aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/vendor/golang.org/x/tools/go/analysis/passes/printf/printf.go
blob: 6589478af0f5c1690faff7fc4f209e7e6854f877 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package printf defines an Analyzer that checks consistency
// of Printf format strings and arguments.
package printf

import (
	"bytes"
	"fmt"
	"go/ast"
	"go/constant"
	"go/token"
	"go/types"
	"reflect"
	"regexp"
	"sort"
	"strconv"
	"strings"
	"unicode/utf8"

	"golang.org/x/tools/go/analysis"
	"golang.org/x/tools/go/analysis/passes/inspect"
	"golang.org/x/tools/go/analysis/passes/internal/analysisutil"
	"golang.org/x/tools/go/ast/inspector"
	"golang.org/x/tools/go/types/typeutil"
)

func init() {
	Analyzer.Flags.Var(isPrint, "funcs", "comma-separated list of print function names to check")
}

var Analyzer = &analysis.Analyzer{
	Name:       "printf",
	Doc:        Doc,
	Requires:   []*analysis.Analyzer{inspect.Analyzer},
	Run:        run,
	ResultType: reflect.TypeOf((*Result)(nil)),
	FactTypes:  []analysis.Fact{new(isWrapper)},
}

const Doc = `check consistency of Printf format strings and arguments

The check applies to known functions (for example, those in package fmt)
as well as any detected wrappers of known functions.

A function that wants to avail itself of printf checking but is not
found by this analyzer's heuristics (for example, due to use of
dynamic calls) can insert a bogus call:

	if false {
		_ = fmt.Sprintf(format, args...) // enable printf checking
	}

The -funcs flag specifies a comma-separated list of names of additional
known formatting functions or methods. If the name contains a period,
it must denote a specific function using one of the following forms:

	dir/pkg.Function
	dir/pkg.Type.Method
	(*dir/pkg.Type).Method

Otherwise the name is interpreted as a case-insensitive unqualified
identifier such as "errorf". Either way, if a listed name ends in f, the
function is assumed to be Printf-like, taking a format string before the
argument list. Otherwise it is assumed to be Print-like, taking a list
of arguments with no format string.
`

// Kind is a kind of fmt function behavior.
type Kind int

const (
	KindNone   Kind = iota // not a fmt wrapper function
	KindPrint              // function behaves like fmt.Print
	KindPrintf             // function behaves like fmt.Printf
	KindErrorf             // function behaves like fmt.Errorf
)

func (kind Kind) String() string {
	switch kind {
	case KindPrint:
		return "print"
	case KindPrintf:
		return "printf"
	case KindErrorf:
		return "errorf"
	}
	return ""
}

// Result is the printf analyzer's result type. Clients may query the result
// to learn whether a function behaves like fmt.Print or fmt.Printf.
type Result struct {
	funcs map[*types.Func]Kind
}

// Kind reports whether fn behaves like fmt.Print or fmt.Printf.
func (r *Result) Kind(fn *types.Func) Kind {
	_, ok := isPrint[fn.FullName()]
	if !ok {
		// Next look up just "printf", for use with -printf.funcs.
		_, ok = isPrint[strings.ToLower(fn.Name())]
	}
	if ok {
		if strings.HasSuffix(fn.Name(), "f") {
			return KindPrintf
		} else {
			return KindPrint
		}
	}

	return r.funcs[fn]
}

// isWrapper is a fact indicating that a function is a print or printf wrapper.
type isWrapper struct{ Kind Kind }

func (f *isWrapper) AFact() {}

func (f *isWrapper) String() string {
	switch f.Kind {
	case KindPrintf:
		return "printfWrapper"
	case KindPrint:
		return "printWrapper"
	case KindErrorf:
		return "errorfWrapper"
	default:
		return "unknownWrapper"
	}
}

func run(pass *analysis.Pass) (interface{}, error) {
	res := &Result{
		funcs: make(map[*types.Func]Kind),
	}
	findPrintfLike(pass, res)
	checkCall(pass)
	return res, nil
}

type printfWrapper struct {
	obj     *types.Func
	fdecl   *ast.FuncDecl
	format  *types.Var
	args    *types.Var
	callers []printfCaller
	failed  bool // if true, not a printf wrapper
}

type printfCaller struct {
	w    *printfWrapper
	call *ast.CallExpr
}

// maybePrintfWrapper decides whether decl (a declared function) may be a wrapper
// around a fmt.Printf or fmt.Print function. If so it returns a printfWrapper
// function describing the declaration. Later processing will analyze the
// graph of potential printf wrappers to pick out the ones that are true wrappers.
// A function may be a Printf or Print wrapper if its last argument is ...interface{}.
// If the next-to-last argument is a string, then this may be a Printf wrapper.
// Otherwise it may be a Print wrapper.
func maybePrintfWrapper(info *types.Info, decl ast.Decl) *printfWrapper {
	// Look for functions with final argument type ...interface{}.
	fdecl, ok := decl.(*ast.FuncDecl)
	if !ok || fdecl.Body == nil {
		return nil
	}
	fn, ok := info.Defs[fdecl.Name].(*types.Func)
	// Type information may be incomplete.
	if !ok {
		return nil
	}

	sig := fn.Type().(*types.Signature)
	if !sig.Variadic() {
		return nil // not variadic
	}

	params := sig.Params()
	nparams := params.Len() // variadic => nonzero

	args := params.At(nparams - 1)
	iface, ok := args.Type().(*types.Slice).Elem().(*types.Interface)
	if !ok || !iface.Empty() {
		return nil // final (args) param is not ...interface{}
	}

	// Is second last param 'format string'?
	var format *types.Var
	if nparams >= 2 {
		if p := params.At(nparams - 2); p.Type() == types.Typ[types.String] {
			format = p
		}
	}

	return &printfWrapper{
		obj:    fn,
		fdecl:  fdecl,
		format: format,
		args:   args,
	}
}

// findPrintfLike scans the entire package to find printf-like functions.
func findPrintfLike(pass *analysis.Pass, res *Result) (interface{}, error) {
	// Gather potential wrappers and call graph between them.
	byObj := make(map[*types.Func]*printfWrapper)
	var wrappers []*printfWrapper
	for _, file := range pass.Files {
		for _, decl := range file.Decls {
			w := maybePrintfWrapper(pass.TypesInfo, decl)
			if w == nil {
				continue
			}
			byObj[w.obj] = w
			wrappers = append(wrappers, w)
		}
	}

	// Walk the graph to figure out which are really printf wrappers.
	for _, w := range wrappers {
		// Scan function for calls that could be to other printf-like functions.
		ast.Inspect(w.fdecl.Body, func(n ast.Node) bool {
			if w.failed {
				return false
			}

			// TODO: Relax these checks; issue 26555.
			if assign, ok := n.(*ast.AssignStmt); ok {
				for _, lhs := range assign.Lhs {
					if match(pass.TypesInfo, lhs, w.format) ||
						match(pass.TypesInfo, lhs, w.args) {
						// Modifies the format
						// string or args in
						// some way, so not a
						// simple wrapper.
						w.failed = true
						return false
					}
				}
			}
			if un, ok := n.(*ast.UnaryExpr); ok && un.Op == token.AND {
				if match(pass.TypesInfo, un.X, w.format) ||
					match(pass.TypesInfo, un.X, w.args) {
					// Taking the address of the
					// format string or args,
					// so not a simple wrapper.
					w.failed = true
					return false
				}
			}

			call, ok := n.(*ast.CallExpr)
			if !ok || len(call.Args) == 0 || !match(pass.TypesInfo, call.Args[len(call.Args)-1], w.args) {
				return true
			}

			fn, kind := printfNameAndKind(pass, call)
			if kind != 0 {
				checkPrintfFwd(pass, w, call, kind, res)
				return true
			}

			// If the call is to another function in this package,
			// maybe we will find out it is printf-like later.
			// Remember this call for later checking.
			if fn != nil && fn.Pkg() == pass.Pkg && byObj[fn] != nil {
				callee := byObj[fn]
				callee.callers = append(callee.callers, printfCaller{w, call})
			}

			return true
		})
	}
	return nil, nil
}

func match(info *types.Info, arg ast.Expr, param *types.Var) bool {
	id, ok := arg.(*ast.Ident)
	return ok && info.ObjectOf(id) == param
}

// checkPrintfFwd checks that a printf-forwarding wrapper is forwarding correctly.
// It diagnoses writing fmt.Printf(format, args) instead of fmt.Printf(format, args...).
func checkPrintfFwd(pass *analysis.Pass, w *printfWrapper, call *ast.CallExpr, kind Kind, res *Result) {
	matched := kind == KindPrint ||
		kind != KindNone && len(call.Args) >= 2 && match(pass.TypesInfo, call.Args[len(call.Args)-2], w.format)
	if !matched {
		return
	}

	if !call.Ellipsis.IsValid() {
		typ, ok := pass.TypesInfo.Types[call.Fun].Type.(*types.Signature)
		if !ok {
			return
		}
		if len(call.Args) > typ.Params().Len() {
			// If we're passing more arguments than what the
			// print/printf function can take, adding an ellipsis
			// would break the program. For example:
			//
			//   func foo(arg1 string, arg2 ...interface{} {
			//       fmt.Printf("%s %v", arg1, arg2)
			//   }
			return
		}
		desc := "printf"
		if kind == KindPrint {
			desc = "print"
		}
		pass.ReportRangef(call, "missing ... in args forwarded to %s-like function", desc)
		return
	}
	fn := w.obj
	var fact isWrapper
	if !pass.ImportObjectFact(fn, &fact) {
		fact.Kind = kind
		pass.ExportObjectFact(fn, &fact)
		res.funcs[fn] = kind
		for _, caller := range w.callers {
			checkPrintfFwd(pass, caller.w, caller.call, kind, res)
		}
	}
}

// isPrint records the print functions.
// If a key ends in 'f' then it is assumed to be a formatted print.
//
// Keys are either values returned by (*types.Func).FullName,
// or case-insensitive identifiers such as "errorf".
//
// The -funcs flag adds to this set.
//
// The set below includes facts for many important standard library
// functions, even though the analysis is capable of deducing that, for
// example, fmt.Printf forwards to fmt.Fprintf. We avoid relying on the
// driver applying analyzers to standard packages because "go vet" does
// not do so with gccgo, and nor do some other build systems.
// TODO(adonovan): eliminate the redundant facts once this restriction
// is lifted.
//
var isPrint = stringSet{
	"fmt.Errorf":   true,
	"fmt.Fprint":   true,
	"fmt.Fprintf":  true,
	"fmt.Fprintln": true,
	"fmt.Print":    true,
	"fmt.Printf":   true,
	"fmt.Println":  true,
	"fmt.Sprint":   true,
	"fmt.Sprintf":  true,
	"fmt.Sprintln": true,

	"runtime/trace.Logf": true,

	"log.Print":             true,
	"log.Printf":            true,
	"log.Println":           true,
	"log.Fatal":             true,
	"log.Fatalf":            true,
	"log.Fatalln":           true,
	"log.Panic":             true,
	"log.Panicf":            true,
	"log.Panicln":           true,
	"(*log.Logger).Fatal":   true,
	"(*log.Logger).Fatalf":  true,
	"(*log.Logger).Fatalln": true,
	"(*log.Logger).Panic":   true,
	"(*log.Logger).Panicf":  true,
	"(*log.Logger).Panicln": true,
	"(*log.Logger).Print":   true,
	"(*log.Logger).Printf":  true,
	"(*log.Logger).Println": true,

	"(*testing.common).Error":  true,
	"(*testing.common).Errorf": true,
	"(*testing.common).Fatal":  true,
	"(*testing.common).Fatalf": true,
	"(*testing.common).Log":    true,
	"(*testing.common).Logf":   true,
	"(*testing.common).Skip":   true,
	"(*testing.common).Skipf":  true,
	// *testing.T and B are detected by induction, but testing.TB is
	// an interface and the inference can't follow dynamic calls.
	"(testing.TB).Error":  true,
	"(testing.TB).Errorf": true,
	"(testing.TB).Fatal":  true,
	"(testing.TB).Fatalf": true,
	"(testing.TB).Log":    true,
	"(testing.TB).Logf":   true,
	"(testing.TB).Skip":   true,
	"(testing.TB).Skipf":  true,
}

// formatString returns the format string argument and its index within
// the given printf-like call expression.
//
// The last parameter before variadic arguments is assumed to be
// a format string.
//
// The first string literal or string constant is assumed to be a format string
// if the call's signature cannot be determined.
//
// If it cannot find any format string parameter, it returns ("", -1).
func formatString(pass *analysis.Pass, call *ast.CallExpr) (format string, idx int) {
	typ := pass.TypesInfo.Types[call.Fun].Type
	if typ != nil {
		if sig, ok := typ.(*types.Signature); ok {
			if !sig.Variadic() {
				// Skip checking non-variadic functions.
				return "", -1
			}
			idx := sig.Params().Len() - 2
			if idx < 0 {
				// Skip checking variadic functions without
				// fixed arguments.
				return "", -1
			}
			s, ok := stringConstantArg(pass, call, idx)
			if !ok {
				// The last argument before variadic args isn't a string.
				return "", -1
			}
			return s, idx
		}
	}

	// Cannot determine call's signature. Fall back to scanning for the first
	// string constant in the call.
	for idx := range call.Args {
		if s, ok := stringConstantArg(pass, call, idx); ok {
			return s, idx
		}
		if pass.TypesInfo.Types[call.Args[idx]].Type == types.Typ[types.String] {
			// Skip checking a call with a non-constant format
			// string argument, since its contents are unavailable
			// for validation.
			return "", -1
		}
	}
	return "", -1
}

// stringConstantArg returns call's string constant argument at the index idx.
//
// ("", false) is returned if call's argument at the index idx isn't a string
// constant.
func stringConstantArg(pass *analysis.Pass, call *ast.CallExpr, idx int) (string, bool) {
	if idx >= len(call.Args) {
		return "", false
	}
	arg := call.Args[idx]
	lit := pass.TypesInfo.Types[arg].Value
	if lit != nil && lit.Kind() == constant.String {
		return constant.StringVal(lit), true
	}
	return "", false
}

// checkCall triggers the print-specific checks if the call invokes a print function.
func checkCall(pass *analysis.Pass) {
	inspect := pass.ResultOf[inspect.Analyzer].(*inspector.Inspector)
	nodeFilter := []ast.Node{
		(*ast.CallExpr)(nil),
	}
	inspect.Preorder(nodeFilter, func(n ast.Node) {
		call := n.(*ast.CallExpr)
		fn, kind := printfNameAndKind(pass, call)
		switch kind {
		case KindPrintf, KindErrorf:
			checkPrintf(pass, kind, call, fn)
		case KindPrint:
			checkPrint(pass, call, fn)
		}
	})
}

func printfNameAndKind(pass *analysis.Pass, call *ast.CallExpr) (fn *types.Func, kind Kind) {
	fn, _ = typeutil.Callee(pass.TypesInfo, call).(*types.Func)
	if fn == nil {
		return nil, 0
	}

	_, ok := isPrint[fn.FullName()]
	if !ok {
		// Next look up just "printf", for use with -printf.funcs.
		_, ok = isPrint[strings.ToLower(fn.Name())]
	}
	if ok {
		if fn.Name() == "Errorf" {
			kind = KindErrorf
		} else if strings.HasSuffix(fn.Name(), "f") {
			kind = KindPrintf
		} else {
			kind = KindPrint
		}
		return fn, kind
	}

	var fact isWrapper
	if pass.ImportObjectFact(fn, &fact) {
		return fn, fact.Kind
	}

	return fn, KindNone
}

// isFormatter reports whether t could satisfy fmt.Formatter.
// The only interface method to look for is "Format(State, rune)".
func isFormatter(typ types.Type) bool {
	// If the type is an interface, the value it holds might satisfy fmt.Formatter.
	if _, ok := typ.Underlying().(*types.Interface); ok {
		return true
	}
	obj, _, _ := types.LookupFieldOrMethod(typ, false, nil, "Format")
	fn, ok := obj.(*types.Func)
	if !ok {
		return false
	}
	sig := fn.Type().(*types.Signature)
	return sig.Params().Len() == 2 &&
		sig.Results().Len() == 0 &&
		isNamed(sig.Params().At(0).Type(), "fmt", "State") &&
		types.Identical(sig.Params().At(1).Type(), types.Typ[types.Rune])
}

func isNamed(T types.Type, pkgpath, name string) bool {
	named, ok := T.(*types.Named)
	return ok && named.Obj().Pkg().Path() == pkgpath && named.Obj().Name() == name
}

// formatState holds the parsed representation of a printf directive such as "%3.*[4]d".
// It is constructed by parsePrintfVerb.
type formatState struct {
	verb     rune   // the format verb: 'd' for "%d"
	format   string // the full format directive from % through verb, "%.3d".
	name     string // Printf, Sprintf etc.
	flags    []byte // the list of # + etc.
	argNums  []int  // the successive argument numbers that are consumed, adjusted to refer to actual arg in call
	firstArg int    // Index of first argument after the format in the Printf call.
	// Used only during parse.
	pass         *analysis.Pass
	call         *ast.CallExpr
	argNum       int  // Which argument we're expecting to format now.
	hasIndex     bool // Whether the argument is indexed.
	indexPending bool // Whether we have an indexed argument that has not resolved.
	nbytes       int  // number of bytes of the format string consumed.
}

// checkPrintf checks a call to a formatted print routine such as Printf.
func checkPrintf(pass *analysis.Pass, kind Kind, call *ast.CallExpr, fn *types.Func) {
	format, idx := formatString(pass, call)
	if idx < 0 {
		if false {
			pass.Reportf(call.Lparen, "can't check non-constant format in call to %s", fn.FullName())
		}
		return
	}

	firstArg := idx + 1 // Arguments are immediately after format string.
	if !strings.Contains(format, "%") {
		if len(call.Args) > firstArg {
			pass.Reportf(call.Lparen, "%s call has arguments but no formatting directives", fn.FullName())
		}
		return
	}
	// Hard part: check formats against args.
	argNum := firstArg
	maxArgNum := firstArg
	anyIndex := false
	anyW := false
	for i, w := 0, 0; i < len(format); i += w {
		w = 1
		if format[i] != '%' {
			continue
		}
		state := parsePrintfVerb(pass, call, fn.FullName(), format[i:], firstArg, argNum)
		if state == nil {
			return
		}
		w = len(state.format)
		if !okPrintfArg(pass, call, state) { // One error per format is enough.
			return
		}
		if state.hasIndex {
			anyIndex = true
		}
		if state.verb == 'w' {
			switch kind {
			case KindNone, KindPrint:
				pass.Reportf(call.Pos(), "%s does not support error-wrapping directive %%w", state.name)
				return
			case KindPrintf:
				pass.Reportf(call.Pos(), "%s call has error-wrapping directive %%w, which is only supported for functions backed by fmt.Errorf", state.name)
				return
			}
			if anyW {
				pass.Reportf(call.Pos(), "%s call has more than one error-wrapping directive %%w", state.name)
				return
			}
			anyW = true
		}
		if len(state.argNums) > 0 {
			// Continue with the next sequential argument.
			argNum = state.argNums[len(state.argNums)-1] + 1
		}
		for _, n := range state.argNums {
			if n >= maxArgNum {
				maxArgNum = n + 1
			}
		}
	}
	// Dotdotdot is hard.
	if call.Ellipsis.IsValid() && maxArgNum >= len(call.Args)-1 {
		return
	}
	// If any formats are indexed, extra arguments are ignored.
	if anyIndex {
		return
	}
	// There should be no leftover arguments.
	if maxArgNum != len(call.Args) {
		expect := maxArgNum - firstArg
		numArgs := len(call.Args) - firstArg
		pass.ReportRangef(call, "%s call needs %v but has %v", fn.FullName(), count(expect, "arg"), count(numArgs, "arg"))
	}
}

// parseFlags accepts any printf flags.
func (s *formatState) parseFlags() {
	for s.nbytes < len(s.format) {
		switch c := s.format[s.nbytes]; c {
		case '#', '0', '+', '-', ' ':
			s.flags = append(s.flags, c)
			s.nbytes++
		default:
			return
		}
	}
}

// scanNum advances through a decimal number if present.
func (s *formatState) scanNum() {
	for ; s.nbytes < len(s.format); s.nbytes++ {
		c := s.format[s.nbytes]
		if c < '0' || '9' < c {
			return
		}
	}
}

// parseIndex scans an index expression. It returns false if there is a syntax error.
func (s *formatState) parseIndex() bool {
	if s.nbytes == len(s.format) || s.format[s.nbytes] != '[' {
		return true
	}
	// Argument index present.
	s.nbytes++ // skip '['
	start := s.nbytes
	s.scanNum()
	ok := true
	if s.nbytes == len(s.format) || s.nbytes == start || s.format[s.nbytes] != ']' {
		ok = false
		s.nbytes = strings.Index(s.format, "]")
		if s.nbytes < 0 {
			s.pass.ReportRangef(s.call, "%s format %s is missing closing ]", s.name, s.format)
			return false
		}
	}
	arg32, err := strconv.ParseInt(s.format[start:s.nbytes], 10, 32)
	if err != nil || !ok || arg32 <= 0 || arg32 > int64(len(s.call.Args)-s.firstArg) {
		s.pass.ReportRangef(s.call, "%s format has invalid argument index [%s]", s.name, s.format[start:s.nbytes])
		return false
	}
	s.nbytes++ // skip ']'
	arg := int(arg32)
	arg += s.firstArg - 1 // We want to zero-index the actual arguments.
	s.argNum = arg
	s.hasIndex = true
	s.indexPending = true
	return true
}

// parseNum scans a width or precision (or *). It returns false if there's a bad index expression.
func (s *formatState) parseNum() bool {
	if s.nbytes < len(s.format) && s.format[s.nbytes] == '*' {
		if s.indexPending { // Absorb it.
			s.indexPending = false
		}
		s.nbytes++
		s.argNums = append(s.argNums, s.argNum)
		s.argNum++
	} else {
		s.scanNum()
	}
	return true
}

// parsePrecision scans for a precision. It returns false if there's a bad index expression.
func (s *formatState) parsePrecision() bool {
	// If there's a period, there may be a precision.
	if s.nbytes < len(s.format) && s.format[s.nbytes] == '.' {
		s.flags = append(s.flags, '.') // Treat precision as a flag.
		s.nbytes++
		if !s.parseIndex() {
			return false
		}
		if !s.parseNum() {
			return false
		}
	}
	return true
}

// parsePrintfVerb looks the formatting directive that begins the format string
// and returns a formatState that encodes what the directive wants, without looking
// at the actual arguments present in the call. The result is nil if there is an error.
func parsePrintfVerb(pass *analysis.Pass, call *ast.CallExpr, name, format string, firstArg, argNum int) *formatState {
	state := &formatState{
		format:   format,
		name:     name,
		flags:    make([]byte, 0, 5),
		argNum:   argNum,
		argNums:  make([]int, 0, 1),
		nbytes:   1, // There's guaranteed to be a percent sign.
		firstArg: firstArg,
		pass:     pass,
		call:     call,
	}
	// There may be flags.
	state.parseFlags()
	// There may be an index.
	if !state.parseIndex() {
		return nil
	}
	// There may be a width.
	if !state.parseNum() {
		return nil
	}
	// There may be a precision.
	if !state.parsePrecision() {
		return nil
	}
	// Now a verb, possibly prefixed by an index (which we may already have).
	if !state.indexPending && !state.parseIndex() {
		return nil
	}
	if state.nbytes == len(state.format) {
		pass.ReportRangef(call.Fun, "%s format %s is missing verb at end of string", name, state.format)
		return nil
	}
	verb, w := utf8.DecodeRuneInString(state.format[state.nbytes:])
	state.verb = verb
	state.nbytes += w
	if verb != '%' {
		state.argNums = append(state.argNums, state.argNum)
	}
	state.format = state.format[:state.nbytes]
	return state
}

// printfArgType encodes the types of expressions a printf verb accepts. It is a bitmask.
type printfArgType int

const (
	argBool printfArgType = 1 << iota
	argInt
	argRune
	argString
	argFloat
	argComplex
	argPointer
	argError
	anyType printfArgType = ^0
)

type printVerb struct {
	verb  rune   // User may provide verb through Formatter; could be a rune.
	flags string // known flags are all ASCII
	typ   printfArgType
}

// Common flag sets for printf verbs.
const (
	noFlag       = ""
	numFlag      = " -+.0"
	sharpNumFlag = " -+.0#"
	allFlags     = " -+.0#"
)

// printVerbs identifies which flags are known to printf for each verb.
var printVerbs = []printVerb{
	// '-' is a width modifier, always valid.
	// '.' is a precision for float, max width for strings.
	// '+' is required sign for numbers, Go format for %v.
	// '#' is alternate format for several verbs.
	// ' ' is spacer for numbers
	{'%', noFlag, 0},
	{'b', sharpNumFlag, argInt | argFloat | argComplex | argPointer},
	{'c', "-", argRune | argInt},
	{'d', numFlag, argInt | argPointer},
	{'e', sharpNumFlag, argFloat | argComplex},
	{'E', sharpNumFlag, argFloat | argComplex},
	{'f', sharpNumFlag, argFloat | argComplex},
	{'F', sharpNumFlag, argFloat | argComplex},
	{'g', sharpNumFlag, argFloat | argComplex},
	{'G', sharpNumFlag, argFloat | argComplex},
	{'o', sharpNumFlag, argInt | argPointer},
	{'O', sharpNumFlag, argInt | argPointer},
	{'p', "-#", argPointer},
	{'q', " -+.0#", argRune | argInt | argString},
	{'s', " -+.0", argString},
	{'t', "-", argBool},
	{'T', "-", anyType},
	{'U', "-#", argRune | argInt},
	{'v', allFlags, anyType},
	{'w', allFlags, argError},
	{'x', sharpNumFlag, argRune | argInt | argString | argPointer | argFloat | argComplex},
	{'X', sharpNumFlag, argRune | argInt | argString | argPointer | argFloat | argComplex},
}

// okPrintfArg compares the formatState to the arguments actually present,
// reporting any discrepancies it can discern. If the final argument is ellipsissed,
// there's little it can do for that.
func okPrintfArg(pass *analysis.Pass, call *ast.CallExpr, state *formatState) (ok bool) {
	var v printVerb
	found := false
	// Linear scan is fast enough for a small list.
	for _, v = range printVerbs {
		if v.verb == state.verb {
			found = true
			break
		}
	}

	// Could current arg implement fmt.Formatter?
	formatter := false
	if state.argNum < len(call.Args) {
		if tv, ok := pass.TypesInfo.Types[call.Args[state.argNum]]; ok {
			formatter = isFormatter(tv.Type)
		}
	}

	if !formatter {
		if !found {
			pass.ReportRangef(call, "%s format %s has unknown verb %c", state.name, state.format, state.verb)
			return false
		}
		for _, flag := range state.flags {
			// TODO: Disable complaint about '0' for Go 1.10. To be fixed properly in 1.11.
			// See issues 23598 and 23605.
			if flag == '0' {
				continue
			}
			if !strings.ContainsRune(v.flags, rune(flag)) {
				pass.ReportRangef(call, "%s format %s has unrecognized flag %c", state.name, state.format, flag)
				return false
			}
		}
	}
	// Verb is good. If len(state.argNums)>trueArgs, we have something like %.*s and all
	// but the final arg must be an integer.
	trueArgs := 1
	if state.verb == '%' {
		trueArgs = 0
	}
	nargs := len(state.argNums)
	for i := 0; i < nargs-trueArgs; i++ {
		argNum := state.argNums[i]
		if !argCanBeChecked(pass, call, i, state) {
			return
		}
		arg := call.Args[argNum]
		if !matchArgType(pass, argInt, nil, arg) {
			pass.ReportRangef(call, "%s format %s uses non-int %s as argument of *", state.name, state.format, analysisutil.Format(pass.Fset, arg))
			return false
		}
	}

	if state.verb == '%' || formatter {
		return true
	}
	argNum := state.argNums[len(state.argNums)-1]
	if !argCanBeChecked(pass, call, len(state.argNums)-1, state) {
		return false
	}
	arg := call.Args[argNum]
	if isFunctionValue(pass, arg) && state.verb != 'p' && state.verb != 'T' {
		pass.ReportRangef(call, "%s format %s arg %s is a func value, not called", state.name, state.format, analysisutil.Format(pass.Fset, arg))
		return false
	}
	if !matchArgType(pass, v.typ, nil, arg) {
		typeString := ""
		if typ := pass.TypesInfo.Types[arg].Type; typ != nil {
			typeString = typ.String()
		}
		pass.ReportRangef(call, "%s format %s has arg %s of wrong type %s", state.name, state.format, analysisutil.Format(pass.Fset, arg), typeString)
		return false
	}
	if v.typ&argString != 0 && v.verb != 'T' && !bytes.Contains(state.flags, []byte{'#'}) {
		if methodName, ok := recursiveStringer(pass, arg); ok {
			pass.ReportRangef(call, "%s format %s with arg %s causes recursive %s method call", state.name, state.format, analysisutil.Format(pass.Fset, arg), methodName)
			return false
		}
	}
	return true
}

// recursiveStringer reports whether the argument e is a potential
// recursive call to stringer or is an error, such as t and &t in these examples:
//
// 	func (t *T) String() string { printf("%s",  t) }
// 	func (t  T) Error() string { printf("%s",  t) }
// 	func (t  T) String() string { printf("%s", &t) }
func recursiveStringer(pass *analysis.Pass, e ast.Expr) (string, bool) {
	typ := pass.TypesInfo.Types[e].Type

	// It's unlikely to be a recursive stringer if it has a Format method.
	if isFormatter(typ) {
		return "", false
	}

	// Does e allow e.String() or e.Error()?
	strObj, _, _ := types.LookupFieldOrMethod(typ, false, pass.Pkg, "String")
	strMethod, strOk := strObj.(*types.Func)
	errObj, _, _ := types.LookupFieldOrMethod(typ, false, pass.Pkg, "Error")
	errMethod, errOk := errObj.(*types.Func)
	if !strOk && !errOk {
		return "", false
	}

	// Is the expression e within the body of that String or Error method?
	var method *types.Func
	if strOk && strMethod.Pkg() == pass.Pkg && strMethod.Scope().Contains(e.Pos()) {
		method = strMethod
	} else if errOk && errMethod.Pkg() == pass.Pkg && errMethod.Scope().Contains(e.Pos()) {
		method = errMethod
	} else {
		return "", false
	}

	sig := method.Type().(*types.Signature)
	if !isStringer(sig) {
		return "", false
	}

	// Is it the receiver r, or &r?
	if u, ok := e.(*ast.UnaryExpr); ok && u.Op == token.AND {
		e = u.X // strip off & from &r
	}
	if id, ok := e.(*ast.Ident); ok {
		if pass.TypesInfo.Uses[id] == sig.Recv() {
			return method.FullName(), true
		}
	}
	return "", false
}

// isStringer reports whether the method signature matches the String() definition in fmt.Stringer.
func isStringer(sig *types.Signature) bool {
	return sig.Params().Len() == 0 &&
		sig.Results().Len() == 1 &&
		sig.Results().At(0).Type() == types.Typ[types.String]
}

// isFunctionValue reports whether the expression is a function as opposed to a function call.
// It is almost always a mistake to print a function value.
func isFunctionValue(pass *analysis.Pass, e ast.Expr) bool {
	if typ := pass.TypesInfo.Types[e].Type; typ != nil {
		_, ok := typ.(*types.Signature)
		return ok
	}
	return false
}

// argCanBeChecked reports whether the specified argument is statically present;
// it may be beyond the list of arguments or in a terminal slice... argument, which
// means we can't see it.
func argCanBeChecked(pass *analysis.Pass, call *ast.CallExpr, formatArg int, state *formatState) bool {
	argNum := state.argNums[formatArg]
	if argNum <= 0 {
		// Shouldn't happen, so catch it with prejudice.
		panic("negative arg num")
	}
	if argNum < len(call.Args)-1 {
		return true // Always OK.
	}
	if call.Ellipsis.IsValid() {
		return false // We just can't tell; there could be many more arguments.
	}
	if argNum < len(call.Args) {
		return true
	}
	// There are bad indexes in the format or there are fewer arguments than the format needs.
	// This is the argument number relative to the format: Printf("%s", "hi") will give 1 for the "hi".
	arg := argNum - state.firstArg + 1 // People think of arguments as 1-indexed.
	pass.ReportRangef(call, "%s format %s reads arg #%d, but call has %v", state.name, state.format, arg, count(len(call.Args)-state.firstArg, "arg"))
	return false
}

// printFormatRE is the regexp we match and report as a possible format string
// in the first argument to unformatted prints like fmt.Print.
// We exclude the space flag, so that printing a string like "x % y" is not reported as a format.
var printFormatRE = regexp.MustCompile(`%` + flagsRE + numOptRE + `\.?` + numOptRE + indexOptRE + verbRE)

const (
	flagsRE    = `[+\-#]*`
	indexOptRE = `(\[[0-9]+\])?`
	numOptRE   = `([0-9]+|` + indexOptRE + `\*)?`
	verbRE     = `[bcdefgopqstvxEFGTUX]`
)

// checkPrint checks a call to an unformatted print routine such as Println.
func checkPrint(pass *analysis.Pass, call *ast.CallExpr, fn *types.Func) {
	firstArg := 0
	typ := pass.TypesInfo.Types[call.Fun].Type
	if typ == nil {
		// Skip checking functions with unknown type.
		return
	}
	if sig, ok := typ.(*types.Signature); ok {
		if !sig.Variadic() {
			// Skip checking non-variadic functions.
			return
		}
		params := sig.Params()
		firstArg = params.Len() - 1

		typ := params.At(firstArg).Type()
		typ = typ.(*types.Slice).Elem()
		it, ok := typ.(*types.Interface)
		if !ok || !it.Empty() {
			// Skip variadic functions accepting non-interface{} args.
			return
		}
	}
	args := call.Args
	if len(args) <= firstArg {
		// Skip calls without variadic args.
		return
	}
	args = args[firstArg:]

	if firstArg == 0 {
		if sel, ok := call.Args[0].(*ast.SelectorExpr); ok {
			if x, ok := sel.X.(*ast.Ident); ok {
				if x.Name == "os" && strings.HasPrefix(sel.Sel.Name, "Std") {
					pass.ReportRangef(call, "%s does not take io.Writer but has first arg %s", fn.FullName(), analysisutil.Format(pass.Fset, call.Args[0]))
				}
			}
		}
	}

	arg := args[0]
	if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING {
		// Ignore trailing % character in lit.Value.
		// The % in "abc 0.0%" couldn't be a formatting directive.
		s := strings.TrimSuffix(lit.Value, `%"`)
		if strings.Contains(s, "%") {
			m := printFormatRE.FindStringSubmatch(s)
			if m != nil {
				pass.ReportRangef(call, "%s call has possible formatting directive %s", fn.FullName(), m[0])
			}
		}
	}
	if strings.HasSuffix(fn.Name(), "ln") {
		// The last item, if a string, should not have a newline.
		arg = args[len(args)-1]
		if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING {
			str, _ := strconv.Unquote(lit.Value)
			if strings.HasSuffix(str, "\n") {
				pass.ReportRangef(call, "%s arg list ends with redundant newline", fn.FullName())
			}
		}
	}
	for _, arg := range args {
		if isFunctionValue(pass, arg) {
			pass.ReportRangef(call, "%s arg %s is a func value, not called", fn.FullName(), analysisutil.Format(pass.Fset, arg))
		}
		if methodName, ok := recursiveStringer(pass, arg); ok {
			pass.ReportRangef(call, "%s arg %s causes recursive call to %s method", fn.FullName(), analysisutil.Format(pass.Fset, arg), methodName)
		}
	}
}

// count(n, what) returns "1 what" or "N whats"
// (assuming the plural of what is whats).
func count(n int, what string) string {
	if n == 1 {
		return "1 " + what
	}
	return fmt.Sprintf("%d %ss", n, what)
}

// stringSet is a set-of-nonempty-strings-valued flag.
// Note: elements without a '.' get lower-cased.
type stringSet map[string]bool

func (ss stringSet) String() string {
	var list []string
	for name := range ss {
		list = append(list, name)
	}
	sort.Strings(list)
	return strings.Join(list, ",")
}

func (ss stringSet) Set(flag string) error {
	for _, name := range strings.Split(flag, ",") {
		if len(name) == 0 {
			return fmt.Errorf("empty string")
		}
		if !strings.Contains(name, ".") {
			name = strings.ToLower(name)
		}
		ss[name] = true
	}
	return nil
}