aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/vendor/golang.org/x/tools/internal/lsp/fuzzy/matcher.go
blob: 265cdcf1604c06cb5607369d60253e077af2871d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package fuzzy implements a fuzzy matching algorithm.
package fuzzy

import (
	"bytes"
	"fmt"
)

const (
	// MaxInputSize is the maximum size of the input scored against the fuzzy matcher. Longer inputs
	// will be truncated to this size.
	MaxInputSize = 127
	// MaxPatternSize is the maximum size of the pattern used to construct the fuzzy matcher. Longer
	// inputs are truncated to this size.
	MaxPatternSize = 63
)

type scoreVal int

func (s scoreVal) val() int {
	return int(s) >> 1
}

func (s scoreVal) prevK() int {
	return int(s) & 1
}

func score(val int, prevK int /*0 or 1*/) scoreVal {
	return scoreVal(val<<1 + prevK)
}

// Matcher implements a fuzzy matching algorithm for scoring candidates against a pattern.
// The matcher does not support parallel usage.
type Matcher struct {
	pattern       string
	patternLower  []byte // lower-case version of the pattern
	patternShort  []byte // first characters of the pattern
	caseSensitive bool   // set if the pattern is mix-cased

	patternRoles []RuneRole // the role of each character in the pattern
	roles        []RuneRole // the role of each character in the tested string

	scores [MaxInputSize + 1][MaxPatternSize + 1][2]scoreVal

	scoreScale float32

	lastCandidateLen     int // in bytes
	lastCandidateMatched bool

	// Reusable buffers to avoid allocating for every candidate.
	//  - inputBuf stores the concatenated input chunks
	//  - lowerBuf stores the last candidate in lower-case
	//  - rolesBuf stores the calculated roles for each rune in the last
	//    candidate.
	inputBuf [MaxInputSize]byte
	lowerBuf [MaxInputSize]byte
	rolesBuf [MaxInputSize]RuneRole
}

func (m *Matcher) bestK(i, j int) int {
	if m.scores[i][j][0].val() < m.scores[i][j][1].val() {
		return 1
	}
	return 0
}

// NewMatcher returns a new fuzzy matcher for scoring candidates against the provided pattern.
func NewMatcher(pattern string) *Matcher {
	if len(pattern) > MaxPatternSize {
		pattern = pattern[:MaxPatternSize]
	}

	m := &Matcher{
		pattern:      pattern,
		patternLower: toLower([]byte(pattern), nil),
	}

	for i, c := range m.patternLower {
		if pattern[i] != c {
			m.caseSensitive = true
			break
		}
	}

	if len(pattern) > 3 {
		m.patternShort = m.patternLower[:3]
	} else {
		m.patternShort = m.patternLower
	}

	m.patternRoles = RuneRoles([]byte(pattern), nil)

	if len(pattern) > 0 {
		maxCharScore := 4
		m.scoreScale = 1 / float32(maxCharScore*len(pattern))
	}

	return m
}

// Score returns the score returned by matching the candidate to the pattern.
// This is not designed for parallel use. Multiple candidates must be scored sequentially.
// Returns a score between 0 and 1 (0 - no match, 1 - perfect match).
func (m *Matcher) Score(candidate string) float32 {
	return m.ScoreChunks([]string{candidate})
}

func (m *Matcher) ScoreChunks(chunks []string) float32 {
	candidate := fromChunks(chunks, m.inputBuf[:])
	if len(candidate) > MaxInputSize {
		candidate = candidate[:MaxInputSize]
	}
	lower := toLower(candidate, m.lowerBuf[:])
	m.lastCandidateLen = len(candidate)

	if len(m.pattern) == 0 {
		// Empty patterns perfectly match candidates.
		return 1
	}

	if m.match(candidate, lower) {
		sc := m.computeScore(candidate, lower)
		if sc > minScore/2 && !m.poorMatch() {
			m.lastCandidateMatched = true
			if len(m.pattern) == len(candidate) {
				// Perfect match.
				return 1
			}

			if sc < 0 {
				sc = 0
			}
			normalizedScore := float32(sc) * m.scoreScale
			if normalizedScore > 1 {
				normalizedScore = 1
			}

			return normalizedScore
		}
	}

	m.lastCandidateMatched = false
	return 0
}

const minScore = -10000

// MatchedRanges returns matches ranges for the last scored string as a flattened array of
// [begin, end) byte offset pairs.
func (m *Matcher) MatchedRanges() []int {
	if len(m.pattern) == 0 || !m.lastCandidateMatched {
		return nil
	}
	i, j := m.lastCandidateLen, len(m.pattern)
	if m.scores[i][j][0].val() < minScore/2 && m.scores[i][j][1].val() < minScore/2 {
		return nil
	}

	var ret []int
	k := m.bestK(i, j)
	for i > 0 {
		take := (k == 1)
		k = m.scores[i][j][k].prevK()
		if take {
			if len(ret) == 0 || ret[len(ret)-1] != i {
				ret = append(ret, i)
				ret = append(ret, i-1)
			} else {
				ret[len(ret)-1] = i - 1
			}
			j--
		}
		i--
	}
	// Reverse slice.
	for i := 0; i < len(ret)/2; i++ {
		ret[i], ret[len(ret)-1-i] = ret[len(ret)-1-i], ret[i]
	}
	return ret
}

func (m *Matcher) match(candidate []byte, candidateLower []byte) bool {
	i, j := 0, 0
	for ; i < len(candidateLower) && j < len(m.patternLower); i++ {
		if candidateLower[i] == m.patternLower[j] {
			j++
		}
	}
	if j != len(m.patternLower) {
		return false
	}

	// The input passes the simple test against pattern, so it is time to classify its characters.
	// Character roles are used below to find the last segment.
	m.roles = RuneRoles(candidate, m.rolesBuf[:])

	return true
}

func (m *Matcher) computeScore(candidate []byte, candidateLower []byte) int {
	pattLen, candLen := len(m.pattern), len(candidate)

	for j := 0; j <= len(m.pattern); j++ {
		m.scores[0][j][0] = minScore << 1
		m.scores[0][j][1] = minScore << 1
	}
	m.scores[0][0][0] = score(0, 0) // Start with 0.

	segmentsLeft, lastSegStart := 1, 0
	for i := 0; i < candLen; i++ {
		if m.roles[i] == RSep {
			segmentsLeft++
			lastSegStart = i + 1
		}
	}

	// A per-character bonus for a consecutive match.
	consecutiveBonus := 2
	wordIdx := 0 // Word count within segment.
	for i := 1; i <= candLen; i++ {

		role := m.roles[i-1]
		isHead := role == RHead

		if isHead {
			wordIdx++
		} else if role == RSep && segmentsLeft > 1 {
			wordIdx = 0
			segmentsLeft--
		}

		var skipPenalty int
		if i == 1 || (i-1) == lastSegStart {
			// Skipping the start of first or last segment.
			skipPenalty++
		}

		for j := 0; j <= pattLen; j++ {
			// By default, we don't have a match. Fill in the skip data.
			m.scores[i][j][1] = minScore << 1

			// Compute the skip score.
			k := 0
			if m.scores[i-1][j][0].val() < m.scores[i-1][j][1].val() {
				k = 1
			}

			skipScore := m.scores[i-1][j][k].val()
			// Do not penalize missing characters after the last matched segment.
			if j != pattLen {
				skipScore -= skipPenalty
			}
			m.scores[i][j][0] = score(skipScore, k)

			if j == 0 || candidateLower[i-1] != m.patternLower[j-1] {
				// Not a match.
				continue
			}
			pRole := m.patternRoles[j-1]

			if role == RTail && pRole == RHead {
				if j > 1 {
					// Not a match: a head in the pattern matches a tail character in the candidate.
					continue
				}
				// Special treatment for the first character of the pattern. We allow
				// matches in the middle of a word if they are long enough, at least
				// min(3, pattern.length) characters.
				if !bytes.HasPrefix(candidateLower[i-1:], m.patternShort) {
					continue
				}
			}

			// Compute the char score.
			var charScore int
			// Bonus 1: the char is in the candidate's last segment.
			if segmentsLeft <= 1 {
				charScore++
			}
			// Bonus 2: Case match or a Head in the pattern aligns with one in the word.
			// Single-case patterns lack segmentation signals and we assume any character
			// can be a head of a segment.
			if candidate[i-1] == m.pattern[j-1] || role == RHead && (!m.caseSensitive || pRole == RHead) {
				charScore++
			}

			// Penalty 1: pattern char is Head, candidate char is Tail.
			if role == RTail && pRole == RHead {
				charScore--
			}
			// Penalty 2: first pattern character matched in the middle of a word.
			if j == 1 && role == RTail {
				charScore -= 4
			}

			// Third dimension encodes whether there is a gap between the previous match and the current
			// one.
			for k := 0; k < 2; k++ {
				sc := m.scores[i-1][j-1][k].val() + charScore

				isConsecutive := k == 1 || i-1 == 0 || i-1 == lastSegStart
				if isConsecutive {
					// Bonus 3: a consecutive match. First character match also gets a bonus to
					// ensure prefix final match score normalizes to 1.0.
					// Logically, this is a part of charScore, but we have to compute it here because it
					// only applies for consecutive matches (k == 1).
					sc += consecutiveBonus
				}
				if k == 0 {
					// Penalty 3: Matching inside a segment (and previous char wasn't matched). Penalize for the lack
					// of alignment.
					if role == RTail || role == RUCTail {
						sc -= 3
					}
				}

				if sc > m.scores[i][j][1].val() {
					m.scores[i][j][1] = score(sc, k)
				}
			}
		}
	}

	result := m.scores[len(candidate)][len(m.pattern)][m.bestK(len(candidate), len(m.pattern))].val()

	return result
}

// ScoreTable returns the score table computed for the provided candidate. Used only for debugging.
func (m *Matcher) ScoreTable(candidate string) string {
	var buf bytes.Buffer

	var line1, line2, separator bytes.Buffer
	line1.WriteString("\t")
	line2.WriteString("\t")
	for j := 0; j < len(m.pattern); j++ {
		line1.WriteString(fmt.Sprintf("%c\t\t", m.pattern[j]))
		separator.WriteString("----------------")
	}

	buf.WriteString(line1.String())
	buf.WriteString("\n")
	buf.WriteString(separator.String())
	buf.WriteString("\n")

	for i := 1; i <= len(candidate); i++ {
		line1.Reset()
		line2.Reset()

		line1.WriteString(fmt.Sprintf("%c\t", candidate[i-1]))
		line2.WriteString("\t")

		for j := 1; j <= len(m.pattern); j++ {
			line1.WriteString(fmt.Sprintf("M%6d(%c)\t", m.scores[i][j][0].val(), dir(m.scores[i][j][0].prevK())))
			line2.WriteString(fmt.Sprintf("H%6d(%c)\t", m.scores[i][j][1].val(), dir(m.scores[i][j][1].prevK())))
		}
		buf.WriteString(line1.String())
		buf.WriteString("\n")
		buf.WriteString(line2.String())
		buf.WriteString("\n")
		buf.WriteString(separator.String())
		buf.WriteString("\n")
	}

	return buf.String()
}

func dir(prevK int) rune {
	if prevK == 0 {
		return 'M'
	}
	return 'H'
}

func (m *Matcher) poorMatch() bool {
	if len(m.pattern) < 2 {
		return false
	}

	i, j := m.lastCandidateLen, len(m.pattern)
	k := m.bestK(i, j)

	var counter, len int
	for i > 0 {
		take := (k == 1)
		k = m.scores[i][j][k].prevK()
		if take {
			len++
			if k == 0 && len < 3 && m.roles[i-1] == RTail {
				// Short match in the middle of a word
				counter++
				if counter > 1 {
					return true
				}
			}
			j--
		} else {
			len = 0
		}
		i--
	}
	return false
}