aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/link/internal/ld/pcln.go
blob: 5cbb7bbaccb44af7d0b6f2fa01d3850464843a4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ld

import (
	"cmd/internal/obj"
	"cmd/internal/objabi"
	"cmd/internal/src"
	"cmd/internal/sys"
	"cmd/link/internal/loader"
	"cmd/link/internal/sym"
	"encoding/binary"
	"fmt"
	"log"
	"os"
	"path/filepath"
	"strings"
)

// pclnState holds state information used during pclntab generation.
// Here 'ldr' is just a pointer to the context's loader, 'container'
// is a bitmap holding whether a given symbol index is an outer or
// container symbol, 'deferReturnSym' is the index for the symbol
// "runtime.deferreturn", 'nameToOffset' is a helper function for
// capturing function names, 'numberedFiles' records the file number
// assigned to a given file symbol, 'filepaths' is a slice of
// expanded paths (indexed by file number).
type pclnState struct {
	ldr            *loader.Loader
	container      loader.Bitmap
	deferReturnSym loader.Sym
	nameToOffset   func(name string) int32
	numberedFiles  map[loader.Sym]int64
	filepaths      []string
}

func makepclnState(ctxt *Link) pclnState {
	ldr := ctxt.loader
	drs := ldr.Lookup("runtime.deferreturn", sym.SymVerABIInternal)
	return pclnState{
		container:      loader.MakeBitmap(ldr.NSym()),
		ldr:            ldr,
		deferReturnSym: drs,
		numberedFiles:  make(map[loader.Sym]int64),
		// NB: initial entry in filepaths below is to reserve the zero value,
		// so that when we do a map lookup in numberedFiles fails, it will not
		// return a value slot in filepaths.
		filepaths: []string{""},
	}
}

func (state *pclnState) ftabaddstring(ftab *loader.SymbolBuilder, s string) int32 {
	start := len(ftab.Data())
	ftab.Grow(int64(start + len(s) + 1)) // make room for s plus trailing NUL
	ftd := ftab.Data()
	copy(ftd[start:], s)
	return int32(start)
}

// numberfile assigns a file number to the file if it hasn't been assigned already.
func (state *pclnState) numberfile(file loader.Sym) int64 {
	if val, ok := state.numberedFiles[file]; ok {
		return val
	}
	sn := state.ldr.SymName(file)
	path := sn[len(src.FileSymPrefix):]
	val := int64(len(state.filepaths))
	state.numberedFiles[file] = val
	state.filepaths = append(state.filepaths, expandGoroot(path))
	return val
}

func (state *pclnState) fileVal(file loader.Sym) int64 {
	if val, ok := state.numberedFiles[file]; ok {
		return val
	}
	panic("should have been numbered first")
}

func (state *pclnState) renumberfiles(ctxt *Link, fi loader.FuncInfo, d *sym.Pcdata) {
	// Give files numbers.
	nf := fi.NumFile()
	for i := uint32(0); i < nf; i++ {
		state.numberfile(fi.File(int(i)))
	}

	buf := make([]byte, binary.MaxVarintLen32)
	newval := int32(-1)
	var out sym.Pcdata
	it := obj.NewPCIter(uint32(ctxt.Arch.MinLC))
	for it.Init(d.P); !it.Done; it.Next() {
		// value delta
		oldval := it.Value

		var val int32
		if oldval == -1 {
			val = -1
		} else {
			if oldval < 0 || oldval >= int32(nf) {
				log.Fatalf("bad pcdata %d", oldval)
			}
			val = int32(state.fileVal(fi.File(int(oldval))))
		}

		dv := val - newval
		newval = val

		// value
		n := binary.PutVarint(buf, int64(dv))
		out.P = append(out.P, buf[:n]...)

		// pc delta
		pc := (it.NextPC - it.PC) / it.PCScale
		n = binary.PutUvarint(buf, uint64(pc))
		out.P = append(out.P, buf[:n]...)
	}

	// terminating value delta
	// we want to write varint-encoded 0, which is just 0
	out.P = append(out.P, 0)

	*d = out
}

// onlycsymbol looks at a symbol's name to report whether this is a
// symbol that is referenced by C code
func onlycsymbol(sname string) bool {
	switch sname {
	case "_cgo_topofstack", "__cgo_topofstack", "_cgo_panic", "crosscall2":
		return true
	}
	if strings.HasPrefix(sname, "_cgoexp_") {
		return true
	}
	return false
}

func emitPcln(ctxt *Link, s loader.Sym, container loader.Bitmap) bool {
	if ctxt.BuildMode == BuildModePlugin && ctxt.HeadType == objabi.Hdarwin && onlycsymbol(ctxt.loader.SymName(s)) {
		return false
	}
	// We want to generate func table entries only for the "lowest
	// level" symbols, not containers of subsymbols.
	return !container.Has(s)
}

func (state *pclnState) computeDeferReturn(target *Target, s loader.Sym) uint32 {
	deferreturn := uint32(0)
	lastWasmAddr := uint32(0)

	relocs := state.ldr.Relocs(s)
	for ri := 0; ri < relocs.Count(); ri++ {
		r := relocs.At2(ri)
		if target.IsWasm() && r.Type() == objabi.R_ADDR {
			// Wasm does not have a live variable set at the deferreturn
			// call itself. Instead it has one identified by the
			// resumption point immediately preceding the deferreturn.
			// The wasm code has a R_ADDR relocation which is used to
			// set the resumption point to PC_B.
			lastWasmAddr = uint32(r.Add())
		}
		if r.Type().IsDirectCall() && (r.Sym() == state.deferReturnSym || state.ldr.IsDeferReturnTramp(r.Sym())) {
			if target.IsWasm() {
				deferreturn = lastWasmAddr - 1
			} else {
				// Note: the relocation target is in the call instruction, but
				// is not necessarily the whole instruction (for instance, on
				// x86 the relocation applies to bytes [1:5] of the 5 byte call
				// instruction).
				deferreturn = uint32(r.Off())
				switch target.Arch.Family {
				case sys.AMD64, sys.I386:
					deferreturn--
				case sys.PPC64, sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64:
					// no change
				case sys.RISCV64:
					// TODO(jsing): The JALR instruction is marked with
					// R_CALLRISCV, whereas the actual reloc is currently
					// one instruction earlier starting with the AUIPC.
					deferreturn -= 4
				case sys.S390X:
					deferreturn -= 2
				default:
					panic(fmt.Sprint("Unhandled architecture:", target.Arch.Family))
				}
			}
			break // only need one
		}
	}
	return deferreturn
}

// genInlTreeSym generates the InlTree sym for a function with the
// specified FuncInfo.
func (state *pclnState) genInlTreeSym(fi loader.FuncInfo, arch *sys.Arch) loader.Sym {
	ldr := state.ldr
	its := ldr.CreateExtSym("", 0)
	inlTreeSym := ldr.MakeSymbolUpdater(its)
	// Note: the generated symbol is given a type of sym.SGOFUNC, as a
	// signal to the symtab() phase that it needs to be grouped in with
	// other similar symbols (gcdata, etc); the dodata() phase will
	// eventually switch the type back to SRODATA.
	inlTreeSym.SetType(sym.SGOFUNC)
	ldr.SetAttrReachable(its, true)
	ninl := fi.NumInlTree()
	for i := 0; i < int(ninl); i++ {
		call := fi.InlTree(i)
		// Usually, call.File is already numbered since the file
		// shows up in the Pcfile table. However, two inlined calls
		// might overlap exactly so that only the innermost file
		// appears in the Pcfile table. In that case, this assigns
		// the outer file a number.
		val := state.numberfile(call.File)
		fn := ldr.SymName(call.Func)
		nameoff := state.nameToOffset(fn)

		inlTreeSym.SetUint16(arch, int64(i*20+0), uint16(call.Parent))
		inlTreeSym.SetUint8(arch, int64(i*20+2), uint8(objabi.GetFuncID(fn, "")))
		// byte 3 is unused
		inlTreeSym.SetUint32(arch, int64(i*20+4), uint32(val))
		inlTreeSym.SetUint32(arch, int64(i*20+8), uint32(call.Line))
		inlTreeSym.SetUint32(arch, int64(i*20+12), uint32(nameoff))
		inlTreeSym.SetUint32(arch, int64(i*20+16), uint32(call.ParentPC))
	}
	return its
}

// pclntab initializes the pclntab symbol with
// runtime function and file name information.

// These variables are used to initialize runtime.firstmoduledata, see symtab.go:symtab.
var pclntabNfunc int32
var pclntabFiletabOffset int32
var pclntabPclntabOffset int32
var pclntabFirstFunc loader.Sym
var pclntabLastFunc loader.Sym

// pclntab generates the pcln table for the link output. Return value
// is a bitmap indexed by global symbol that marks 'container' text
// symbols, e.g. the set of all symbols X such that Outer(S) = X for
// some other text symbol S.
func (ctxt *Link) pclntab() loader.Bitmap {
	funcdataBytes := int64(0)
	ldr := ctxt.loader
	ftabsym := ldr.LookupOrCreateSym("runtime.pclntab", 0)
	ftab := ldr.MakeSymbolUpdater(ftabsym)
	ftab.SetType(sym.SPCLNTAB)
	ldr.SetAttrReachable(ftabsym, true)

	state := makepclnState(ctxt)

	// See golang.org/s/go12symtab for the format. Briefly:
	//	8-byte header
	//	nfunc [thearch.ptrsize bytes]
	//	function table, alternating PC and offset to func struct [each entry thearch.ptrsize bytes]
	//	end PC [thearch.ptrsize bytes]
	//	offset to file table [4 bytes]

	// Find container symbols and mark them as such.
	for _, s := range ctxt.Textp2 {
		outer := ldr.OuterSym(s)
		if outer != 0 {
			state.container.Set(outer)
		}
	}

	// Gather some basic stats and info.
	var nfunc int32
	prevSect := ldr.SymSect(ctxt.Textp2[0])
	for _, s := range ctxt.Textp2 {
		if !emitPcln(ctxt, s, state.container) {
			continue
		}
		nfunc++
		if pclntabFirstFunc == 0 {
			pclntabFirstFunc = s
		}
		ss := ldr.SymSect(s)
		if ss != prevSect {
			// With multiple text sections, the external linker may
			// insert functions between the sections, which are not
			// known by Go. This leaves holes in the PC range covered
			// by the func table. We need to generate an entry to mark
			// the hole.
			nfunc++
			prevSect = ss
		}
	}

	pclntabNfunc = nfunc
	ftab.Grow(8 + int64(ctxt.Arch.PtrSize) + int64(nfunc)*2*int64(ctxt.Arch.PtrSize) + int64(ctxt.Arch.PtrSize) + 4)
	ftab.SetUint32(ctxt.Arch, 0, 0xfffffffb)
	ftab.SetUint8(ctxt.Arch, 6, uint8(ctxt.Arch.MinLC))
	ftab.SetUint8(ctxt.Arch, 7, uint8(ctxt.Arch.PtrSize))
	ftab.SetUint(ctxt.Arch, 8, uint64(nfunc))
	pclntabPclntabOffset = int32(8 + ctxt.Arch.PtrSize)

	szHint := len(ctxt.Textp2) * 2
	funcnameoff := make(map[string]int32, szHint)
	nameToOffset := func(name string) int32 {
		nameoff, ok := funcnameoff[name]
		if !ok {
			nameoff = state.ftabaddstring(ftab, name)
			funcnameoff[name] = nameoff
		}
		return nameoff
	}
	state.nameToOffset = nameToOffset

	pctaboff := make(map[string]uint32, szHint)
	writepctab := func(off int32, p []byte) int32 {
		start, ok := pctaboff[string(p)]
		if !ok {
			if len(p) > 0 {
				start = uint32(len(ftab.Data()))
				ftab.AddBytes(p)
			}
			pctaboff[string(p)] = start
		}
		newoff := int32(ftab.SetUint32(ctxt.Arch, int64(off), start))
		return newoff
	}

	setAddr := (*loader.SymbolBuilder).SetAddrPlus
	if ctxt.IsExe() && ctxt.IsInternal() && !ctxt.DynlinkingGo() {
		// Internal linking static executable. At this point the function
		// addresses are known, so we can just use them instead of emitting
		// relocations.
		// For other cases we are generating a relocatable binary so we
		// still need to emit relocations.
		//
		// Also not do this optimization when using plugins (DynlinkingGo),
		// as on darwin it does weird things with runtime.etext symbol.
		// TODO: remove the weird thing and remove this condition.
		setAddr = func(s *loader.SymbolBuilder, arch *sys.Arch, off int64, tgt loader.Sym, add int64) int64 {
			if v := ldr.SymValue(tgt); v != 0 {
				return s.SetUint(arch, off, uint64(v+add))
			}
			return s.SetAddrPlus(arch, off, tgt, add)
		}
	}

	pcsp := sym.Pcdata{}
	pcfile := sym.Pcdata{}
	pcline := sym.Pcdata{}
	pcdata := []sym.Pcdata{}
	funcdata := []loader.Sym{}
	funcdataoff := []int64{}

	nfunc = 0 // repurpose nfunc as a running index
	prevFunc := ctxt.Textp2[0]
	for _, s := range ctxt.Textp2 {
		if !emitPcln(ctxt, s, state.container) {
			continue
		}

		thisSect := ldr.SymSect(s)
		prevSect := ldr.SymSect(prevFunc)
		if thisSect != prevSect {
			// With multiple text sections, there may be a hole here
			// in the address space (see the comment above). We use an
			// invalid funcoff value to mark the hole. See also
			// runtime/symtab.go:findfunc
			prevFuncSize := int64(ldr.SymSize(prevFunc))
			setAddr(ftab, ctxt.Arch, 8+int64(ctxt.Arch.PtrSize)+int64(nfunc)*2*int64(ctxt.Arch.PtrSize), prevFunc, prevFuncSize)
			ftab.SetUint(ctxt.Arch, 8+int64(ctxt.Arch.PtrSize)+int64(nfunc)*2*int64(ctxt.Arch.PtrSize)+int64(ctxt.Arch.PtrSize), ^uint64(0))
			nfunc++
		}
		prevFunc = s

		pcsp.P = pcsp.P[:0]
		pcline.P = pcline.P[:0]
		pcfile.P = pcfile.P[:0]
		pcdata = pcdata[:0]
		funcdataoff = funcdataoff[:0]
		funcdata = funcdata[:0]
		fi := ldr.FuncInfo(s)
		if fi.Valid() {
			fi.Preload()
			npc := fi.NumPcdata()
			for i := uint32(0); i < npc; i++ {
				pcdata = append(pcdata, sym.Pcdata{P: fi.Pcdata(int(i))})
			}
			nfd := fi.NumFuncdataoff()
			for i := uint32(0); i < nfd; i++ {
				funcdataoff = append(funcdataoff, fi.Funcdataoff(int(i)))
			}
			funcdata = fi.Funcdata(funcdata)
		}

		if fi.Valid() && fi.NumInlTree() > 0 {

			if len(pcdata) <= objabi.PCDATA_InlTreeIndex {
				// Create inlining pcdata table.
				newpcdata := make([]sym.Pcdata, objabi.PCDATA_InlTreeIndex+1)
				copy(newpcdata, pcdata)
				pcdata = newpcdata
			}

			if len(funcdataoff) <= objabi.FUNCDATA_InlTree {
				// Create inline tree funcdata.
				newfuncdata := make([]loader.Sym, objabi.FUNCDATA_InlTree+1)
				newfuncdataoff := make([]int64, objabi.FUNCDATA_InlTree+1)
				copy(newfuncdata, funcdata)
				copy(newfuncdataoff, funcdataoff)
				funcdata = newfuncdata
				funcdataoff = newfuncdataoff
			}
		}

		dSize := len(ftab.Data())
		funcstart := int32(dSize)
		funcstart += int32(-dSize) & (int32(ctxt.Arch.PtrSize) - 1) // align to ptrsize

		setAddr(ftab, ctxt.Arch, 8+int64(ctxt.Arch.PtrSize)+int64(nfunc)*2*int64(ctxt.Arch.PtrSize), s, 0)
		ftab.SetUint(ctxt.Arch, 8+int64(ctxt.Arch.PtrSize)+int64(nfunc)*2*int64(ctxt.Arch.PtrSize)+int64(ctxt.Arch.PtrSize), uint64(funcstart))

		// Write runtime._func. Keep in sync with ../../../../runtime/runtime2.go:/_func
		// and package debug/gosym.

		// fixed size of struct, checked below
		off := funcstart

		end := funcstart + int32(ctxt.Arch.PtrSize) + 3*4 + 5*4 + int32(len(pcdata))*4 + int32(len(funcdata))*int32(ctxt.Arch.PtrSize)
		if len(funcdata) > 0 && (end&int32(ctxt.Arch.PtrSize-1) != 0) {
			end += 4
		}
		ftab.Grow(int64(end))

		// entry uintptr
		off = int32(setAddr(ftab, ctxt.Arch, int64(off), s, 0))

		// name int32
		sn := ldr.SymName(s)
		nameoff := nameToOffset(sn)
		off = int32(ftab.SetUint32(ctxt.Arch, int64(off), uint32(nameoff)))

		// args int32
		// TODO: Move into funcinfo.
		args := uint32(0)
		if fi.Valid() {
			args = uint32(fi.Args())
		}
		off = int32(ftab.SetUint32(ctxt.Arch, int64(off), args))

		// deferreturn
		deferreturn := state.computeDeferReturn(&ctxt.Target, s)
		off = int32(ftab.SetUint32(ctxt.Arch, int64(off), deferreturn))

		if fi.Valid() {
			pcsp = sym.Pcdata{P: fi.Pcsp()}
			pcfile = sym.Pcdata{P: fi.Pcfile()}
			pcline = sym.Pcdata{P: fi.Pcline()}
			state.renumberfiles(ctxt, fi, &pcfile)
			if false {
				// Sanity check the new numbering
				it := obj.NewPCIter(uint32(ctxt.Arch.MinLC))
				for it.Init(pcfile.P); !it.Done; it.Next() {
					if it.Value < 1 || it.Value > int32(len(state.numberedFiles)) {
						ctxt.Errorf(s, "bad file number in pcfile: %d not in range [1, %d]\n", it.Value, len(state.numberedFiles))
						errorexit()
					}
				}
			}
		}

		if fi.Valid() && fi.NumInlTree() > 0 {
			its := state.genInlTreeSym(fi, ctxt.Arch)
			funcdata[objabi.FUNCDATA_InlTree] = its
			pcdata[objabi.PCDATA_InlTreeIndex] = sym.Pcdata{P: fi.Pcinline()}
		}

		// pcdata
		off = writepctab(off, pcsp.P)
		off = writepctab(off, pcfile.P)
		off = writepctab(off, pcline.P)
		off = int32(ftab.SetUint32(ctxt.Arch, int64(off), uint32(len(pcdata))))

		// funcID uint8
		var file string
		if fi.Valid() && fi.NumFile() > 0 {
			filesymname := ldr.SymName(fi.File(0))
			file = filesymname[len(src.FileSymPrefix):]
		}
		funcID := objabi.GetFuncID(sn, file)

		off = int32(ftab.SetUint8(ctxt.Arch, int64(off), uint8(funcID)))

		// unused
		off += 2

		// nfuncdata must be the final entry.
		off = int32(ftab.SetUint8(ctxt.Arch, int64(off), uint8(len(funcdata))))
		for i := range pcdata {
			off = writepctab(off, pcdata[i].P)
		}

		// funcdata, must be pointer-aligned and we're only int32-aligned.
		// Missing funcdata will be 0 (nil pointer).
		if len(funcdata) > 0 {
			if off&int32(ctxt.Arch.PtrSize-1) != 0 {
				off += 4
			}
			for i := range funcdata {
				dataoff := int64(off) + int64(ctxt.Arch.PtrSize)*int64(i)
				if funcdata[i] == 0 {
					ftab.SetUint(ctxt.Arch, dataoff, uint64(funcdataoff[i]))
					continue
				}
				// TODO: Dedup.
				funcdataBytes += int64(len(ldr.Data(funcdata[i])))
				setAddr(ftab, ctxt.Arch, dataoff, funcdata[i], funcdataoff[i])
			}
			off += int32(len(funcdata)) * int32(ctxt.Arch.PtrSize)
		}

		if off != end {
			ctxt.Errorf(s, "bad math in functab: funcstart=%d off=%d but end=%d (npcdata=%d nfuncdata=%d ptrsize=%d)", funcstart, off, end, len(pcdata), len(funcdata), ctxt.Arch.PtrSize)
			errorexit()
		}

		nfunc++
	}

	last := ctxt.Textp2[len(ctxt.Textp2)-1]
	pclntabLastFunc = last
	// Final entry of table is just end pc.
	setAddr(ftab, ctxt.Arch, 8+int64(ctxt.Arch.PtrSize)+int64(nfunc)*2*int64(ctxt.Arch.PtrSize), last, ldr.SymSize(last))

	// Start file table.
	dSize := len(ftab.Data())
	start := int32(dSize)
	start += int32(-dSize) & (int32(ctxt.Arch.PtrSize) - 1)
	pclntabFiletabOffset = start
	ftab.SetUint32(ctxt.Arch, 8+int64(ctxt.Arch.PtrSize)+int64(nfunc)*2*int64(ctxt.Arch.PtrSize)+int64(ctxt.Arch.PtrSize), uint32(start))

	nf := len(state.numberedFiles)
	ftab.Grow(int64(start) + int64((nf+1)*4))
	ftab.SetUint32(ctxt.Arch, int64(start), uint32(nf+1))
	for i := nf; i > 0; i-- {
		path := state.filepaths[i]
		val := int64(i)
		ftab.SetUint32(ctxt.Arch, int64(start)+val*4, uint32(state.ftabaddstring(ftab, path)))
	}

	ftab.SetSize(int64(len(ftab.Data())))

	ctxt.NumFilesyms = len(state.numberedFiles)

	if ctxt.Debugvlog != 0 {
		ctxt.Logf("pclntab=%d bytes, funcdata total %d bytes\n", ftab.Size(), funcdataBytes)
	}

	return state.container
}

func gorootFinal() string {
	root := objabi.GOROOT
	if final := os.Getenv("GOROOT_FINAL"); final != "" {
		root = final
	}
	return root
}

func expandGoroot(s string) string {
	const n = len("$GOROOT")
	if len(s) >= n+1 && s[:n] == "$GOROOT" && (s[n] == '/' || s[n] == '\\') {
		return filepath.ToSlash(filepath.Join(gorootFinal(), s[n:]))
	}
	return s
}

const (
	BUCKETSIZE    = 256 * MINFUNC
	SUBBUCKETS    = 16
	SUBBUCKETSIZE = BUCKETSIZE / SUBBUCKETS
	NOIDX         = 0x7fffffff
)

// findfunctab generates a lookup table to quickly find the containing
// function for a pc. See src/runtime/symtab.go:findfunc for details.
// 'container' is a bitmap indexed by global symbol holding whether
// a given text symbols is a container (outer sym).
func (ctxt *Link) findfunctab(container loader.Bitmap) {
	ldr := ctxt.loader
	tsym := ldr.LookupOrCreateSym("runtime.findfunctab", 0)
	t := ldr.MakeSymbolUpdater(tsym)
	t.SetType(sym.SRODATA)
	ldr.SetAttrReachable(tsym, true)
	ldr.SetAttrLocal(tsym, true)

	// find min and max address
	min := ldr.SymValue(ctxt.Textp2[0])
	lastp := ctxt.Textp2[len(ctxt.Textp2)-1]
	max := ldr.SymValue(lastp) + ldr.SymSize(lastp)

	// for each subbucket, compute the minimum of all symbol indexes
	// that map to that subbucket.
	n := int32((max - min + SUBBUCKETSIZE - 1) / SUBBUCKETSIZE)

	indexes := make([]int32, n)
	for i := int32(0); i < n; i++ {
		indexes[i] = NOIDX
	}
	idx := int32(0)
	for i, s := range ctxt.Textp2 {
		if !emitPcln(ctxt, s, container) {
			continue
		}
		p := ldr.SymValue(s)
		var e loader.Sym
		i++
		if i < len(ctxt.Textp2) {
			e = ctxt.Textp2[i]
		}
		for e != 0 && !emitPcln(ctxt, e, container) && i < len(ctxt.Textp2) {
			e = ctxt.Textp2[i]
			i++
		}
		q := max
		if e != 0 {
			q = ldr.SymValue(e)
		}

		//print("%d: [%lld %lld] %s\n", idx, p, q, s->name);
		for ; p < q; p += SUBBUCKETSIZE {
			i = int((p - min) / SUBBUCKETSIZE)
			if indexes[i] > idx {
				indexes[i] = idx
			}
		}

		i = int((q - 1 - min) / SUBBUCKETSIZE)
		if indexes[i] > idx {
			indexes[i] = idx
		}
		idx++
	}

	// allocate table
	nbuckets := int32((max - min + BUCKETSIZE - 1) / BUCKETSIZE)

	t.Grow(4*int64(nbuckets) + int64(n))

	// fill in table
	for i := int32(0); i < nbuckets; i++ {
		base := indexes[i*SUBBUCKETS]
		if base == NOIDX {
			Errorf(nil, "hole in findfunctab")
		}
		t.SetUint32(ctxt.Arch, int64(i)*(4+SUBBUCKETS), uint32(base))
		for j := int32(0); j < SUBBUCKETS && i*SUBBUCKETS+j < n; j++ {
			idx = indexes[i*SUBBUCKETS+j]
			if idx == NOIDX {
				Errorf(nil, "hole in findfunctab")
			}
			if idx-base >= 256 {
				Errorf(nil, "too many functions in a findfunc bucket! %d/%d %d %d", i, nbuckets, j, idx-base)
			}

			t.SetUint8(ctxt.Arch, int64(i)*(4+SUBBUCKETS)+4+int64(j), uint8(idx-base))
		}
	}
}