][j] & mask
		}
	}
}

// p256GetBit returns the bit'th bit of scalar.
func p256GetBit(scalar *[32]uint8, bit uint) uint32 {
	return uint32(((scalar[bit>>3]) >> (bit & 7)) & 1)
}

// p256ScalarBaseMult sets {xOut,yOut,zOut} = scalar*G where scalar is a
// little-endian number. Note that the value of scalar must be less than the
// order of the group.
func p256ScalarBaseMult(xOut, yOut, zOut *[p256Limbs]uint32, scalar *[32]uint8) {
	nIsInfinityMask := ^uint32(0)
	var pIsNoninfiniteMask, mask, tableOffset uint32
	var px, py, tx, ty, tz [p256Limbs]uint32

	for i := range xOut {
		xOut[i] = 0
	}
	for i := range yOut {
		yOut[i] = 0
	}
	for i := range zOut {
		zOut[i] = 0
	}

	// The loop adds bits at positions 0, 64, 128 and 192, followed by
	// positions 32,96,160 and 224 and does this 32 times.
	for i := uint(0); i < 32; i++ {
		if i != 0 {
			p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
		}
		tableOffset = 0
		for j := uint(0); j <= 32; j += 32 {
			bit0 := p256GetBit(scalar, 31-i+j)
			bit1 := p256GetBit(scalar, 95-i+j)
			bit2 := p256GetBit(scalar, 159-i+j)
			bit3 := p256GetBit(scalar, 223-i+j)
			index := bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3)

			p256SelectAffinePoint(&px, &py, p256Precomputed[tableOffset:], index)
			tableOffset += 30 * p256Limbs

			// Since scalar is less than the order of the group, we know that
			// {xOut,yOut,zOut} != {px,py,1}, unless both are zero, which we handle
			// below.
			p256PointAddMixed(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py)
			// The result of pointAddMixed is incorrect if {xOut,yOut,zOut} is zero
			// (a.k.a.  the point at infinity). We handle that situation by
			// copying the point from the table.
			p256CopyConditional(xOut, &px, nIsInfinityMask)
			p256CopyConditional(yOut, &py, nIsInfinityMask)
			p256CopyConditional(zOut, &p256One, nIsInfinityMask)

			// Equally, the result is also wrong if the point from the table is
			// zero, which happens when the index is zero. We handle that by
			// only copying from {tx,ty,tz} to {xOut,yOut,zOut} if index != 0.
			pIsNoninfiniteMask = nonZeroToAllOnes(index)
			mask = pIsNoninfiniteMask & ^nIsInfinityMask
			p256CopyConditional(xOut, &tx, mask)
			p256CopyConditional(yOut, &ty, mask)
			p256CopyConditional(zOut, &tz, mask)
			// If p was not zero, then n is now non-zero.
			nIsInfinityMask &^= pIsNoninfiniteMask
		}
	}
}

// p256PointToAffine converts a Jacobian point to an affine point. If the input
// is the point at infinity then it returns (0, 0) in constant time.
func p256PointToAffine(xOut, yOut, x, y, z *[p256Limbs]uint32) {
	var zInv, zInvSq [p256Limbs]uint32

	p256Invert(&zInv, z)
	p256Square(&zInvSq, &zInv)
	p256Mul(xOut, x, &zInvSq)
	p256Mul(&zInv, &zInv, &zInvSq)
	p256Mul(yOut, y, &zInv)
}

// p256ToAffine returns a pair of *big.Int containing the affine representation
// of {x,y,z}.
func p256ToAffine(x, y, z *[p256Limbs]uint32) (xOut, yOut *big.Int) {
	var xx, yy [p256Limbs]uint32
	p256PointToAffine(&xx, &yy, x, y, z)
	return p256ToBig(&xx), p256ToBig(&yy)
}

// p256ScalarMult sets {xOut,yOut,zOut} = scalar*{x,y}.
func p256ScalarMult(xOut, yOut, zOut, x, y *[p256Limbs]uint32, scalar *[32]uint8) {
	var px, py, pz, tx, ty, tz [p256Limbs]uint32
	var precomp [16][3][p256Limbs]uint32
	var nIsInfinityMask, index, pIsNoninfiniteMask, mask uint32

	// We precompute 0,1,2,... times {x,y}.
	precomp[1][0] = *x
	precomp[1][1] = *y
	precomp[1][2] = p256One

	for i := 2; i < 16; i += 2 {
		p256PointDouble(&precomp[i][0], &precomp[i][1], &precomp[i][2], &precomp[i/2][0], &precomp[i/2][1], &precomp[i/2][2])
		p256PointAddMixed(&precomp[i+1][0], &precomp[i+1][1], &precomp[i+1][2], &precomp[i][0], &precomp[i][1], &precomp[i][2], x, y)
	}

	for i := range xOut {
		xOut[i] = 0
	}
	for i := range yOut {
		yOut[i] = 0
	}
	for i := range zOut {
		zOut[i] = 0
	}
	nIsInfinityMask = ^uint32(0)

	// We add in a window of four bits each iteration and do this 64 times.
	for i := 0; i < 64; i++ {
		if i != 0 {
			p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
			p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
			p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
			p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut)
		}

		index = uint32(scalar[31-i/2])
		if (i & 1) == 1 {
			index &= 15
		} else {
			index >>= 4
		}

		// See the comments in scalarBaseMult about handling infinities.
		p256SelectJacobianPoint(&px, &py, &pz, &precomp, index)
		p256PointAdd(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py, &pz)
		p256CopyConditional(xOut, &px, nIsInfinityMask)
		p256CopyConditional(yOut, &py, nIsInfinityMask)
		p256CopyConditional(zOut, &pz, nIsInfinityMask)

		pIsNoninfiniteMask = nonZeroToAllOnes(index)
		mask = pIsNoninfiniteMask & ^nIsInfinityMask
		p256CopyConditional(xOut, &tx, mask)
		p256CopyConditional(yOut, &ty, mask)
		p256CopyConditional(zOut, &tz, mask)
		nIsInfinityMask &^= pIsNoninfiniteMask
	}
}