aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/link/internal/ppc64/asm.go
blob: 8b0f15141c5ebdf8320e7671502796c64365d1fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
// Inferno utils/5l/asm.c
// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/5l/asm.c
//
//	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
//	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
//	Portions Copyright © 1997-1999 Vita Nuova Limited
//	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
//	Portions Copyright © 2004,2006 Bruce Ellis
//	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
//	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
//	Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

package ppc64

import (
	"cmd/internal/objabi"
	"cmd/internal/sys"
	"cmd/link/internal/ld"
	"cmd/link/internal/loader"
	"cmd/link/internal/sym"
	"debug/elf"
	"encoding/binary"
	"fmt"
	"log"
	"strings"
	"sync"
)

func genplt2(ctxt *ld.Link, ldr *loader.Loader) {
	// The ppc64 ABI PLT has similar concepts to other
	// architectures, but is laid out quite differently. When we
	// see an R_PPC64_REL24 relocation to a dynamic symbol
	// (indicating that the call needs to go through the PLT), we
	// generate up to three stubs and reserve a PLT slot.
	//
	// 1) The call site will be bl x; nop (where the relocation
	//    applies to the bl).  We rewrite this to bl x_stub; ld
	//    r2,24(r1).  The ld is necessary because x_stub will save
	//    r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
	//
	// 2) We reserve space for a pointer in the .plt section (once
	//    per referenced dynamic function).  .plt is a data
	//    section filled solely by the dynamic linker (more like
	//    .plt.got on other architectures).  Initially, the
	//    dynamic linker will fill each slot with a pointer to the
	//    corresponding x@plt entry point.
	//
	// 3) We generate the "call stub" x_stub (once per dynamic
	//    function/object file pair).  This saves the TOC in the
	//    TOC save slot, reads the function pointer from x's .plt
	//    slot and calls it like any other global entry point
	//    (including setting r12 to the function address).
	//
	// 4) We generate the "symbol resolver stub" x@plt (once per
	//    dynamic function).  This is solely a branch to the glink
	//    resolver stub.
	//
	// 5) We generate the glink resolver stub (only once).  This
	//    computes which symbol resolver stub we came through and
	//    invokes the dynamic resolver via a pointer provided by
	//    the dynamic linker. This will patch up the .plt slot to
	//    point directly at the function so future calls go
	//    straight from the call stub to the real function, and
	//    then call the function.

	// NOTE: It's possible we could make ppc64 closer to other
	// architectures: ppc64's .plt is like .plt.got on other
	// platforms and ppc64's .glink is like .plt on other
	// platforms.

	// Find all R_PPC64_REL24 relocations that reference dynamic
	// imports. Reserve PLT entries for these symbols and
	// generate call stubs. The call stubs need to live in .text,
	// which is why we need to do this pass this early.
	//
	// This assumes "case 1" from the ABI, where the caller needs
	// us to save and restore the TOC pointer.
	var stubs []loader.Sym
	for _, s := range ctxt.Textp2 {
		relocs := ldr.Relocs(s)
		for i := 0; i < relocs.Count(); i++ {
			r := relocs.At2(i)
			if r.Type() != objabi.ElfRelocOffset+objabi.RelocType(elf.R_PPC64_REL24) || ldr.SymType(r.Sym()) != sym.SDYNIMPORT {
				continue
			}

			// Reserve PLT entry and generate symbol
			// resolver
			addpltsym2(ctxt, ldr, r.Sym())

			// Generate call stub. Important to note that we're looking
			// up the stub using the same version as the parent symbol (s),
			// needed so that symtoc() will select the right .TOC. symbol
			// when processing the stub.  In older versions of the linker
			// this was done by setting stub.Outer to the parent, but
			// if the stub has the right version initially this is not needed.
			n := fmt.Sprintf("%s.%s", ldr.SymName(s), ldr.SymName(r.Sym()))
			stub := ldr.CreateSymForUpdate(n, ldr.SymVersion(s))
			if stub.Size() == 0 {
				stubs = append(stubs, stub.Sym())
				gencallstub2(ctxt, ldr, 1, stub, r.Sym())
			}

			// Update the relocation to use the call stub
			r.SetSym(stub.Sym())

			// make sure the data is writeable
			if ldr.AttrReadOnly(s) {
				panic("can't write to read-only sym data")
			}

			// Restore TOC after bl. The compiler put a
			// nop here for us to overwrite.
			sp := ldr.Data(s)
			const o1 = 0xe8410018 // ld r2,24(r1)
			ctxt.Arch.ByteOrder.PutUint32(sp[r.Off()+4:], o1)
		}
	}
	// Put call stubs at the beginning (instead of the end).
	// So when resolving the relocations to calls to the stubs,
	// the addresses are known and trampolines can be inserted
	// when necessary.
	ctxt.Textp2 = append(stubs, ctxt.Textp2...)
}

func genaddmoduledata2(ctxt *ld.Link, ldr *loader.Loader) {
	initfunc, addmoduledata := ld.PrepareAddmoduledata(ctxt)
	if initfunc == nil {
		return
	}

	o := func(op uint32) {
		initfunc.AddUint32(ctxt.Arch, op)
	}

	// addis r2, r12, .TOC.-func@ha
	toc := ctxt.DotTOC2[0]
	rel1 := loader.Reloc{
		Off:  0,
		Size: 8,
		Type: objabi.R_ADDRPOWER_PCREL,
		Sym:  toc,
	}
	initfunc.AddReloc(rel1)
	o(0x3c4c0000)
	// addi r2, r2, .TOC.-func@l
	o(0x38420000)
	// mflr r31
	o(0x7c0802a6)
	// stdu r31, -32(r1)
	o(0xf801ffe1)
	// addis r3, r2, local.moduledata@got@ha
	var tgt loader.Sym
	if s := ldr.Lookup("local.moduledata", 0); s != 0 {
		tgt = s
	} else if s := ldr.Lookup("local.pluginmoduledata", 0); s != 0 {
		tgt = s
	} else {
		tgt = ldr.LookupOrCreateSym("runtime.firstmoduledata", 0)
	}
	rel2 := loader.Reloc{
		Off:  int32(initfunc.Size()),
		Size: 8,
		Type: objabi.R_ADDRPOWER_GOT,
		Sym:  tgt,
	}
	initfunc.AddReloc(rel2)
	o(0x3c620000)
	// ld r3, local.moduledata@got@l(r3)
	o(0xe8630000)
	// bl runtime.addmoduledata
	rel3 := loader.Reloc{
		Off:  int32(initfunc.Size()),
		Size: 4,
		Type: objabi.R_CALLPOWER,
		Sym:  addmoduledata,
	}
	initfunc.AddReloc(rel3)
	o(0x48000001)
	// nop
	o(0x60000000)
	// ld r31, 0(r1)
	o(0xe8010000)
	// mtlr r31
	o(0x7c0803a6)
	// addi r1,r1,32
	o(0x38210020)
	// blr
	o(0x4e800020)
}

func gentext2(ctxt *ld.Link, ldr *loader.Loader) {
	if ctxt.DynlinkingGo() {
		genaddmoduledata2(ctxt, ldr)
	}

	if ctxt.LinkMode == ld.LinkInternal {
		genplt2(ctxt, ldr)
	}
}

// Construct a call stub in stub that calls symbol targ via its PLT
// entry.
func gencallstub2(ctxt *ld.Link, ldr *loader.Loader, abicase int, stub *loader.SymbolBuilder, targ loader.Sym) {
	if abicase != 1 {
		// If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC
		// relocations, we'll need to implement cases 2 and 3.
		log.Fatalf("gencallstub only implements case 1 calls")
	}

	plt := ctxt.PLT2

	stub.SetType(sym.STEXT)

	// Save TOC pointer in TOC save slot
	stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1)

	// Load the function pointer from the PLT.
	rel := loader.Reloc{
		Off:  int32(stub.Size()),
		Size: 2,
		Add:  int64(ldr.SymPlt(targ)),
		Type: objabi.R_POWER_TOC,
		Sym:  plt,
	}
	if ctxt.Arch.ByteOrder == binary.BigEndian {
		rel.Off += int32(rel.Size)
	}
	ri1 := stub.AddReloc(rel)
	ldr.SetRelocVariant(stub.Sym(), int(ri1), sym.RV_POWER_HA)
	stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha

	rel2 := loader.Reloc{
		Off:  int32(stub.Size()),
		Size: 2,
		Add:  int64(ldr.SymPlt(targ)),
		Type: objabi.R_POWER_TOC,
		Sym:  plt,
	}
	if ctxt.Arch.ByteOrder == binary.BigEndian {
		rel2.Off += int32(rel.Size)
	}
	ri2 := stub.AddReloc(rel2)
	ldr.SetRelocVariant(stub.Sym(), int(ri2), sym.RV_POWER_LO)
	stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12)

	// Jump to the loaded pointer
	stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
	stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr
}

func adddynrel2(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc2, rIdx int) bool {
	if target.IsElf() {
		return addelfdynrel2(target, ldr, syms, s, r, rIdx)
	} else if target.IsAIX() {
		return ld.Xcoffadddynrel2(target, ldr, syms, s, r, rIdx)
	}
	return false
}

func addelfdynrel2(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc2, rIdx int) bool {
	targ := r.Sym()
	var targType sym.SymKind
	if targ != 0 {
		targType = ldr.SymType(targ)
	}

	switch r.Type() {
	default:
		if r.Type() >= objabi.ElfRelocOffset {
			ldr.Errorf(s, "unexpected relocation type %d (%s)", r.Type(), sym.RelocName(target.Arch, r.Type()))
			return false
		}

		// Handle relocations found in ELF object files.
	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_CALLPOWER)

		// This is a local call, so the caller isn't setting
		// up r12 and r2 is the same for the caller and
		// callee. Hence, we need to go to the local entry
		// point.  (If we don't do this, the callee will try
		// to use r12 to compute r2.)
		su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymLocalentry(targ))*4)

		if targType == sym.SDYNIMPORT {
			// Should have been handled in elfsetupplt
			ldr.Errorf(s, "unexpected R_PPC64_REL24 for dyn import")
		}

		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC_REL32):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_PCREL)
		su.SetRelocAdd(rIdx, r.Add()+4)

		if targType == sym.SDYNIMPORT {
			ldr.Errorf(s, "unexpected R_PPC_REL32 for dyn import")
		}

		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_ADDR64):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_ADDR)
		if targType == sym.SDYNIMPORT {
			// These happen in .toc sections
			ld.Adddynsym2(ldr, target, syms, targ)

			rela := ldr.MakeSymbolUpdater(syms.Rela2)
			rela.AddAddrPlus(target.Arch, s, int64(r.Off()))
			rela.AddUint64(target.Arch, ld.ELF64_R_INFO(uint32(ldr.SymDynid(targ)), uint32(elf.R_PPC64_ADDR64)))
			rela.AddUint64(target.Arch, uint64(r.Add()))
			su.SetRelocType(rIdx, objabi.ElfRelocOffset) // ignore during relocsym
		}
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO|sym.RV_CHECK_OVERFLOW)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HA):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HI):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_DS):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS|sym.RV_CHECK_OVERFLOW)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_LO):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_PCREL)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO)
		su.SetRelocAdd(rIdx, r.Add()+2) // Compensate for relocation size of 2
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HI):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_PCREL)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW)
		su.SetRelocAdd(rIdx, r.Add()+2)
		return true

	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HA):
		su := ldr.MakeSymbolUpdater(s)
		su.SetRelocType(rIdx, objabi.R_PCREL)
		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
		su.SetRelocAdd(rIdx, r.Add()+2)
		return true
	}

	// Handle references to ELF symbols from our own object files.
	if targType != sym.SDYNIMPORT {
		return true
	}

	// TODO(austin): Translate our relocations to ELF

	return false
}

func xcoffreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool {
	rs := r.Xsym

	emitReloc := func(v uint16, off uint64) {
		out.Write64(uint64(sectoff) + off)
		out.Write32(uint32(rs.Dynid))
		out.Write16(v)
	}

	var v uint16
	switch r.Type {
	default:
		return false
	case objabi.R_ADDR:
		v = ld.XCOFF_R_POS
		if r.Siz == 4 {
			v |= 0x1F << 8
		} else {
			v |= 0x3F << 8
		}
		emitReloc(v, 0)
	case objabi.R_ADDRPOWER_TOCREL:
	case objabi.R_ADDRPOWER_TOCREL_DS:
		emitReloc(ld.XCOFF_R_TOCU|(0x0F<<8), 2)
		emitReloc(ld.XCOFF_R_TOCL|(0x0F<<8), 6)
	case objabi.R_POWER_TLS_LE:
		emitReloc(ld.XCOFF_R_TLS_LE|0x0F<<8, 2)
	case objabi.R_CALLPOWER:
		if r.Siz != 4 {
			return false
		}
		emitReloc(ld.XCOFF_R_RBR|0x19<<8, 0)
	case objabi.R_XCOFFREF:
		emitReloc(ld.XCOFF_R_REF|0x3F<<8, 0)

	}
	return true

}

func elfreloc1(ctxt *ld.Link, r *sym.Reloc, sectoff int64) bool {
	// Beware that bit0~bit15 start from the third byte of a instruction in Big-Endian machines.
	if r.Type == objabi.R_ADDR || r.Type == objabi.R_POWER_TLS || r.Type == objabi.R_CALLPOWER {
	} else {
		if ctxt.Arch.ByteOrder == binary.BigEndian {
			sectoff += 2
		}
	}
	ctxt.Out.Write64(uint64(sectoff))

	elfsym := ld.ElfSymForReloc(ctxt, r.Xsym)
	switch r.Type {
	default:
		return false
	case objabi.R_ADDR, objabi.R_DWARFSECREF:
		switch r.Siz {
		case 4:
			ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32)
		case 8:
			ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32)
		default:
			return false
		}
	case objabi.R_POWER_TLS:
		ctxt.Out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32)
	case objabi.R_POWER_TLS_LE:
		ctxt.Out.Write64(uint64(elf.R_PPC64_TPREL16) | uint64(elfsym)<<32)
	case objabi.R_POWER_TLS_IE:
		ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32)
		ctxt.Out.Write64(uint64(r.Xadd))
		ctxt.Out.Write64(uint64(sectoff + 4))
		ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER:
		ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
		ctxt.Out.Write64(uint64(r.Xadd))
		ctxt.Out.Write64(uint64(sectoff + 4))
		ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER_DS:
		ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
		ctxt.Out.Write64(uint64(r.Xadd))
		ctxt.Out.Write64(uint64(sectoff + 4))
		ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER_GOT:
		ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32)
		ctxt.Out.Write64(uint64(r.Xadd))
		ctxt.Out.Write64(uint64(sectoff + 4))
		ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER_PCREL:
		ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32)
		ctxt.Out.Write64(uint64(r.Xadd))
		ctxt.Out.Write64(uint64(sectoff + 4))
		ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32)
		r.Xadd += 4
	case objabi.R_ADDRPOWER_TOCREL:
		ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
		ctxt.Out.Write64(uint64(r.Xadd))
		ctxt.Out.Write64(uint64(sectoff + 4))
		ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32)
	case objabi.R_ADDRPOWER_TOCREL_DS:
		ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
		ctxt.Out.Write64(uint64(r.Xadd))
		ctxt.Out.Write64(uint64(sectoff + 4))
		ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32)
	case objabi.R_CALLPOWER:
		if r.Siz != 4 {
			return false
		}
		ctxt.Out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32)

	}
	ctxt.Out.Write64(uint64(r.Xadd))

	return true
}

func elfsetupplt(ctxt *ld.Link, plt, got *loader.SymbolBuilder, dynamic loader.Sym) {
	if plt.Size() == 0 {
		// The dynamic linker stores the address of the
		// dynamic resolver and the DSO identifier in the two
		// doublewords at the beginning of the .plt section
		// before the PLT array. Reserve space for these.
		plt.SetSize(16)
	}
}

func machoreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool {
	return false
}

// Return the value of .TOC. for symbol s
func symtoc(syms *ld.ArchSyms, s *sym.Symbol) int64 {
	v := s.Version
	if s.Outer != nil {
		v = s.Outer.Version
	}

	toc := syms.DotTOC[v]
	if toc == nil {
		ld.Errorf(s, "TOC-relative relocation in object without .TOC.")
		return 0
	}

	return toc.Value
}

// archreloctoc relocates a TOC relative symbol.
// If the symbol pointed by this TOC relative symbol is in .data or .bss, the
// default load instruction can be changed to an addi instruction and the
// symbol address can be used directly.
// This code is for AIX only.
func archreloctoc(target *ld.Target, syms *ld.ArchSyms, r *sym.Reloc, s *sym.Symbol, val int64) int64 {
	if target.IsLinux() {
		ld.Errorf(s, "archrelocaddr called for %s relocation\n", r.Sym.Name)
	}
	var o1, o2 uint32

	o1 = uint32(val >> 32)
	o2 = uint32(val)

	var t int64
	useAddi := false
	const prefix = "TOC."
	var tarSym *sym.Symbol
	if strings.HasPrefix(r.Sym.Name, prefix) {
		tarSym = r.Sym.R[0].Sym
	} else {
		ld.Errorf(s, "archreloctoc called for a symbol without TOC anchor")
	}

	if target.IsInternal() && tarSym != nil && tarSym.Attr.Reachable() && (tarSym.Sect.Seg == &ld.Segdata) {
		t = ld.Symaddr(tarSym) + r.Add - syms.TOC.Value
		// change ld to addi in the second instruction
		o2 = (o2 & 0x03FF0000) | 0xE<<26
		useAddi = true
	} else {
		t = ld.Symaddr(r.Sym) + r.Add - syms.TOC.Value
	}

	if t != int64(int32(t)) {
		ld.Errorf(s, "TOC relocation for %s is too big to relocate %s: 0x%x", s.Name, r.Sym, t)
	}

	if t&0x8000 != 0 {
		t += 0x10000
	}

	o1 |= uint32((t >> 16) & 0xFFFF)

	switch r.Type {
	case objabi.R_ADDRPOWER_TOCREL_DS:
		if useAddi {
			o2 |= uint32(t) & 0xFFFF
		} else {
			if t&3 != 0 {
				ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym))
			}
			o2 |= uint32(t) & 0xFFFC
		}
	default:
		return -1
	}

	return int64(o1)<<32 | int64(o2)
}

// archrelocaddr relocates a symbol address.
// This code is for AIX only.
func archrelocaddr(target *ld.Target, syms *ld.ArchSyms, r *sym.Reloc, s *sym.Symbol, val int64) int64 {
	if target.IsAIX() {
		ld.Errorf(s, "archrelocaddr called for %s relocation\n", r.Sym.Name)
	}
	var o1, o2 uint32
	if target.IsBigEndian() {
		o1 = uint32(val >> 32)
		o2 = uint32(val)
	} else {
		o1 = uint32(val)
		o2 = uint32(val >> 32)
	}

	// We are spreading a 31-bit address across two instructions, putting the
	// high (adjusted) part in the low 16 bits of the first instruction and the
	// low part in the low 16 bits of the second instruction, or, in the DS case,
	// bits 15-2 (inclusive) of the address into bits 15-2 of the second
	// instruction (it is an error in this case if the low 2 bits of the address
	// are non-zero).

	t := ld.Symaddr(r.Sym) + r.Add
	if t < 0 || t >= 1<<31 {
		ld.Errorf(s, "relocation for %s is too big (>=2G): 0x%x", s.Name, ld.Symaddr(r.Sym))
	}
	if t&0x8000 != 0 {
		t += 0x10000
	}

	switch r.Type {
	case objabi.R_ADDRPOWER:
		o1 |= (uint32(t) >> 16) & 0xffff
		o2 |= uint32(t) & 0xffff
	case objabi.R_ADDRPOWER_DS:
		o1 |= (uint32(t) >> 16) & 0xffff
		if t&3 != 0 {
			ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym))
		}
		o2 |= uint32(t) & 0xfffc
	default:
		return -1
	}

	if target.IsBigEndian() {
		return int64(o1)<<32 | int64(o2)
	}
	return int64(o2)<<32 | int64(o1)
}

// Determine if the code was compiled so that the TOC register R2 is initialized and maintained
func r2Valid(ctxt *ld.Link) bool {
	switch ctxt.BuildMode {
	case ld.BuildModeCArchive, ld.BuildModeCShared, ld.BuildModePIE, ld.BuildModeShared, ld.BuildModePlugin:
		return true
	}
	// -linkshared option
	return ctxt.IsSharedGoLink()
}

// resolve direct jump relocation r in s, and add trampoline if necessary
func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) {

	// Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it.
	// For internal linking, trampolines are always created for long calls.
	// For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in
	// r2.  For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created.
	if ctxt.IsExternal() && r2Valid(ctxt) {
		// No trampolines needed since r2 contains the TOC
		return
	}

	relocs := ldr.Relocs(s)
	r := relocs.At2(ri)
	var t int64
	// ldr.SymValue(rs) == 0 indicates a cross-package jump to a function that is not yet
	// laid out. Conservatively use a trampoline. This should be rare, as we lay out packages
	// in dependency order.
	if ldr.SymValue(rs) != 0 {
		t = ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
	}
	switch r.Type() {
	case objabi.R_CALLPOWER:

		// If branch offset is too far then create a trampoline.

		if (ctxt.IsExternal() && ldr.SymSect(s) != ldr.SymSect(rs)) || (ctxt.IsInternal() && int64(int32(t<<6)>>6) != t) || ldr.SymValue(rs) == 0 || (*ld.FlagDebugTramp > 1 && ldr.SymPkg(s) != ldr.SymPkg(rs)) {
			var tramp loader.Sym
			for i := 0; ; i++ {

				// Using r.Add as part of the name is significant in functions like duffzero where the call
				// target is at some offset within the function.  Calls to duff+8 and duff+256 must appear as
				// distinct trampolines.

				oName := ldr.SymName(rs)
				name := oName
				if r.Add() == 0 {
					name += fmt.Sprintf("-tramp%d", i)
				} else {
					name += fmt.Sprintf("%+x-tramp%d", r.Add(), i)
				}

				// Look up the trampoline in case it already exists

				tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs)))
				if oName == "runtime.deferreturn" {
					ldr.SetIsDeferReturnTramp(tramp, true)
				}
				if ldr.SymValue(tramp) == 0 {
					break
				}

				t = ldr.SymValue(tramp) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))

				// With internal linking, the trampoline can be used if it is not too far.
				// With external linking, the trampoline must be in this section for it to be reused.
				if (ctxt.IsInternal() && int64(int32(t<<6)>>6) == t) || (ctxt.IsExternal() && ldr.SymSect(s) == ldr.SymSect(tramp)) {
					break
				}
			}
			if ldr.SymType(tramp) == 0 {
				if r2Valid(ctxt) {
					// Should have returned for above cases
					ctxt.Errorf(s, "unexpected trampoline for shared or dynamic linking")
				} else {
					trampb := ldr.MakeSymbolUpdater(tramp)
					ctxt.AddTramp(trampb)
					gentramp(ctxt, ldr, trampb, rs, r.Add())
				}
			}
			sb := ldr.MakeSymbolUpdater(s)
			relocs := sb.Relocs()
			r := relocs.At2(ri)
			r.SetSym(tramp)
			r.SetAdd(0) // This was folded into the trampoline target address
		}
	default:
		ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type()))
	}
}

func gentramp(ctxt *ld.Link, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) {
	tramp.SetSize(16) // 4 instructions
	P := make([]byte, tramp.Size())
	t := ldr.SymValue(target) + offset
	var o1, o2 uint32

	if ctxt.IsAIX() {
		// On AIX, the address is retrieved with a TOC symbol.
		// For internal linking, the "Linux" way might still be used.
		// However, all text symbols are accessed with a TOC symbol as
		// text relocations aren't supposed to be possible.
		// So, keep using the external linking way to be more AIX friendly.
		o1 = uint32(0x3fe20000) // lis r2, toctargetaddr hi
		o2 = uint32(0xebff0000) // ld r31, toctargetaddr lo

		toctramp := ldr.CreateSymForUpdate("TOC."+ldr.SymName(tramp.Sym()), 0)
		toctramp.SetType(sym.SXCOFFTOC)
		toctramp.SetReachable(true)
		toctramp.AddAddrPlus(ctxt.Arch, target, offset)

		r := loader.Reloc{
			Off:  0,
			Type: objabi.R_ADDRPOWER_TOCREL_DS,
			Size: 8, // generates 2 relocations:  HA + LO
			Sym:  toctramp.Sym(),
		}
		tramp.AddReloc(r)
	} else {
		// Used for default build mode for an executable
		// Address of the call target is generated using
		// relocation and doesn't depend on r2 (TOC).
		o1 = uint32(0x3fe00000) // lis r31,targetaddr hi
		o2 = uint32(0x3bff0000) // addi r31,targetaddr lo

		// With external linking, the target address must be
		// relocated using LO and HA
		if ctxt.IsExternal() || ldr.SymValue(target) == 0 {
			r := loader.Reloc{
				Off:  0,
				Type: objabi.R_ADDRPOWER,
				Size: 8, // generates 2 relocations:  HA + LO
				Sym:  target,
				Add:  offset,
			}
			tramp.AddReloc(r)
		} else {
			// adjustment needed if lo has sign bit set
			// when using addi to compute address
			val := uint32((t & 0xffff0000) >> 16)
			if t&0x8000 != 0 {
				val += 1
			}
			o1 |= val                // hi part of addr
			o2 |= uint32(t & 0xffff) // lo part of addr
		}
	}

	o3 := uint32(0x7fe903a6) // mtctr r31
	o4 := uint32(0x4e800420) // bctr
	ctxt.Arch.ByteOrder.PutUint32(P, o1)
	ctxt.Arch.ByteOrder.PutUint32(P[4:], o2)
	ctxt.Arch.ByteOrder.PutUint32(P[8:], o3)
	ctxt.Arch.ByteOrder.PutUint32(P[12:], o4)
	tramp.SetData(P)
}

func archreloc(target *ld.Target, syms *ld.ArchSyms, r *sym.Reloc, s *sym.Symbol, val int64) (int64, bool) {
	if target.IsExternal() {
		// On AIX, relocations (except TLS ones) must be also done to the
		// value with the current addresses.
		switch r.Type {
		default:
			if target.IsAIX() {
				return val, false
			}
		case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE:
			r.Done = false
			// check Outer is nil, Type is TLSBSS?
			r.Xadd = r.Add
			r.Xsym = r.Sym
			return val, true
		case objabi.R_ADDRPOWER,
			objabi.R_ADDRPOWER_DS,
			objabi.R_ADDRPOWER_TOCREL,
			objabi.R_ADDRPOWER_TOCREL_DS,
			objabi.R_ADDRPOWER_GOT,
			objabi.R_ADDRPOWER_PCREL:
			r.Done = false

			// set up addend for eventual relocation via outer symbol.
			rs := r.Sym
			r.Xadd = r.Add
			for rs.Outer != nil {
				r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer)
				rs = rs.Outer
			}

			if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Type != sym.SUNDEFEXT && rs.Sect == nil {
				ld.Errorf(s, "missing section for %s", rs.Name)
			}
			r.Xsym = rs

			if !target.IsAIX() {
				return val, true
			}
		case objabi.R_CALLPOWER:
			r.Done = false
			r.Xsym = r.Sym
			r.Xadd = r.Add
			if !target.IsAIX() {
				return val, true
			}
		}
	}

	switch r.Type {
	case objabi.R_CONST:
		return r.Add, true
	case objabi.R_GOTOFF:
		return ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(syms.GOT), true
	case objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS:
		return archreloctoc(target, syms, r, s, val), true
	case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS:
		return archrelocaddr(target, syms, r, s, val), true
	case objabi.R_CALLPOWER:
		// Bits 6 through 29 = (S + A - P) >> 2

		t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off))

		if t&3 != 0 {
			ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
		}
		// If branch offset is too far then create a trampoline.

		if int64(int32(t<<6)>>6) != t {
			ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t)
		}
		return val | int64(uint32(t)&^0xfc000003), true
	case objabi.R_POWER_TOC: // S + A - .TOC.
		return ld.Symaddr(r.Sym) + r.Add - symtoc(syms, s), true

	case objabi.R_POWER_TLS_LE:
		// The thread pointer points 0x7000 bytes after the start of the
		// thread local storage area as documented in section "3.7.2 TLS
		// Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI
		// Specification".
		v := r.Sym.Value - 0x7000
		if target.IsAIX() {
			// On AIX, the thread pointer points 0x7800 bytes after
			// the TLS.
			v -= 0x800
		}
		if int64(int16(v)) != v {
			ld.Errorf(s, "TLS offset out of range %d", v)
		}
		return (val &^ 0xffff) | (v & 0xffff), true
	}

	return val, false
}

func archrelocvariant(target *ld.Target, syms *ld.ArchSyms, r *sym.Reloc, s *sym.Symbol, t int64) int64 {
	switch r.Variant & sym.RV_TYPE_MASK {
	default:
		ld.Errorf(s, "unexpected relocation variant %d", r.Variant)
		fallthrough

	case sym.RV_NONE:
		return t

	case sym.RV_POWER_LO:
		if r.Variant&sym.RV_CHECK_OVERFLOW != 0 {
			// Whether to check for signed or unsigned
			// overflow depends on the instruction
			var o1 uint32
			if target.IsBigEndian() {
				o1 = binary.BigEndian.Uint32(s.P[r.Off-2:])
			} else {
				o1 = binary.LittleEndian.Uint32(s.P[r.Off:])
			}
			switch o1 >> 26 {
			case 24, // ori
				26, // xori
				28: // andi
				if t>>16 != 0 {
					goto overflow
				}

			default:
				if int64(int16(t)) != t {
					goto overflow
				}
			}
		}

		return int64(int16(t))

	case sym.RV_POWER_HA:
		t += 0x8000
		fallthrough

		// Fallthrough
	case sym.RV_POWER_HI:
		t >>= 16

		if r.Variant&sym.RV_CHECK_OVERFLOW != 0 {
			// Whether to check for signed or unsigned
			// overflow depends on the instruction
			var o1 uint32
			if target.IsBigEndian() {
				o1 = binary.BigEndian.Uint32(s.P[r.Off-2:])
			} else {
				o1 = binary.LittleEndian.Uint32(s.P[r.Off:])
			}
			switch o1 >> 26 {
			case 25, // oris
				27, // xoris
				29: // andis
				if t>>16 != 0 {
					goto overflow
				}

			default:
				if int64(int16(t)) != t {
					goto overflow
				}
			}
		}

		return int64(int16(t))

	case sym.RV_POWER_DS:
		var o1 uint32
		if target.IsBigEndian() {
			o1 = uint32(binary.BigEndian.Uint16(s.P[r.Off:]))
		} else {
			o1 = uint32(binary.LittleEndian.Uint16(s.P[r.Off:]))
		}
		if t&3 != 0 {
			ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
		}
		if (r.Variant&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t {
			goto overflow
		}
		return int64(o1)&0x3 | int64(int16(t))
	}

overflow:
	ld.Errorf(s, "relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t)
	return t
}

func addpltsym2(ctxt *ld.Link, ldr *loader.Loader, s loader.Sym) {
	if ldr.SymPlt(s) >= 0 {
		return
	}

	ld.Adddynsym2(ldr, &ctxt.Target, &ctxt.ArchSyms, s)

	if ctxt.IsELF {
		plt := ldr.MakeSymbolUpdater(ctxt.PLT2)
		rela := ldr.MakeSymbolUpdater(ctxt.RelaPLT2)
		if plt.Size() == 0 {
			panic("plt is not set up")
		}

		// Create the glink resolver if necessary
		glink := ensureglinkresolver2(ctxt, ldr)

		// Write symbol resolver stub (just a branch to the
		// glink resolver stub)
		rel := loader.Reloc{
			Off:  int32(glink.Size()),
			Size: 4,
			Type: objabi.R_CALLPOWER,
			Sym:  glink.Sym(),
		}
		glink.AddReloc(rel)
		glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink

		// In the ppc64 ABI, the dynamic linker is responsible
		// for writing the entire PLT.  We just need to
		// reserve 8 bytes for each PLT entry and generate a
		// JMP_SLOT dynamic relocation for it.
		//
		// TODO(austin): ABI v1 is different
		ldr.SetPlt(s, int32(plt.Size()))

		plt.Grow(plt.Size() + 8)

		rela.AddAddrPlus(ctxt.Arch, plt.Sym(), int64(ldr.SymPlt(s)))
		rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(ldr.SymDynid(s)), uint32(elf.R_PPC64_JMP_SLOT)))
		rela.AddUint64(ctxt.Arch, 0)
	} else {
		ctxt.Errorf(s, "addpltsym: unsupported binary format")
	}
}

// Generate the glink resolver stub if necessary and return the .glink section
func ensureglinkresolver2(ctxt *ld.Link, ldr *loader.Loader) *loader.SymbolBuilder {
	gs := ldr.LookupOrCreateSym(".glink", 0)
	glink := ldr.MakeSymbolUpdater(gs)
	if glink.Size() != 0 {
		return glink
	}

	// This is essentially the resolver from the ppc64 ELF ABI.
	// At entry, r12 holds the address of the symbol resolver stub
	// for the target routine and the argument registers hold the
	// arguments for the target routine.
	//
	// This stub is PIC, so first get the PC of label 1 into r11.
	// Other things will be relative to this.
	glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0
	glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f
	glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11
	glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlf r0

	// Compute the .plt array index from the entry point address.
	// Because this is PIC, everything is relative to label 1b (in
	// r11):
	//   r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4
	glink.AddUint32(ctxt.Arch, 0x3800ffd0) // li r0,-(res_0-1b)=-48
	glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12
	glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11
	glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2

	// r11 = address of the first byte of the PLT
	glink.AddSymRef(ctxt.Arch, ctxt.PLT2, 0, objabi.R_ADDRPOWER, 8)

	glink.AddUint32(ctxt.Arch, 0x3d600000) // addis r11,0,.plt@ha
	glink.AddUint32(ctxt.Arch, 0x396b0000) // addi r11,r11,.plt@l

	// Load r12 = dynamic resolver address and r11 = DSO
	// identifier from the first two doublewords of the PLT.
	glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11)
	glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11)

	// Jump to the dynamic resolver
	glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
	glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr

	// The symbol resolvers must immediately follow.
	//   res_0:

	// Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes
	// before the first symbol resolver stub.
	du := ldr.MakeSymbolUpdater(ctxt.Dynamic2)
	ld.Elfwritedynentsymplus2(ctxt, du, ld.DT_PPC64_GLINK, glink.Sym(), glink.Size()-32)

	return glink
}

func asmb(ctxt *ld.Link, _ *loader.Loader) {
	if ctxt.IsELF {
		ld.Asmbelfsetup()
	}

	var wg sync.WaitGroup
	for _, sect := range ld.Segtext.Sections {
		offset := sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff
		// Handle additional text sections with Codeblk
		if sect.Name == ".text" {
			ld.WriteParallel(&wg, ld.Codeblk, ctxt, offset, sect.Vaddr, sect.Length)
		} else {
			ld.WriteParallel(&wg, ld.Datblk, ctxt, offset, sect.Vaddr, sect.Length)
		}
	}

	if ld.Segrodata.Filelen > 0 {
		ld.WriteParallel(&wg, ld.Datblk, ctxt, ld.Segrodata.Fileoff, ld.Segrodata.Vaddr, ld.Segrodata.Filelen)
	}

	if ld.Segrelrodata.Filelen > 0 {
		ld.WriteParallel(&wg, ld.Datblk, ctxt, ld.Segrelrodata.Fileoff, ld.Segrelrodata.Vaddr, ld.Segrelrodata.Filelen)
	}

	ld.WriteParallel(&wg, ld.Datblk, ctxt, ld.Segdata.Fileoff, ld.Segdata.Vaddr, ld.Segdata.Filelen)

	ld.WriteParallel(&wg, ld.Dwarfblk, ctxt, ld.Segdwarf.Fileoff, ld.Segdwarf.Vaddr, ld.Segdwarf.Filelen)
	wg.Wait()
}

func asmb2(ctxt *ld.Link) {
	/* output symbol table */
	ld.Symsize = 0

	ld.Lcsize = 0
	symo := uint32(0)
	if !*ld.FlagS {
		// TODO: rationalize
		switch ctxt.HeadType {
		default:
			if ctxt.IsELF {
				symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen)
				symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound)))
			}

		case objabi.Hplan9:
			symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen)

		case objabi.Haix:
			// Nothing to do
		}

		ctxt.Out.SeekSet(int64(symo))
		switch ctxt.HeadType {
		default:
			if ctxt.IsELF {
				ld.Asmelfsym(ctxt)
				ctxt.Out.Write(ld.Elfstrdat)

				if ctxt.LinkMode == ld.LinkExternal {
					ld.Elfemitreloc(ctxt)
				}
			}

		case objabi.Hplan9:
			ld.Asmplan9sym(ctxt)

			sym := ctxt.Syms.Lookup("pclntab", 0)
			if sym != nil {
				ld.Lcsize = int32(len(sym.P))
				ctxt.Out.Write(sym.P)
			}

		case objabi.Haix:
			// symtab must be added once sections have been created in ld.Asmbxcoff
		}
	}

	ctxt.Out.SeekSet(0)
	switch ctxt.HeadType {
	default:
	case objabi.Hplan9: /* plan 9 */
		ctxt.Out.Write32(0x647)                      /* magic */
		ctxt.Out.Write32(uint32(ld.Segtext.Filelen)) /* sizes */
		ctxt.Out.Write32(uint32(ld.Segdata.Filelen))
		ctxt.Out.Write32(uint32(ld.Segdata.Length - ld.Segdata.Filelen))
		ctxt.Out.Write32(uint32(ld.Symsize))          /* nsyms */
		ctxt.Out.Write32(uint32(ld.Entryvalue(ctxt))) /* va of entry */
		ctxt.Out.Write32(0)
		ctxt.Out.Write32(uint32(ld.Lcsize))

	case objabi.Hlinux,
		objabi.Hfreebsd,
		objabi.Hnetbsd,
		objabi.Hopenbsd:
		ld.Asmbelf(ctxt, int64(symo))

	case objabi.Haix:
		fileoff := uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen)
		fileoff = uint32(ld.Rnd(int64(fileoff), int64(*ld.FlagRound)))
		ld.Asmbxcoff(ctxt, int64(fileoff))
	}

	if *ld.FlagC {
		fmt.Printf("textsize=%d\n", ld.Segtext.Filelen)
		fmt.Printf("datsize=%d\n", ld.Segdata.Filelen)
		fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen)
		fmt.Printf("symsize=%d\n", ld.Symsize)
		fmt.Printf("lcsize=%d\n", ld.Lcsize)
		fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize))
	}
}