aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/vendor/github.com/google/pprof/internal/report/report.go
blob: bc5685d61e1b16eec1c4516198b518126092634a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
// Copyright 2014 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package report summarizes a performance profile into a
// human-readable report.
package report

import (
	"fmt"
	"io"
	"path/filepath"
	"regexp"
	"sort"
	"strconv"
	"strings"
	"text/tabwriter"
	"time"

	"github.com/google/pprof/internal/graph"
	"github.com/google/pprof/internal/measurement"
	"github.com/google/pprof/internal/plugin"
	"github.com/google/pprof/profile"
)

// Output formats.
const (
	Callgrind = iota
	Comments
	Dis
	Dot
	List
	Proto
	Raw
	Tags
	Text
	TopProto
	Traces
	Tree
	WebList
)

// Options are the formatting and filtering options used to generate a
// profile.
type Options struct {
	OutputFormat int

	CumSort       bool
	CallTree      bool
	DropNegative  bool
	CompactLabels bool
	Ratio         float64
	Title         string
	ProfileLabels []string
	ActiveFilters []string
	NumLabelUnits map[string]string

	NodeCount    int
	NodeFraction float64
	EdgeFraction float64

	SampleValue       func(s []int64) int64
	SampleMeanDivisor func(s []int64) int64
	SampleType        string
	SampleUnit        string // Unit for the sample data from the profile.

	OutputUnit string // Units for data formatting in report.

	Symbol     *regexp.Regexp // Symbols to include on disassembly report.
	SourcePath string         // Search path for source files.
	TrimPath   string         // Paths to trim from source file paths.

	IntelSyntax bool // Whether or not to print assembly in Intel syntax.
}

// Generate generates a report as directed by the Report.
func Generate(w io.Writer, rpt *Report, obj plugin.ObjTool) error {
	o := rpt.options

	switch o.OutputFormat {
	case Comments:
		return printComments(w, rpt)
	case Dot:
		return printDOT(w, rpt)
	case Tree:
		return printTree(w, rpt)
	case Text:
		return printText(w, rpt)
	case Traces:
		return printTraces(w, rpt)
	case Raw:
		fmt.Fprint(w, rpt.prof.String())
		return nil
	case Tags:
		return printTags(w, rpt)
	case Proto:
		return printProto(w, rpt)
	case TopProto:
		return printTopProto(w, rpt)
	case Dis:
		return printAssembly(w, rpt, obj)
	case List:
		return printSource(w, rpt)
	case WebList:
		return printWebSource(w, rpt, obj)
	case Callgrind:
		return printCallgrind(w, rpt)
	}
	return fmt.Errorf("unexpected output format")
}

// newTrimmedGraph creates a graph for this report, trimmed according
// to the report options.
func (rpt *Report) newTrimmedGraph() (g *graph.Graph, origCount, droppedNodes, droppedEdges int) {
	o := rpt.options

	// Build a graph and refine it. On each refinement step we must rebuild the graph from the samples,
	// as the graph itself doesn't contain enough information to preserve full precision.
	visualMode := o.OutputFormat == Dot
	cumSort := o.CumSort

	// The call_tree option is only honored when generating visual representations of the callgraph.
	callTree := o.CallTree && (o.OutputFormat == Dot || o.OutputFormat == Callgrind)

	// First step: Build complete graph to identify low frequency nodes, based on their cum weight.
	g = rpt.newGraph(nil)
	totalValue, _ := g.Nodes.Sum()
	nodeCutoff := abs64(int64(float64(totalValue) * o.NodeFraction))
	edgeCutoff := abs64(int64(float64(totalValue) * o.EdgeFraction))

	// Filter out nodes with cum value below nodeCutoff.
	if nodeCutoff > 0 {
		if callTree {
			if nodesKept := g.DiscardLowFrequencyNodePtrs(nodeCutoff); len(g.Nodes) != len(nodesKept) {
				droppedNodes = len(g.Nodes) - len(nodesKept)
				g.TrimTree(nodesKept)
			}
		} else {
			if nodesKept := g.DiscardLowFrequencyNodes(nodeCutoff); len(g.Nodes) != len(nodesKept) {
				droppedNodes = len(g.Nodes) - len(nodesKept)
				g = rpt.newGraph(nodesKept)
			}
		}
	}
	origCount = len(g.Nodes)

	// Second step: Limit the total number of nodes. Apply specialized heuristics to improve
	// visualization when generating dot output.
	g.SortNodes(cumSort, visualMode)
	if nodeCount := o.NodeCount; nodeCount > 0 {
		// Remove low frequency tags and edges as they affect selection.
		g.TrimLowFrequencyTags(nodeCutoff)
		g.TrimLowFrequencyEdges(edgeCutoff)
		if callTree {
			if nodesKept := g.SelectTopNodePtrs(nodeCount, visualMode); len(g.Nodes) != len(nodesKept) {
				g.TrimTree(nodesKept)
				g.SortNodes(cumSort, visualMode)
			}
		} else {
			if nodesKept := g.SelectTopNodes(nodeCount, visualMode); len(g.Nodes) != len(nodesKept) {
				g = rpt.newGraph(nodesKept)
				g.SortNodes(cumSort, visualMode)
			}
		}
	}

	// Final step: Filter out low frequency tags and edges, and remove redundant edges that clutter
	// the graph.
	g.TrimLowFrequencyTags(nodeCutoff)
	droppedEdges = g.TrimLowFrequencyEdges(edgeCutoff)
	if visualMode {
		g.RemoveRedundantEdges()
	}
	return
}

func (rpt *Report) selectOutputUnit(g *graph.Graph) {
	o := rpt.options

	// Select best unit for profile output.
	// Find the appropriate units for the smallest non-zero sample
	if o.OutputUnit != "minimum" || len(g.Nodes) == 0 {
		return
	}
	var minValue int64

	for _, n := range g.Nodes {
		nodeMin := abs64(n.FlatValue())
		if nodeMin == 0 {
			nodeMin = abs64(n.CumValue())
		}
		if nodeMin > 0 && (minValue == 0 || nodeMin < minValue) {
			minValue = nodeMin
		}
	}
	maxValue := rpt.total
	if minValue == 0 {
		minValue = maxValue
	}

	if r := o.Ratio; r > 0 && r != 1 {
		minValue = int64(float64(minValue) * r)
		maxValue = int64(float64(maxValue) * r)
	}

	_, minUnit := measurement.Scale(minValue, o.SampleUnit, "minimum")
	_, maxUnit := measurement.Scale(maxValue, o.SampleUnit, "minimum")

	unit := minUnit
	if minUnit != maxUnit && minValue*100 < maxValue && o.OutputFormat != Callgrind {
		// Minimum and maximum values have different units. Scale
		// minimum by 100 to use larger units, allowing minimum value to
		// be scaled down to 0.01, except for callgrind reports since
		// they can only represent integer values.
		_, unit = measurement.Scale(100*minValue, o.SampleUnit, "minimum")
	}

	if unit != "" {
		o.OutputUnit = unit
	} else {
		o.OutputUnit = o.SampleUnit
	}
}

// newGraph creates a new graph for this report. If nodes is non-nil,
// only nodes whose info matches are included. Otherwise, all nodes
// are included, without trimming.
func (rpt *Report) newGraph(nodes graph.NodeSet) *graph.Graph {
	o := rpt.options

	// Clean up file paths using heuristics.
	prof := rpt.prof
	for _, f := range prof.Function {
		f.Filename = trimPath(f.Filename, o.TrimPath, o.SourcePath)
	}
	// Removes all numeric tags except for the bytes tag prior
	// to making graph.
	// TODO: modify to select first numeric tag if no bytes tag
	for _, s := range prof.Sample {
		numLabels := make(map[string][]int64, len(s.NumLabel))
		numUnits := make(map[string][]string, len(s.NumLabel))
		for k, vs := range s.NumLabel {
			if k == "bytes" {
				unit := o.NumLabelUnits[k]
				numValues := make([]int64, len(vs))
				numUnit := make([]string, len(vs))
				for i, v := range vs {
					numValues[i] = v
					numUnit[i] = unit
				}
				numLabels[k] = append(numLabels[k], numValues...)
				numUnits[k] = append(numUnits[k], numUnit...)
			}
		}
		s.NumLabel = numLabels
		s.NumUnit = numUnits
	}

	// Remove label marking samples from the base profiles, so it does not appear
	// as a nodelet in the graph view.
	prof.RemoveLabel("pprof::base")

	formatTag := func(v int64, key string) string {
		return measurement.ScaledLabel(v, key, o.OutputUnit)
	}

	gopt := &graph.Options{
		SampleValue:       o.SampleValue,
		SampleMeanDivisor: o.SampleMeanDivisor,
		FormatTag:         formatTag,
		CallTree:          o.CallTree && (o.OutputFormat == Dot || o.OutputFormat == Callgrind),
		DropNegative:      o.DropNegative,
		KeptNodes:         nodes,
	}

	// Only keep binary names for disassembly-based reports, otherwise
	// remove it to allow merging of functions across binaries.
	switch o.OutputFormat {
	case Raw, List, WebList, Dis, Callgrind:
		gopt.ObjNames = true
	}

	return graph.New(rpt.prof, gopt)
}

// printProto writes the incoming proto via thw writer w.
// If the divide_by option has been specified, samples are scaled appropriately.
func printProto(w io.Writer, rpt *Report) error {
	p, o := rpt.prof, rpt.options

	// Apply the sample ratio to all samples before saving the profile.
	if r := o.Ratio; r > 0 && r != 1 {
		for _, sample := range p.Sample {
			for i, v := range sample.Value {
				sample.Value[i] = int64(float64(v) * r)
			}
		}
	}
	return p.Write(w)
}

// printTopProto writes a list of the hottest routines in a profile as a profile.proto.
func printTopProto(w io.Writer, rpt *Report) error {
	p := rpt.prof
	o := rpt.options
	g, _, _, _ := rpt.newTrimmedGraph()
	rpt.selectOutputUnit(g)

	out := profile.Profile{
		SampleType: []*profile.ValueType{
			{Type: "cum", Unit: o.OutputUnit},
			{Type: "flat", Unit: o.OutputUnit},
		},
		TimeNanos:     p.TimeNanos,
		DurationNanos: p.DurationNanos,
		PeriodType:    p.PeriodType,
		Period:        p.Period,
	}
	functionMap := make(functionMap)
	for i, n := range g.Nodes {
		f, added := functionMap.findOrAdd(n.Info)
		if added {
			out.Function = append(out.Function, f)
		}
		flat, cum := n.FlatValue(), n.CumValue()
		l := &profile.Location{
			ID:      uint64(i + 1),
			Address: n.Info.Address,
			Line: []profile.Line{
				{
					Line:     int64(n.Info.Lineno),
					Function: f,
				},
			},
		}

		fv, _ := measurement.Scale(flat, o.SampleUnit, o.OutputUnit)
		cv, _ := measurement.Scale(cum, o.SampleUnit, o.OutputUnit)
		s := &profile.Sample{
			Location: []*profile.Location{l},
			Value:    []int64{int64(cv), int64(fv)},
		}
		out.Location = append(out.Location, l)
		out.Sample = append(out.Sample, s)
	}

	return out.Write(w)
}

type functionMap map[string]*profile.Function

// findOrAdd takes a node representing a function, adds the function
// represented by the node to the map if the function is not already present,
// and returns the function the node represents. This also returns a boolean,
// which is true if the function was added and false otherwise.
func (fm functionMap) findOrAdd(ni graph.NodeInfo) (*profile.Function, bool) {
	fName := fmt.Sprintf("%q%q%q%d", ni.Name, ni.OrigName, ni.File, ni.StartLine)

	if f := fm[fName]; f != nil {
		return f, false
	}

	f := &profile.Function{
		ID:         uint64(len(fm) + 1),
		Name:       ni.Name,
		SystemName: ni.OrigName,
		Filename:   ni.File,
		StartLine:  int64(ni.StartLine),
	}
	fm[fName] = f
	return f, true
}

// printAssembly prints an annotated assembly listing.
func printAssembly(w io.Writer, rpt *Report, obj plugin.ObjTool) error {
	return PrintAssembly(w, rpt, obj, -1)
}

// PrintAssembly prints annotated disassembly of rpt to w.
func PrintAssembly(w io.Writer, rpt *Report, obj plugin.ObjTool, maxFuncs int) error {
	o := rpt.options
	prof := rpt.prof

	g := rpt.newGraph(nil)

	// If the regexp source can be parsed as an address, also match
	// functions that land on that address.
	var address *uint64
	if hex, err := strconv.ParseUint(o.Symbol.String(), 0, 64); err == nil {
		address = &hex
	}

	fmt.Fprintln(w, "Total:", rpt.formatValue(rpt.total))
	symbols := symbolsFromBinaries(prof, g, o.Symbol, address, obj)
	symNodes := nodesPerSymbol(g.Nodes, symbols)

	// Sort for printing.
	var syms []*objSymbol
	for s := range symNodes {
		syms = append(syms, s)
	}
	byName := func(a, b *objSymbol) bool {
		if na, nb := a.sym.Name[0], b.sym.Name[0]; na != nb {
			return na < nb
		}
		return a.sym.Start < b.sym.Start
	}
	if maxFuncs < 0 {
		sort.Sort(orderSyms{syms, byName})
	} else {
		byFlatSum := func(a, b *objSymbol) bool {
			suma, _ := symNodes[a].Sum()
			sumb, _ := symNodes[b].Sum()
			if suma != sumb {
				return suma > sumb
			}
			return byName(a, b)
		}
		sort.Sort(orderSyms{syms, byFlatSum})
		if len(syms) > maxFuncs {
			syms = syms[:maxFuncs]
		}
	}

	// Correlate the symbols from the binary with the profile samples.
	for _, s := range syms {
		sns := symNodes[s]

		// Gather samples for this symbol.
		flatSum, cumSum := sns.Sum()

		// Get the function assembly.
		insts, err := obj.Disasm(s.sym.File, s.sym.Start, s.sym.End, o.IntelSyntax)
		if err != nil {
			return err
		}

		ns := annotateAssembly(insts, sns, s.base)

		fmt.Fprintf(w, "ROUTINE ======================== %s\n", s.sym.Name[0])
		for _, name := range s.sym.Name[1:] {
			fmt.Fprintf(w, "    AKA ======================== %s\n", name)
		}
		fmt.Fprintf(w, "%10s %10s (flat, cum) %s of Total\n",
			rpt.formatValue(flatSum), rpt.formatValue(cumSum),
			measurement.Percentage(cumSum, rpt.total))

		function, file, line := "", "", 0
		for _, n := range ns {
			locStr := ""
			// Skip loc information if it hasn't changed from previous instruction.
			if n.function != function || n.file != file || n.line != line {
				function, file, line = n.function, n.file, n.line
				if n.function != "" {
					locStr = n.function + " "
				}
				if n.file != "" {
					locStr += n.file
					if n.line != 0 {
						locStr += fmt.Sprintf(":%d", n.line)
					}
				}
			}
			switch {
			case locStr == "":
				// No location info, just print the instruction.
				fmt.Fprintf(w, "%10s %10s %10x: %s\n",
					valueOrDot(n.flatValue(), rpt),
					valueOrDot(n.cumValue(), rpt),
					n.address, n.instruction,
				)
			case len(n.instruction) < 40:
				// Short instruction, print loc on the same line.
				fmt.Fprintf(w, "%10s %10s %10x: %-40s;%s\n",
					valueOrDot(n.flatValue(), rpt),
					valueOrDot(n.cumValue(), rpt),
					n.address, n.instruction,
					locStr,
				)
			default:
				// Long instruction, print loc on a separate line.
				fmt.Fprintf(w, "%74s;%s\n", "", locStr)
				fmt.Fprintf(w, "%10s %10s %10x: %s\n",
					valueOrDot(n.flatValue(), rpt),
					valueOrDot(n.cumValue(), rpt),
					n.address, n.instruction,
				)
			}
		}
	}
	return nil
}

// symbolsFromBinaries examines the binaries listed on the profile
// that have associated samples, and identifies symbols matching rx.
func symbolsFromBinaries(prof *profile.Profile, g *graph.Graph, rx *regexp.Regexp, address *uint64, obj plugin.ObjTool) []*objSymbol {
	hasSamples := make(map[string]bool)
	// Only examine mappings that have samples that match the
	// regexp. This is an optimization to speed up pprof.
	for _, n := range g.Nodes {
		if name := n.Info.PrintableName(); rx.MatchString(name) && n.Info.Objfile != "" {
			hasSamples[n.Info.Objfile] = true
		}
	}

	// Walk all mappings looking for matching functions with samples.
	var objSyms []*objSymbol
	for _, m := range prof.Mapping {
		if !hasSamples[m.File] {
			if address == nil || !(m.Start <= *address && *address <= m.Limit) {
				continue
			}
		}

		f, err := obj.Open(m.File, m.Start, m.Limit, m.Offset)
		if err != nil {
			fmt.Printf("%v\n", err)
			continue
		}

		// Find symbols in this binary matching the user regexp.
		var addr uint64
		if address != nil {
			addr = *address
		}
		msyms, err := f.Symbols(rx, addr)
		base := f.Base()
		f.Close()
		if err != nil {
			continue
		}
		for _, ms := range msyms {
			objSyms = append(objSyms,
				&objSymbol{
					sym:  ms,
					base: base,
					file: f,
				},
			)
		}
	}

	return objSyms
}

// objSym represents a symbol identified from a binary. It includes
// the SymbolInfo from the disasm package and the base that must be
// added to correspond to sample addresses
type objSymbol struct {
	sym  *plugin.Sym
	base uint64
	file plugin.ObjFile
}

// orderSyms is a wrapper type to sort []*objSymbol by a supplied comparator.
type orderSyms struct {
	v    []*objSymbol
	less func(a, b *objSymbol) bool
}

func (o orderSyms) Len() int           { return len(o.v) }
func (o orderSyms) Less(i, j int) bool { return o.less(o.v[i], o.v[j]) }
func (o orderSyms) Swap(i, j int)      { o.v[i], o.v[j] = o.v[j], o.v[i] }

// nodesPerSymbol classifies nodes into a group of symbols.
func nodesPerSymbol(ns graph.Nodes, symbols []*objSymbol) map[*objSymbol]graph.Nodes {
	symNodes := make(map[*objSymbol]graph.Nodes)
	for _, s := range symbols {
		// Gather samples for this symbol.
		for _, n := range ns {
			address := n.Info.Address - s.base
			if address >= s.sym.Start && address < s.sym.End {
				symNodes[s] = append(symNodes[s], n)
			}
		}
	}
	return symNodes
}

type assemblyInstruction struct {
	address         uint64
	instruction     string
	function        string
	file            string
	line            int
	flat, cum       int64
	flatDiv, cumDiv int64
	startsBlock     bool
	inlineCalls     []callID
}

type callID struct {
	file string
	line int
}

func (a *assemblyInstruction) flatValue() int64 {
	if a.flatDiv != 0 {
		return a.flat / a.flatDiv
	}
	return a.flat
}

func (a *assemblyInstruction) cumValue() int64 {
	if a.cumDiv != 0 {
		return a.cum / a.cumDiv
	}
	return a.cum
}

// annotateAssembly annotates a set of assembly instructions with a
// set of samples. It returns a set of nodes to display. base is an
// offset to adjust the sample addresses.
func annotateAssembly(insts []plugin.Inst, samples graph.Nodes, base uint64) []assemblyInstruction {
	// Add end marker to simplify printing loop.
	insts = append(insts, plugin.Inst{
		Addr: ^uint64(0),
	})

	// Ensure samples are sorted by address.
	samples.Sort(graph.AddressOrder)

	s := 0
	asm := make([]assemblyInstruction, 0, len(insts))
	for ix, in := range insts[:len(insts)-1] {
		n := assemblyInstruction{
			address:     in.Addr,
			instruction: in.Text,
			function:    in.Function,
			line:        in.Line,
		}
		if in.File != "" {
			n.file = filepath.Base(in.File)
		}

		// Sum all the samples until the next instruction (to account
		// for samples attributed to the middle of an instruction).
		for next := insts[ix+1].Addr; s < len(samples) && samples[s].Info.Address-base < next; s++ {
			sample := samples[s]
			n.flatDiv += sample.FlatDiv
			n.flat += sample.Flat
			n.cumDiv += sample.CumDiv
			n.cum += sample.Cum
			if f := sample.Info.File; f != "" && n.file == "" {
				n.file = filepath.Base(f)
			}
			if ln := sample.Info.Lineno; ln != 0 && n.line == 0 {
				n.line = ln
			}
			if f := sample.Info.Name; f != "" && n.function == "" {
				n.function = f
			}
		}
		asm = append(asm, n)
	}

	return asm
}

// valueOrDot formats a value according to a report, intercepting zero
// values.
func valueOrDot(value int64, rpt *Report) string {
	if value == 0 {
		return "."
	}
	return rpt.formatValue(value)
}

// printTags collects all tags referenced in the profile and prints
// them in a sorted table.
func printTags(w io.Writer, rpt *Report) error {
	p := rpt.prof

	o := rpt.options
	formatTag := func(v int64, key string) string {
		return measurement.ScaledLabel(v, key, o.OutputUnit)
	}

	// Hashtable to keep accumulate tags as key,value,count.
	tagMap := make(map[string]map[string]int64)
	for _, s := range p.Sample {
		for key, vals := range s.Label {
			for _, val := range vals {
				valueMap, ok := tagMap[key]
				if !ok {
					valueMap = make(map[string]int64)
					tagMap[key] = valueMap
				}
				valueMap[val] += o.SampleValue(s.Value)
			}
		}
		for key, vals := range s.NumLabel {
			unit := o.NumLabelUnits[key]
			for _, nval := range vals {
				val := formatTag(nval, unit)
				valueMap, ok := tagMap[key]
				if !ok {
					valueMap = make(map[string]int64)
					tagMap[key] = valueMap
				}
				valueMap[val] += o.SampleValue(s.Value)
			}
		}
	}

	tagKeys := make([]*graph.Tag, 0, len(tagMap))
	for key := range tagMap {
		tagKeys = append(tagKeys, &graph.Tag{Name: key})
	}
	tabw := tabwriter.NewWriter(w, 0, 0, 1, ' ', tabwriter.AlignRight)
	for _, tagKey := range graph.SortTags(tagKeys, true) {
		var total int64
		key := tagKey.Name
		tags := make([]*graph.Tag, 0, len(tagMap[key]))
		for t, c := range tagMap[key] {
			total += c
			tags = append(tags, &graph.Tag{Name: t, Flat: c})
		}

		f, u := measurement.Scale(total, o.SampleUnit, o.OutputUnit)
		fmt.Fprintf(tabw, "%s:\t Total %.1f%s\n", key, f, u)
		for _, t := range graph.SortTags(tags, true) {
			f, u := measurement.Scale(t.FlatValue(), o.SampleUnit, o.OutputUnit)
			if total > 0 {
				fmt.Fprintf(tabw, " \t%.1f%s (%s):\t %s\n", f, u, measurement.Percentage(t.FlatValue(), total), t.Name)
			} else {
				fmt.Fprintf(tabw, " \t%.1f%s:\t %s\n", f, u, t.Name)
			}
		}
		fmt.Fprintln(tabw)
	}
	return tabw.Flush()
}

// printComments prints all freeform comments in the profile.
func printComments(w io.Writer, rpt *Report) error {
	p := rpt.prof

	for _, c := range p.Comments {
		fmt.Fprintln(w, c)
	}
	return nil
}

// TextItem holds a single text report entry.
type TextItem struct {
	Name                  string
	InlineLabel           string // Not empty if inlined
	Flat, Cum             int64  // Raw values
	FlatFormat, CumFormat string // Formatted values
}

// TextItems returns a list of text items from the report and a list
// of labels that describe the report.
func TextItems(rpt *Report) ([]TextItem, []string) {
	g, origCount, droppedNodes, _ := rpt.newTrimmedGraph()
	rpt.selectOutputUnit(g)
	labels := reportLabels(rpt, g, origCount, droppedNodes, 0, false)

	var items []TextItem
	var flatSum int64
	for _, n := range g.Nodes {
		name, flat, cum := n.Info.PrintableName(), n.FlatValue(), n.CumValue()

		var inline, noinline bool
		for _, e := range n.In {
			if e.Inline {
				inline = true
			} else {
				noinline = true
			}
		}

		var inl string
		if inline {
			if noinline {
				inl = "(partial-inline)"
			} else {
				inl = "(inline)"
			}
		}

		flatSum += flat
		items = append(items, TextItem{
			Name:        name,
			InlineLabel: inl,
			Flat:        flat,
			Cum:         cum,
			FlatFormat:  rpt.formatValue(flat),
			CumFormat:   rpt.formatValue(cum),
		})
	}
	return items, labels
}

// printText prints a flat text report for a profile.
func printText(w io.Writer, rpt *Report) error {
	items, labels := TextItems(rpt)
	fmt.Fprintln(w, strings.Join(labels, "\n"))
	fmt.Fprintf(w, "%10s %5s%% %5s%% %10s %5s%%\n",
		"flat", "flat", "sum", "cum", "cum")
	var flatSum int64
	for _, item := range items {
		inl := item.InlineLabel
		if inl != "" {
			inl = " " + inl
		}
		flatSum += item.Flat
		fmt.Fprintf(w, "%10s %s %s %10s %s  %s%s\n",
			item.FlatFormat, measurement.Percentage(item.Flat, rpt.total),
			measurement.Percentage(flatSum, rpt.total),
			item.CumFormat, measurement.Percentage(item.Cum, rpt.total),
			item.Name, inl)
	}
	return nil
}

// printTraces prints all traces from a profile.
func printTraces(w io.Writer, rpt *Report) error {
	fmt.Fprintln(w, strings.Join(ProfileLabels(rpt), "\n"))

	prof := rpt.prof
	o := rpt.options

	const separator = "-----------+-------------------------------------------------------"

	_, locations := graph.CreateNodes(prof, &graph.Options{})
	for _, sample := range prof.Sample {
		type stk struct {
			*graph.NodeInfo
			inline bool
		}
		var stack []stk
		for _, loc := range sample.Location {
			nodes := locations[loc.ID]
			for i, n := range nodes {
				// The inline flag may be inaccurate if 'show' or 'hide' filter is
				// used. See https://github.com/google/pprof/issues/511.
				inline := i != len(nodes)-1
				stack = append(stack, stk{&n.Info, inline})
			}
		}

		if len(stack) == 0 {
			continue
		}

		fmt.Fprintln(w, separator)
		// Print any text labels for the sample.
		var labels []string
		for s, vs := range sample.Label {
			labels = append(labels, fmt.Sprintf("%10s:  %s\n", s, strings.Join(vs, " ")))
		}
		sort.Strings(labels)
		fmt.Fprint(w, strings.Join(labels, ""))

		// Print any numeric labels for the sample
		var numLabels []string
		for key, vals := range sample.NumLabel {
			unit := o.NumLabelUnits[key]
			numValues := make([]string, len(vals))
			for i, vv := range vals {
				numValues[i] = measurement.Label(vv, unit)
			}
			numLabels = append(numLabels, fmt.Sprintf("%10s:  %s\n", key, strings.Join(numValues, " ")))
		}
		sort.Strings(numLabels)
		fmt.Fprint(w, strings.Join(numLabels, ""))

		var d, v int64
		v = o.SampleValue(sample.Value)
		if o.SampleMeanDivisor != nil {
			d = o.SampleMeanDivisor(sample.Value)
		}
		// Print call stack.
		if d != 0 {
			v = v / d
		}
		for i, s := range stack {
			var vs, inline string
			if i == 0 {
				vs = rpt.formatValue(v)
			}
			if s.inline {
				inline = " (inline)"
			}
			fmt.Fprintf(w, "%10s   %s%s\n", vs, s.PrintableName(), inline)
		}
	}
	fmt.Fprintln(w, separator)
	return nil
}

// printCallgrind prints a graph for a profile on callgrind format.
func printCallgrind(w io.Writer, rpt *Report) error {
	o := rpt.options
	rpt.options.NodeFraction = 0
	rpt.options.EdgeFraction = 0
	rpt.options.NodeCount = 0

	g, _, _, _ := rpt.newTrimmedGraph()
	rpt.selectOutputUnit(g)

	nodeNames := getDisambiguatedNames(g)

	fmt.Fprintln(w, "positions: instr line")
	fmt.Fprintln(w, "events:", o.SampleType+"("+o.OutputUnit+")")

	objfiles := make(map[string]int)
	files := make(map[string]int)
	names := make(map[string]int)

	// prevInfo points to the previous NodeInfo.
	// It is used to group cost lines together as much as possible.
	var prevInfo *graph.NodeInfo
	for _, n := range g.Nodes {
		if prevInfo == nil || n.Info.Objfile != prevInfo.Objfile || n.Info.File != prevInfo.File || n.Info.Name != prevInfo.Name {
			fmt.Fprintln(w)
			fmt.Fprintln(w, "ob="+callgrindName(objfiles, n.Info.Objfile))
			fmt.Fprintln(w, "fl="+callgrindName(files, n.Info.File))
			fmt.Fprintln(w, "fn="+callgrindName(names, n.Info.Name))
		}

		addr := callgrindAddress(prevInfo, n.Info.Address)
		sv, _ := measurement.Scale(n.FlatValue(), o.SampleUnit, o.OutputUnit)
		fmt.Fprintf(w, "%s %d %d\n", addr, n.Info.Lineno, int64(sv))

		// Print outgoing edges.
		for _, out := range n.Out.Sort() {
			c, _ := measurement.Scale(out.Weight, o.SampleUnit, o.OutputUnit)
			callee := out.Dest
			fmt.Fprintln(w, "cfl="+callgrindName(files, callee.Info.File))
			fmt.Fprintln(w, "cfn="+callgrindName(names, nodeNames[callee]))
			// pprof doesn't have a flat weight for a call, leave as 0.
			fmt.Fprintf(w, "calls=0 %s %d\n", callgrindAddress(prevInfo, callee.Info.Address), callee.Info.Lineno)
			// TODO: This address may be in the middle of a call
			// instruction. It would be best to find the beginning
			// of the instruction, but the tools seem to handle
			// this OK.
			fmt.Fprintf(w, "* * %d\n", int64(c))
		}

		prevInfo = &n.Info
	}

	return nil
}

// getDisambiguatedNames returns a map from each node in the graph to
// the name to use in the callgrind output. Callgrind merges all
// functions with the same [file name, function name]. Add a [%d/n]
// suffix to disambiguate nodes with different values of
// node.Function, which we want to keep separate. In particular, this
// affects graphs created with --call_tree, where nodes from different
// contexts are associated to different Functions.
func getDisambiguatedNames(g *graph.Graph) map[*graph.Node]string {
	nodeName := make(map[*graph.Node]string, len(g.Nodes))

	type names struct {
		file, function string
	}

	// nameFunctionIndex maps the callgrind names (filename, function)
	// to the node.Function values found for that name, and each
	// node.Function value to a sequential index to be used on the
	// disambiguated name.
	nameFunctionIndex := make(map[names]map[*graph.Node]int)
	for _, n := range g.Nodes {
		nm := names{n.Info.File, n.Info.Name}
		p, ok := nameFunctionIndex[nm]
		if !ok {
			p = make(map[*graph.Node]int)
			nameFunctionIndex[nm] = p
		}
		if _, ok := p[n.Function]; !ok {
			p[n.Function] = len(p)
		}
	}

	for _, n := range g.Nodes {
		nm := names{n.Info.File, n.Info.Name}
		nodeName[n] = n.Info.Name
		if p := nameFunctionIndex[nm]; len(p) > 1 {
			// If there is more than one function, add suffix to disambiguate.
			nodeName[n] += fmt.Sprintf(" [%d/%d]", p[n.Function]+1, len(p))
		}
	}
	return nodeName
}

// callgrindName implements the callgrind naming compression scheme.
// For names not previously seen returns "(N) name", where N is a
// unique index. For names previously seen returns "(N)" where N is
// the index returned the first time.
func callgrindName(names map[string]int, name string) string {
	if name == "" {
		return ""
	}
	if id, ok := names[name]; ok {
		return fmt.Sprintf("(%d)", id)
	}
	id := len(names) + 1
	names[name] = id
	return fmt.Sprintf("(%d) %s", id, name)
}

// callgrindAddress implements the callgrind subposition compression scheme if
// possible. If prevInfo != nil, it contains the previous address. The current
// address can be given relative to the previous address, with an explicit +/-
// to indicate it is relative, or * for the same address.
func callgrindAddress(prevInfo *graph.NodeInfo, curr uint64) string {
	abs := fmt.Sprintf("%#x", curr)
	if prevInfo == nil {
		return abs
	}

	prev := prevInfo.Address
	if prev == curr {
		return "*"
	}

	diff := int64(curr - prev)
	relative := fmt.Sprintf("%+d", diff)

	// Only bother to use the relative address if it is actually shorter.
	if len(relative) < len(abs) {
		return relative
	}

	return abs
}

// printTree prints a tree-based report in text form.
func printTree(w io.Writer, rpt *Report) error {
	const separator = "----------------------------------------------------------+-------------"
	const legend = "      flat  flat%   sum%        cum   cum%   calls calls% + context 	 	 "

	g, origCount, droppedNodes, _ := rpt.newTrimmedGraph()
	rpt.selectOutputUnit(g)

	fmt.Fprintln(w, strings.Join(reportLabels(rpt, g, origCount, droppedNodes, 0, false), "\n"))

	fmt.Fprintln(w, separator)
	fmt.Fprintln(w, legend)
	var flatSum int64

	rx := rpt.options.Symbol
	for _, n := range g.Nodes {
		name, flat, cum := n.Info.PrintableName(), n.FlatValue(), n.CumValue()

		// Skip any entries that do not match the regexp (for the "peek" command).
		if rx != nil && !rx.MatchString(name) {
			continue
		}

		fmt.Fprintln(w, separator)
		// Print incoming edges.
		inEdges := n.In.Sort()
		for _, in := range inEdges {
			var inline string
			if in.Inline {
				inline = " (inline)"
			}
			fmt.Fprintf(w, "%50s %s |   %s%s\n", rpt.formatValue(in.Weight),
				measurement.Percentage(in.Weight, cum), in.Src.Info.PrintableName(), inline)
		}

		// Print current node.
		flatSum += flat
		fmt.Fprintf(w, "%10s %s %s %10s %s                | %s\n",
			rpt.formatValue(flat),
			measurement.Percentage(flat, rpt.total),
			measurement.Percentage(flatSum, rpt.total),
			rpt.formatValue(cum),
			measurement.Percentage(cum, rpt.total),
			name)

		// Print outgoing edges.
		outEdges := n.Out.Sort()
		for _, out := range outEdges {
			var inline string
			if out.Inline {
				inline = " (inline)"
			}
			fmt.Fprintf(w, "%50s %s |   %s%s\n", rpt.formatValue(out.Weight),
				measurement.Percentage(out.Weight, cum), out.Dest.Info.PrintableName(), inline)
		}
	}
	if len(g.Nodes) > 0 {
		fmt.Fprintln(w, separator)
	}
	return nil
}

// GetDOT returns a graph suitable for dot processing along with some
// configuration information.
func GetDOT(rpt *Report) (*graph.Graph, *graph.DotConfig) {
	g, origCount, droppedNodes, droppedEdges := rpt.newTrimmedGraph()
	rpt.selectOutputUnit(g)
	labels := reportLabels(rpt, g, origCount, droppedNodes, droppedEdges, true)

	c := &graph.DotConfig{
		Title:       rpt.options.Title,
		Labels:      labels,
		FormatValue: rpt.formatValue,
		Total:       rpt.total,
	}
	return g, c
}

// printDOT prints an annotated callgraph in DOT format.
func printDOT(w io.Writer, rpt *Report) error {
	g, c := GetDOT(rpt)
	graph.ComposeDot(w, g, &graph.DotAttributes{}, c)
	return nil
}

// ProfileLabels returns printable labels for a profile.
func ProfileLabels(rpt *Report) []string {
	label := []string{}
	prof := rpt.prof
	o := rpt.options
	if len(prof.Mapping) > 0 {
		if prof.Mapping[0].File != "" {
			label = append(label, "File: "+filepath.Base(prof.Mapping[0].File))
		}
		if prof.Mapping[0].BuildID != "" {
			label = append(label, "Build ID: "+prof.Mapping[0].BuildID)
		}
	}
	// Only include comments that do not start with '#'.
	for _, c := range prof.Comments {
		if !strings.HasPrefix(c, "#") {
			label = append(label, c)
		}
	}
	if o.SampleType != "" {
		label = append(label, "Type: "+o.SampleType)
	}
	if prof.TimeNanos != 0 {
		const layout = "Jan 2, 2006 at 3:04pm (MST)"
		label = append(label, "Time: "+time.Unix(0, prof.TimeNanos).Format(layout))
	}
	if prof.DurationNanos != 0 {
		duration := measurement.Label(prof.DurationNanos, "nanoseconds")
		totalNanos, totalUnit := measurement.Scale(rpt.total, o.SampleUnit, "nanoseconds")
		var ratio string
		if totalUnit == "ns" && totalNanos != 0 {
			ratio = "(" + measurement.Percentage(int64(totalNanos), prof.DurationNanos) + ")"
		}
		label = append(label, fmt.Sprintf("Duration: %s, Total samples = %s %s", duration, rpt.formatValue(rpt.total), ratio))
	}
	return label
}

// reportLabels returns printable labels for a report. Includes
// profileLabels.
func reportLabels(rpt *Report, g *graph.Graph, origCount, droppedNodes, droppedEdges int, fullHeaders bool) []string {
	nodeFraction := rpt.options.NodeFraction
	edgeFraction := rpt.options.EdgeFraction
	nodeCount := len(g.Nodes)

	var label []string
	if len(rpt.options.ProfileLabels) > 0 {
		label = append(label, rpt.options.ProfileLabels...)
	} else if fullHeaders || !rpt.options.CompactLabels {
		label = ProfileLabels(rpt)
	}

	var flatSum int64
	for _, n := range g.Nodes {
		flatSum = flatSum + n.FlatValue()
	}

	if len(rpt.options.ActiveFilters) > 0 {
		activeFilters := legendActiveFilters(rpt.options.ActiveFilters)
		label = append(label, activeFilters...)
	}

	label = append(label, fmt.Sprintf("Showing nodes accounting for %s, %s of %s total", rpt.formatValue(flatSum), strings.TrimSpace(measurement.Percentage(flatSum, rpt.total)), rpt.formatValue(rpt.total)))

	if rpt.total != 0 {
		if droppedNodes > 0 {
			label = append(label, genLabel(droppedNodes, "node", "cum",
				rpt.formatValue(abs64(int64(float64(rpt.total)*nodeFraction)))))
		}
		if droppedEdges > 0 {
			label = append(label, genLabel(droppedEdges, "edge", "freq",
				rpt.formatValue(abs64(int64(float64(rpt.total)*edgeFraction)))))
		}
		if nodeCount > 0 && nodeCount < origCount {
			label = append(label, fmt.Sprintf("Showing top %d nodes out of %d",
				nodeCount, origCount))
		}
	}

	// Help new users understand the graph.
	// A new line is intentionally added here to better show this message.
	if fullHeaders {
		label = append(label, "\nSee https://git.io/JfYMW for how to read the graph")
	}

	return label
}

func legendActiveFilters(activeFilters []string) []string {
	legendActiveFilters := make([]string, len(activeFilters)+1)
	legendActiveFilters[0] = "Active filters:"
	for i, s := range activeFilters {
		if len(s) > 80 {
			s = s[:80] + "…"
		}
		legendActiveFilters[i+1] = "   " + s
	}
	return legendActiveFilters
}

func genLabel(d int, n, l, f string) string {
	if d > 1 {
		n = n + "s"
	}
	return fmt.Sprintf("Dropped %d %s (%s <= %s)", d, n, l, f)
}

// New builds a new report indexing the sample values interpreting the
// samples with the provided function.
func New(prof *profile.Profile, o *Options) *Report {
	format := func(v int64) string {
		if r := o.Ratio; r > 0 && r != 1 {
			fv := float64(v) * r
			v = int64(fv)
		}
		return measurement.ScaledLabel(v, o.SampleUnit, o.OutputUnit)
	}
	return &Report{prof, computeTotal(prof, o.SampleValue, o.SampleMeanDivisor),
		o, format}
}

// NewDefault builds a new report indexing the last sample value
// available.
func NewDefault(prof *profile.Profile, options Options) *Report {
	index := len(prof.SampleType) - 1
	o := &options
	if o.Title == "" && len(prof.Mapping) > 0 && prof.Mapping[0].File != "" {
		o.Title = filepath.Base(prof.Mapping[0].File)
	}
	o.SampleType = prof.SampleType[index].Type
	o.SampleUnit = strings.ToLower(prof.SampleType[index].Unit)
	o.SampleValue = func(v []int64) int64 {
		return v[index]
	}
	return New(prof, o)
}

// computeTotal computes the sum of the absolute value of all sample values.
// If any samples have label indicating they belong to the diff base, then the
// total will only include samples with that label.
func computeTotal(prof *profile.Profile, value, meanDiv func(v []int64) int64) int64 {
	var div, total, diffDiv, diffTotal int64
	for _, sample := range prof.Sample {
		var d, v int64
		v = value(sample.Value)
		if meanDiv != nil {
			d = meanDiv(sample.Value)
		}
		if v < 0 {
			v = -v
		}
		total += v
		div += d
		if sample.DiffBaseSample() {
			diffTotal += v
			diffDiv += d
		}
	}
	if diffTotal > 0 {
		total = diffTotal
		div = diffDiv
	}
	if div != 0 {
		return total / div
	}
	return total
}

// Report contains the data and associated routines to extract a
// report from a profile.
type Report struct {
	prof        *profile.Profile
	total       int64
	options     *Options
	formatValue func(int64) string
}

// Total returns the total number of samples in a report.
func (rpt *Report) Total() int64 { return rpt.total }

func abs64(i int64) int64 {
	if i < 0 {
		return -i
	}
	return i
}