aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/internal/obj/s390x/asmz.go
blob: cb3a2c31965604fe7b9617a02bcb5d96c7a54541 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
// Based on cmd/internal/obj/ppc64/asm9.go.
//
//    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
//    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
//    Portions Copyright © 1997-1999 Vita Nuova Limited
//    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
//    Portions Copyright © 2004,2006 Bruce Ellis
//    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
//    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
//    Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

package s390x

import (
	"cmd/internal/obj"
	"cmd/internal/objabi"
	"fmt"
	"log"
	"math"
	"sort"
)

// ctxtz holds state while assembling a single function.
// Each function gets a fresh ctxtz.
// This allows for multiple functions to be safely concurrently assembled.
type ctxtz struct {
	ctxt       *obj.Link
	newprog    obj.ProgAlloc
	cursym     *obj.LSym
	autosize   int32
	instoffset int64
	pc         int64
}

// instruction layout.
const (
	funcAlign = 16
)

type Optab struct {
	as obj.As // opcode
	i  uint8  // handler index
	a1 uint8  // From
	a2 uint8  // Reg
	a3 uint8  // RestArgs[0]
	a4 uint8  // RestArgs[1]
	a5 uint8  // RestArgs[2]
	a6 uint8  // To
}

var optab = []Optab{
	// zero-length instructions
	{i: 0, as: obj.ATEXT, a1: C_ADDR, a6: C_TEXTSIZE},
	{i: 0, as: obj.ATEXT, a1: C_ADDR, a3: C_LCON, a6: C_TEXTSIZE},
	{i: 0, as: obj.APCDATA, a1: C_LCON, a6: C_LCON},
	{i: 0, as: obj.AFUNCDATA, a1: C_SCON, a6: C_ADDR},
	{i: 0, as: obj.ANOP},
	{i: 0, as: obj.ANOP, a1: C_SAUTO},

	// move register
	{i: 1, as: AMOVD, a1: C_REG, a6: C_REG},
	{i: 1, as: AMOVB, a1: C_REG, a6: C_REG},
	{i: 1, as: AMOVBZ, a1: C_REG, a6: C_REG},
	{i: 1, as: AMOVW, a1: C_REG, a6: C_REG},
	{i: 1, as: AMOVWZ, a1: C_REG, a6: C_REG},
	{i: 1, as: AFMOVD, a1: C_FREG, a6: C_FREG},
	{i: 1, as: AMOVDBR, a1: C_REG, a6: C_REG},

	// load constant
	{i: 26, as: AMOVD, a1: C_LACON, a6: C_REG},
	{i: 26, as: AMOVW, a1: C_LACON, a6: C_REG},
	{i: 26, as: AMOVWZ, a1: C_LACON, a6: C_REG},
	{i: 3, as: AMOVD, a1: C_DCON, a6: C_REG},
	{i: 3, as: AMOVW, a1: C_DCON, a6: C_REG},
	{i: 3, as: AMOVWZ, a1: C_DCON, a6: C_REG},
	{i: 3, as: AMOVB, a1: C_DCON, a6: C_REG},
	{i: 3, as: AMOVBZ, a1: C_DCON, a6: C_REG},

	// store constant
	{i: 72, as: AMOVD, a1: C_SCON, a6: C_LAUTO},
	{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LAUTO},
	{i: 72, as: AMOVW, a1: C_SCON, a6: C_LAUTO},
	{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LAUTO},
	{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LAUTO},
	{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LAUTO},
	{i: 72, as: AMOVB, a1: C_SCON, a6: C_LAUTO},
	{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LAUTO},
	{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LAUTO},
	{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LAUTO},
	{i: 72, as: AMOVD, a1: C_SCON, a6: C_LOREG},
	{i: 72, as: AMOVD, a1: C_ADDCON, a6: C_LOREG},
	{i: 72, as: AMOVW, a1: C_SCON, a6: C_LOREG},
	{i: 72, as: AMOVW, a1: C_ADDCON, a6: C_LOREG},
	{i: 72, as: AMOVWZ, a1: C_SCON, a6: C_LOREG},
	{i: 72, as: AMOVWZ, a1: C_ADDCON, a6: C_LOREG},
	{i: 72, as: AMOVB, a1: C_SCON, a6: C_LOREG},
	{i: 72, as: AMOVB, a1: C_ADDCON, a6: C_LOREG},
	{i: 72, as: AMOVBZ, a1: C_SCON, a6: C_LOREG},
	{i: 72, as: AMOVBZ, a1: C_ADDCON, a6: C_LOREG},

	// store
	{i: 35, as: AMOVD, a1: C_REG, a6: C_LAUTO},
	{i: 35, as: AMOVW, a1: C_REG, a6: C_LAUTO},
	{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LAUTO},
	{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LAUTO},
	{i: 35, as: AMOVB, a1: C_REG, a6: C_LAUTO},
	{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LAUTO},
	{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LAUTO},
	{i: 35, as: AMOVD, a1: C_REG, a6: C_LOREG},
	{i: 35, as: AMOVW, a1: C_REG, a6: C_LOREG},
	{i: 35, as: AMOVWZ, a1: C_REG, a6: C_LOREG},
	{i: 35, as: AMOVBZ, a1: C_REG, a6: C_LOREG},
	{i: 35, as: AMOVB, a1: C_REG, a6: C_LOREG},
	{i: 35, as: AMOVDBR, a1: C_REG, a6: C_LOREG},
	{i: 35, as: AMOVHBR, a1: C_REG, a6: C_LOREG},
	{i: 74, as: AMOVD, a1: C_REG, a6: C_ADDR},
	{i: 74, as: AMOVW, a1: C_REG, a6: C_ADDR},
	{i: 74, as: AMOVWZ, a1: C_REG, a6: C_ADDR},
	{i: 74, as: AMOVBZ, a1: C_REG, a6: C_ADDR},
	{i: 74, as: AMOVB, a1: C_REG, a6: C_ADDR},

	// load
	{i: 36, as: AMOVD, a1: C_LAUTO, a6: C_REG},
	{i: 36, as: AMOVW, a1: C_LAUTO, a6: C_REG},
	{i: 36, as: AMOVWZ, a1: C_LAUTO, a6: C_REG},
	{i: 36, as: AMOVBZ, a1: C_LAUTO, a6: C_REG},
	{i: 36, as: AMOVB, a1: C_LAUTO, a6: C_REG},
	{i: 36, as: AMOVDBR, a1: C_LAUTO, a6: C_REG},
	{i: 36, as: AMOVHBR, a1: C_LAUTO, a6: C_REG},
	{i: 36, as: AMOVD, a1: C_LOREG, a6: C_REG},
	{i: 36, as: AMOVW, a1: C_LOREG, a6: C_REG},
	{i: 36, as: AMOVWZ, a1: C_LOREG, a6: C_REG},
	{i: 36, as: AMOVBZ, a1: C_LOREG, a6: C_REG},
	{i: 36, as: AMOVB, a1: C_LOREG, a6: C_REG},
	{i: 36, as: AMOVDBR, a1: C_LOREG, a6: C_REG},
	{i: 36, as: AMOVHBR, a1: C_LOREG, a6: C_REG},
	{i: 75, as: AMOVD, a1: C_ADDR, a6: C_REG},
	{i: 75, as: AMOVW, a1: C_ADDR, a6: C_REG},
	{i: 75, as: AMOVWZ, a1: C_ADDR, a6: C_REG},
	{i: 75, as: AMOVBZ, a1: C_ADDR, a6: C_REG},
	{i: 75, as: AMOVB, a1: C_ADDR, a6: C_REG},

	// interlocked load and op
	{i: 99, as: ALAAG, a1: C_REG, a2: C_REG, a6: C_LOREG},

	// integer arithmetic
	{i: 2, as: AADD, a1: C_REG, a2: C_REG, a6: C_REG},
	{i: 2, as: AADD, a1: C_REG, a6: C_REG},
	{i: 22, as: AADD, a1: C_LCON, a2: C_REG, a6: C_REG},
	{i: 22, as: AADD, a1: C_LCON, a6: C_REG},
	{i: 12, as: AADD, a1: C_LOREG, a6: C_REG},
	{i: 12, as: AADD, a1: C_LAUTO, a6: C_REG},
	{i: 21, as: ASUB, a1: C_LCON, a2: C_REG, a6: C_REG},
	{i: 21, as: ASUB, a1: C_LCON, a6: C_REG},
	{i: 12, as: ASUB, a1: C_LOREG, a6: C_REG},
	{i: 12, as: ASUB, a1: C_LAUTO, a6: C_REG},
	{i: 4, as: AMULHD, a1: C_REG, a6: C_REG},
	{i: 4, as: AMULHD, a1: C_REG, a2: C_REG, a6: C_REG},
	{i: 62, as: AMLGR, a1: C_REG, a6: C_REG},
	{i: 2, as: ADIVW, a1: C_REG, a2: C_REG, a6: C_REG},
	{i: 2, as: ADIVW, a1: C_REG, a6: C_REG},
	{i: 10, as: ASUB, a1: C_REG, a2: C_REG, a6: C_REG},
	{i: 10, as: ASUB, a1: C_REG, a6: C_REG},
	{i: 47, as: ANEG, a1: C_REG, a6: C_REG},
	{i: 47, as: ANEG, a6: C_REG},

	// integer logical
	{i: 6, as: AAND, a1: C_REG, a2: C_REG, a6: C_REG},
	{i: 6, as: AAND, a1: C_REG, a6: C_REG},
	{i: 23, as: AAND, a1: C_LCON, a6: C_REG},
	{i: 12, as: AAND, a1: C_LOREG, a6: C_REG},
	{i: 12, as: AAND, a1: C_LAUTO, a6: C_REG},
	{i: 6, as: AANDW, a1: C_REG, a2: C_REG, a6: C_REG},
	{i: 6, as: AANDW, a1: C_REG, a6: C_REG},
	{i: 24, as: AANDW, a1: C_LCON, a6: C_REG},
	{i: 12, as: AANDW, a1: C_LOREG, a6: C_REG},
	{i: 12, as: AANDW, a1: C_LAUTO, a6: C_REG},
	{i: 7, as: ASLD, a1: C_REG, a6: C_REG},
	{i: 7, as: ASLD, a1: C_REG, a2: C_REG, a6: C_REG},
	{i: 7, as: ASLD, a1: C_SCON, a2: C_REG, a6: C_REG},
	{i: 7, as: ASLD, a1: C_SCON, a6: C_REG},
	{i: 13, as: ARNSBG, a1: C_SCON, a3: C_SCON, a4: C_SCON, a5: C_REG, a6: C_REG},

	// compare and swap
	{i: 79, as: ACSG, a1: C_REG, a2: C_REG, a6: C_SOREG},

	// floating point
	{i: 32, as: AFADD, a1: C_FREG, a6: C_FREG},
	{i: 33, as: AFABS, a1: C_FREG, a6: C_FREG},
	{i: 33, as: AFABS, a6: C_FREG},
	{i: 34, as: AFMADD, a1: C_FREG, a2: C_FREG, a6: C_FREG},
	{i: 32, as: AFMUL, a1: C_FREG, a6: C_FREG},
	{i: 36, as: AFMOVD, a1: C_LAUTO, a6: C_FREG},
	{i: 36, as: AFMOVD, a1: C_LOREG, a6: C_FREG},
	{i: 75, as: AFMOVD, a1: C_ADDR, a6: C_FREG},
	{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LAUTO},
	{i: 35, as: AFMOVD, a1: C_FREG, a6: C_LOREG},
	{i: 74, as: AFMOVD, a1: C_FREG, a6: C_ADDR},
	{i: 67, as: AFMOVD, a1: C_ZCON, a6: C_FREG},
	{i: 81, as: ALDGR, a1: C_REG, a6: C_FREG},
	{i: 81, as: ALGDR, a1: C_FREG, a6: C_REG},
	{i: 82, as: ACEFBRA, a1: C_REG, a6: C_FREG},
	{i: 83, as: ACFEBRA, a1: C_FREG, a6: C_REG},
	{i: 48, as: AFIEBR, a1: C_SCON, a2: C_FREG, a6: C_FREG},
	{i: 49, as: ACPSDR, a1: C_FREG, a2: C_FREG, a6: C_FREG},
	{i: 50, as: ALTDBR, a1: C_FREG, a6: C_FREG},
	{i: 51, as: ATCDB, a1: C_FREG, a6: C_SCON},

	// load symbol address (plus offset)
	{i: 19, as: AMOVD, a1: C_SYMADDR, a6: C_REG},
	{i: 93, as: AMOVD, a1: C_GOTADDR, a6: C_REG},
	{i: 94, as: AMOVD, a1: C_TLS_LE, a6: C_REG},
	{i: 95, as: AMOVD, a1: C_TLS_IE, a6: C_REG},

	// system call
	{i: 5, as: ASYSCALL},
	{i: 77, as: ASYSCALL, a1: C_SCON},

	// branch
	{i: 16, as: ABEQ, a6: C_SBRA},
	{i: 16, as: ABRC, a1: C_SCON, a6: C_SBRA},
	{i: 11, as: ABR, a6: C_LBRA},
	{i: 16, as: ABC, a1: C_SCON, a2: C_REG, a6: C_LBRA},
	{i: 18, as: ABR, a6: C_REG},
	{i: 18, as: ABR, a1: C_REG, a6: C_REG},
	{i: 15, as: ABR, a6: C_ZOREG},
	{i: 15, as: ABC, a6: C_ZOREG},

	// compare and branch
	{i: 89, as: ACGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
	{i: 89, as: ACMPBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
	{i: 89, as: ACLGRJ, a1: C_SCON, a2: C_REG, a3: C_REG, a6: C_SBRA},
	{i: 89, as: ACMPUBEQ, a1: C_REG, a2: C_REG, a6: C_SBRA},
	{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
	{i: 90, as: ACGIJ, a1: C_SCON, a2: C_REG, a3: C_SCON, a6: C_SBRA},
	{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_ADDCON, a6: C_SBRA},
	{i: 90, as: ACMPBEQ, a1: C_REG, a3: C_SCON, a6: C_SBRA},
	{i: 90, as: ACLGIJ, a1: C_SCON, a2: C_REG, a3: C_ADDCON, a6: C_SBRA},
	{i: 90, as: ACMPUBEQ, a1: C_REG, a3: C_ANDCON, a6: C_SBRA},

	// branch on count
	{i: 41, as: ABRCT, a1: C_REG, a6: C_SBRA},
	{i: 41, as: ABRCTG, a1: C_REG, a6: C_SBRA},

	// move on condition
	{i: 17, as: AMOVDEQ, a1: C_REG, a6: C_REG},

	// load on condition
	{i: 25, as: ALOCGR, a1: C_SCON, a2: C_REG, a6: C_REG},

	// find leftmost one
	{i: 8, as: AFLOGR, a1: C_REG, a6: C_REG},

	// population count
	{i: 9, as: APOPCNT, a1: C_REG, a6: C_REG},

	// compare
	{i: 70, as: ACMP, a1: C_REG, a6: C_REG},
	{i: 71, as: ACMP, a1: C_REG, a6: C_LCON},
	{i: 70, as: ACMPU, a1: C_REG, a6: C_REG},
	{i: 71, as: ACMPU, a1: C_REG, a6: C_LCON},
	{i: 70, as: AFCMPO, a1: C_FREG, a6: C_FREG},
	{i: 70, as: AFCMPO, a1: C_FREG, a2: C_REG, a6: C_FREG},

	// test under mask
	{i: 91, as: ATMHH, a1: C_REG, a6: C_ANDCON},

	// insert program mask
	{i: 92, as: AIPM, a1: C_REG},

	// set program mask
	{i: 76, as: ASPM, a1: C_REG},

	// 32-bit access registers
	{i: 68, as: AMOVW, a1: C_AREG, a6: C_REG},
	{i: 68, as: AMOVWZ, a1: C_AREG, a6: C_REG},
	{i: 69, as: AMOVW, a1: C_REG, a6: C_AREG},
	{i: 69, as: AMOVWZ, a1: C_REG, a6: C_AREG},

	// macros
	{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LOREG},
	{i: 96, as: ACLEAR, a1: C_LCON, a6: C_LAUTO},

	// load/store multiple
	{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LOREG},
	{i: 97, as: ASTMG, a1: C_REG, a2: C_REG, a6: C_LAUTO},
	{i: 98, as: ALMG, a1: C_LOREG, a2: C_REG, a6: C_REG},
	{i: 98, as: ALMG, a1: C_LAUTO, a2: C_REG, a6: C_REG},

	// bytes
	{i: 40, as: ABYTE, a1: C_SCON},
	{i: 40, as: AWORD, a1: C_LCON},
	{i: 31, as: ADWORD, a1: C_LCON},
	{i: 31, as: ADWORD, a1: C_DCON},

	// fast synchronization
	{i: 80, as: ASYNC},

	// store clock
	{i: 88, as: ASTCK, a6: C_SAUTO},
	{i: 88, as: ASTCK, a6: C_SOREG},

	// storage and storage
	{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LOREG},
	{i: 84, as: AMVC, a1: C_SCON, a3: C_LOREG, a6: C_LAUTO},
	{i: 84, as: AMVC, a1: C_SCON, a3: C_LAUTO, a6: C_LAUTO},

	// address
	{i: 85, as: ALARL, a1: C_LCON, a6: C_REG},
	{i: 85, as: ALARL, a1: C_SYMADDR, a6: C_REG},
	{i: 86, as: ALA, a1: C_SOREG, a6: C_REG},
	{i: 86, as: ALA, a1: C_SAUTO, a6: C_REG},
	{i: 87, as: AEXRL, a1: C_SYMADDR, a6: C_REG},

	// undefined (deliberate illegal instruction)
	{i: 78, as: obj.AUNDEF},

	// 2 byte no-operation
	{i: 66, as: ANOPH},

	// vector instructions

	// VRX store
	{i: 100, as: AVST, a1: C_VREG, a6: C_SOREG},
	{i: 100, as: AVST, a1: C_VREG, a6: C_SAUTO},
	{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
	{i: 100, as: AVSTEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},

	// VRX load
	{i: 101, as: AVL, a1: C_SOREG, a6: C_VREG},
	{i: 101, as: AVL, a1: C_SAUTO, a6: C_VREG},
	{i: 101, as: AVLEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
	{i: 101, as: AVLEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},

	// VRV scatter
	{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SOREG},
	{i: 102, as: AVSCEG, a1: C_SCON, a2: C_VREG, a6: C_SAUTO},

	// VRV gather
	{i: 103, as: AVGEG, a1: C_SCON, a3: C_SOREG, a6: C_VREG},
	{i: 103, as: AVGEG, a1: C_SCON, a3: C_SAUTO, a6: C_VREG},

	// VRS element shift/rotate and load gr to/from vr element
	{i: 104, as: AVESLG, a1: C_SCON, a2: C_VREG, a6: C_VREG},
	{i: 104, as: AVESLG, a1: C_REG, a2: C_VREG, a6: C_VREG},
	{i: 104, as: AVESLG, a1: C_SCON, a6: C_VREG},
	{i: 104, as: AVESLG, a1: C_REG, a6: C_VREG},
	{i: 104, as: AVLGVG, a1: C_SCON, a2: C_VREG, a6: C_REG},
	{i: 104, as: AVLGVG, a1: C_REG, a2: C_VREG, a6: C_REG},
	{i: 104, as: AVLVGG, a1: C_SCON, a2: C_REG, a6: C_VREG},
	{i: 104, as: AVLVGG, a1: C_REG, a2: C_REG, a6: C_VREG},

	// VRS store multiple
	{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SOREG},
	{i: 105, as: AVSTM, a1: C_VREG, a2: C_VREG, a6: C_SAUTO},

	// VRS load multiple
	{i: 106, as: AVLM, a1: C_SOREG, a2: C_VREG, a6: C_VREG},
	{i: 106, as: AVLM, a1: C_SAUTO, a2: C_VREG, a6: C_VREG},

	// VRS store with length
	{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SOREG},
	{i: 107, as: AVSTL, a1: C_REG, a2: C_VREG, a6: C_SAUTO},

	// VRS load with length
	{i: 108, as: AVLL, a1: C_REG, a3: C_SOREG, a6: C_VREG},
	{i: 108, as: AVLL, a1: C_REG, a3: C_SAUTO, a6: C_VREG},

	// VRI-a
	{i: 109, as: AVGBM, a1: C_ANDCON, a6: C_VREG},
	{i: 109, as: AVZERO, a6: C_VREG},
	{i: 109, as: AVREPIG, a1: C_ADDCON, a6: C_VREG},
	{i: 109, as: AVREPIG, a1: C_SCON, a6: C_VREG},
	{i: 109, as: AVLEIG, a1: C_SCON, a3: C_ADDCON, a6: C_VREG},
	{i: 109, as: AVLEIG, a1: C_SCON, a3: C_SCON, a6: C_VREG},

	// VRI-b generate mask
	{i: 110, as: AVGMG, a1: C_SCON, a3: C_SCON, a6: C_VREG},

	// VRI-c replicate
	{i: 111, as: AVREPG, a1: C_UCON, a2: C_VREG, a6: C_VREG},

	// VRI-d element rotate and insert under mask and
	// shift left double by byte
	{i: 112, as: AVERIMG, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},
	{i: 112, as: AVSLDB, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},

	// VRI-d fp test data class immediate
	{i: 113, as: AVFTCIDB, a1: C_SCON, a2: C_VREG, a6: C_VREG},

	// VRR-a load reg
	{i: 114, as: AVLR, a1: C_VREG, a6: C_VREG},

	// VRR-a compare
	{i: 115, as: AVECG, a1: C_VREG, a6: C_VREG},

	// VRR-b
	{i: 117, as: AVCEQG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
	{i: 117, as: AVFAEF, a1: C_VREG, a2: C_VREG, a6: C_VREG},
	{i: 117, as: AVPKSG, a1: C_VREG, a2: C_VREG, a6: C_VREG},

	// VRR-c
	{i: 118, as: AVAQ, a1: C_VREG, a2: C_VREG, a6: C_VREG},
	{i: 118, as: AVAQ, a1: C_VREG, a6: C_VREG},
	{i: 118, as: AVNOT, a1: C_VREG, a6: C_VREG},
	{i: 123, as: AVPDI, a1: C_SCON, a2: C_VREG, a3: C_VREG, a6: C_VREG},

	// VRR-c shifts
	{i: 119, as: AVERLLVG, a1: C_VREG, a2: C_VREG, a6: C_VREG},
	{i: 119, as: AVERLLVG, a1: C_VREG, a6: C_VREG},

	// VRR-d
	{i: 120, as: AVACQ, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},

	// VRR-e
	{i: 121, as: AVSEL, a1: C_VREG, a2: C_VREG, a3: C_VREG, a6: C_VREG},

	// VRR-f
	{i: 122, as: AVLVGP, a1: C_REG, a2: C_REG, a6: C_VREG},
}

var oprange [ALAST & obj.AMask][]Optab

var xcmp [C_NCLASS][C_NCLASS]bool

func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
	if ctxt.Retpoline {
		ctxt.Diag("-spectre=ret not supported on s390x")
		ctxt.Retpoline = false // don't keep printing
	}

	p := cursym.Func.Text
	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
		return
	}

	if oprange[AORW&obj.AMask] == nil {
		ctxt.Diag("s390x ops not initialized, call s390x.buildop first")
	}

	c := ctxtz{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset)}

	buffer := make([]byte, 0)
	changed := true
	loop := 0
	nrelocs0 := len(c.cursym.R)
	for changed {
		if loop > 100 {
			c.ctxt.Diag("stuck in spanz loop")
			break
		}
		changed = false
		buffer = buffer[:0]
		for i := range c.cursym.R[nrelocs0:] {
			c.cursym.R[nrelocs0+i] = obj.Reloc{}
		}
		c.cursym.R = c.cursym.R[:nrelocs0] // preserve marker relocations generated by the compiler
		for p := c.cursym.Func.Text; p != nil; p = p.Link {
			pc := int64(len(buffer))
			if pc != p.Pc {
				changed = true
			}
			p.Pc = pc
			c.pc = p.Pc
			c.asmout(p, &buffer)
			if pc == int64(len(buffer)) {
				switch p.As {
				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
					// ok
				default:
					c.ctxt.Diag("zero-width instruction\n%v", p)
				}
			}
		}
		loop++
	}

	c.cursym.Size = int64(len(buffer))
	if c.cursym.Size%funcAlign != 0 {
		c.cursym.Size += funcAlign - (c.cursym.Size % funcAlign)
	}
	c.cursym.Grow(c.cursym.Size)
	copy(c.cursym.P, buffer)

	// Mark nonpreemptible instruction sequences.
	// We use REGTMP as a scratch register during call injection,
	// so instruction sequences that use REGTMP are unsafe to
	// preempt asynchronously.
	obj.MarkUnsafePoints(c.ctxt, c.cursym.Func.Text, c.newprog, c.isUnsafePoint, nil)
}

// Return whether p is an unsafe point.
func (c *ctxtz) isUnsafePoint(p *obj.Prog) bool {
	if p.From.Reg == REGTMP || p.To.Reg == REGTMP || p.Reg == REGTMP {
		return true
	}
	for _, a := range p.RestArgs {
		if a.Reg == REGTMP {
			return true
		}
	}
	return p.Mark&USETMP != 0
}

func isint32(v int64) bool {
	return int64(int32(v)) == v
}

func isuint32(v uint64) bool {
	return uint64(uint32(v)) == v
}

func (c *ctxtz) aclass(a *obj.Addr) int {
	switch a.Type {
	case obj.TYPE_NONE:
		return C_NONE

	case obj.TYPE_REG:
		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
			return C_REG
		}
		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
			return C_FREG
		}
		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
			return C_AREG
		}
		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
			return C_VREG
		}
		return C_GOK

	case obj.TYPE_MEM:
		switch a.Name {
		case obj.NAME_EXTERN,
			obj.NAME_STATIC:
			if a.Sym == nil {
				// must have a symbol
				break
			}
			c.instoffset = a.Offset
			if a.Sym.Type == objabi.STLSBSS {
				if c.ctxt.Flag_shared {
					return C_TLS_IE // initial exec model
				}
				return C_TLS_LE // local exec model
			}
			return C_ADDR

		case obj.NAME_GOTREF:
			return C_GOTADDR

		case obj.NAME_AUTO:
			if a.Reg == REGSP {
				// unset base register for better printing, since
				// a.Offset is still relative to pseudo-SP.
				a.Reg = obj.REG_NONE
			}
			c.instoffset = int64(c.autosize) + a.Offset
			if c.instoffset >= -BIG && c.instoffset < BIG {
				return C_SAUTO
			}
			return C_LAUTO

		case obj.NAME_PARAM:
			if a.Reg == REGSP {
				// unset base register for better printing, since
				// a.Offset is still relative to pseudo-FP.
				a.Reg = obj.REG_NONE
			}
			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
			if c.instoffset >= -BIG && c.instoffset < BIG {
				return C_SAUTO
			}
			return C_LAUTO

		case obj.NAME_NONE:
			c.instoffset = a.Offset
			if c.instoffset == 0 {
				return C_ZOREG
			}
			if c.instoffset >= -BIG && c.instoffset < BIG {
				return C_SOREG
			}
			return C_LOREG
		}

		return C_GOK

	case obj.TYPE_TEXTSIZE:
		return C_TEXTSIZE

	case obj.TYPE_FCONST:
		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
			return C_ZCON
		}
		c.ctxt.Diag("cannot handle the floating point constant %v", a.Val)

	case obj.TYPE_CONST,
		obj.TYPE_ADDR:
		switch a.Name {
		case obj.NAME_NONE:
			c.instoffset = a.Offset
			if a.Reg != 0 {
				if -BIG <= c.instoffset && c.instoffset <= BIG {
					return C_SACON
				}
				if isint32(c.instoffset) {
					return C_LACON
				}
				return C_DACON
			}

		case obj.NAME_EXTERN,
			obj.NAME_STATIC:
			s := a.Sym
			if s == nil {
				return C_GOK
			}
			c.instoffset = a.Offset

			return C_SYMADDR

		case obj.NAME_AUTO:
			if a.Reg == REGSP {
				// unset base register for better printing, since
				// a.Offset is still relative to pseudo-SP.
				a.Reg = obj.REG_NONE
			}
			c.instoffset = int64(c.autosize) + a.Offset
			if c.instoffset >= -BIG && c.instoffset < BIG {
				return C_SACON
			}
			return C_LACON

		case obj.NAME_PARAM:
			if a.Reg == REGSP {
				// unset base register for better printing, since
				// a.Offset is still relative to pseudo-FP.
				a.Reg = obj.REG_NONE
			}
			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
			if c.instoffset >= -BIG && c.instoffset < BIG {
				return C_SACON
			}
			return C_LACON

		default:
			return C_GOK
		}

		if c.instoffset == 0 {
			return C_ZCON
		}
		if c.instoffset >= 0 {
			if c.instoffset <= 0x7fff {
				return C_SCON
			}
			if c.instoffset <= 0xffff {
				return C_ANDCON
			}
			if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && (instoffset & (1<<31)) == 0) */
				return C_UCON
			}
			if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
				return C_LCON
			}
			return C_DCON
		}

		if c.instoffset >= -0x8000 {
			return C_ADDCON
		}
		if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
			return C_UCON
		}
		if isint32(c.instoffset) {
			return C_LCON
		}
		return C_DCON

	case obj.TYPE_BRANCH:
		return C_SBRA
	}

	return C_GOK
}

func (c *ctxtz) oplook(p *obj.Prog) *Optab {
	// Return cached optab entry if available.
	if p.Optab != 0 {
		return &optab[p.Optab-1]
	}
	if len(p.RestArgs) > 3 {
		c.ctxt.Diag("too many RestArgs: got %v, maximum is 3\n", len(p.RestArgs))
		return nil
	}

	// Initialize classes for all arguments.
	p.From.Class = int8(c.aclass(&p.From) + 1)
	p.To.Class = int8(c.aclass(&p.To) + 1)
	for i := range p.RestArgs {
		p.RestArgs[i].Class = int8(c.aclass(&p.RestArgs[i]) + 1)
	}

	// Mirrors the argument list in Optab.
	args := [...]int8{
		p.From.Class - 1,
		C_NONE, // p.Reg
		C_NONE, // p.RestArgs[0]
		C_NONE, // p.RestArgs[1]
		C_NONE, // p.RestArgs[2]
		p.To.Class - 1,
	}
	// Fill in argument class for p.Reg.
	switch {
	case REG_R0 <= p.Reg && p.Reg <= REG_R15:
		args[1] = C_REG
	case REG_V0 <= p.Reg && p.Reg <= REG_V31:
		args[1] = C_VREG
	case REG_F0 <= p.Reg && p.Reg <= REG_F15:
		args[1] = C_FREG
	case REG_AR0 <= p.Reg && p.Reg <= REG_AR15:
		args[1] = C_AREG
	}
	// Fill in argument classes for p.RestArgs.
	for i, a := range p.RestArgs {
		args[2+i] = a.Class - 1
	}

	// Lookup op in optab.
	ops := oprange[p.As&obj.AMask]
	cmp := [len(args)]*[C_NCLASS]bool{}
	for i := range cmp {
		cmp[i] = &xcmp[args[i]]
	}
	for i := range ops {
		op := &ops[i]
		if cmp[0][op.a1] && cmp[1][op.a2] &&
			cmp[2][op.a3] && cmp[3][op.a4] &&
			cmp[4][op.a5] && cmp[5][op.a6] {
			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
			return op
		}
	}

	// Cannot find a case; abort.
	s := ""
	for _, a := range args {
		s += fmt.Sprintf(" %v", DRconv(int(a)))
	}
	c.ctxt.Diag("illegal combination %v%v\n", p.As, s)
	c.ctxt.Diag("prog: %v\n", p)
	return nil
}

func cmp(a int, b int) bool {
	if a == b {
		return true
	}
	switch a {
	case C_DCON:
		if b == C_LCON {
			return true
		}
		fallthrough
	case C_LCON:
		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
			return true
		}

	case C_ADDCON:
		if b == C_ZCON || b == C_SCON {
			return true
		}

	case C_ANDCON:
		if b == C_ZCON || b == C_SCON {
			return true
		}

	case C_UCON:
		if b == C_ZCON || b == C_SCON {
			return true
		}

	case C_SCON:
		if b == C_ZCON {
			return true
		}

	case C_LACON:
		if b == C_SACON {
			return true
		}

	case C_LBRA:
		if b == C_SBRA {
			return true
		}

	case C_LAUTO:
		if b == C_SAUTO {
			return true
		}

	case C_LOREG:
		if b == C_ZOREG || b == C_SOREG {
			return true
		}

	case C_SOREG:
		if b == C_ZOREG {
			return true
		}

	case C_ANY:
		return true
	}

	return false
}

type ocmp []Optab

func (x ocmp) Len() int {
	return len(x)
}

func (x ocmp) Swap(i, j int) {
	x[i], x[j] = x[j], x[i]
}

func (x ocmp) Less(i, j int) bool {
	p1 := &x[i]
	p2 := &x[j]
	n := int(p1.as) - int(p2.as)
	if n != 0 {
		return n < 0
	}
	n = int(p1.a1) - int(p2.a1)
	if n != 0 {
		return n < 0
	}
	n = int(p1.a2) - int(p2.a2)
	if n != 0 {
		return n < 0
	}
	n = int(p1.a3) - int(p2.a3)
	if n != 0 {
		return n < 0
	}
	n = int(p1.a4) - int(p2.a4)
	if n != 0 {
		return n < 0
	}
	return false
}
func opset(a, b obj.As) {
	oprange[a&obj.AMask] = oprange[b&obj.AMask]
}

func buildop(ctxt *obj.Link) {
	if oprange[AORW&obj.AMask] != nil {
		// Already initialized; stop now.
		// This happens in the cmd/asm tests,
		// each of which re-initializes the arch.
		return
	}

	for i := 0; i < C_NCLASS; i++ {
		for n := 0; n < C_NCLASS; n++ {
			if cmp(n, i) {
				xcmp[i][n] = true
			}
		}
	}
	sort.Sort(ocmp(optab))
	for i := 0; i < len(optab); i++ {
		r := optab[i].as
		start := i
		for ; i+1 < len(optab); i++ {
			if optab[i+1].as != r {
				break
			}
		}
		oprange[r&obj.AMask] = optab[start : i+1]

		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
		switch r {
		case AADD:
			opset(AADDC, r)
			opset(AADDW, r)
			opset(AADDE, r)
			opset(AMULLD, r)
			opset(AMULLW, r)
		case ADIVW:
			opset(ADIVD, r)
			opset(ADIVDU, r)
			opset(ADIVWU, r)
			opset(AMODD, r)
			opset(AMODDU, r)
			opset(AMODW, r)
			opset(AMODWU, r)
		case AMULHD:
			opset(AMULHDU, r)
		case AMOVBZ:
			opset(AMOVH, r)
			opset(AMOVHZ, r)
		case ALA:
			opset(ALAY, r)
		case AMVC:
			opset(AMVCIN, r)
			opset(ACLC, r)
			opset(AXC, r)
			opset(AOC, r)
			opset(ANC, r)
		case ASTCK:
			opset(ASTCKC, r)
			opset(ASTCKE, r)
			opset(ASTCKF, r)
		case ALAAG:
			opset(ALAA, r)
			opset(ALAAL, r)
			opset(ALAALG, r)
			opset(ALAN, r)
			opset(ALANG, r)
			opset(ALAX, r)
			opset(ALAXG, r)
			opset(ALAO, r)
			opset(ALAOG, r)
		case ASTMG:
			opset(ASTMY, r)
		case ALMG:
			opset(ALMY, r)
		case ABEQ:
			opset(ABGE, r)
			opset(ABGT, r)
			opset(ABLE, r)
			opset(ABLT, r)
			opset(ABNE, r)
			opset(ABVC, r)
			opset(ABVS, r)
			opset(ABLEU, r)
			opset(ABLTU, r)
		case ABR:
			opset(ABL, r)
		case ABC:
			opset(ABCL, r)
		case AFABS:
			opset(AFNABS, r)
			opset(ALPDFR, r)
			opset(ALNDFR, r)
			opset(AFNEG, r)
			opset(AFNEGS, r)
			opset(ALEDBR, r)
			opset(ALDEBR, r)
			opset(AFSQRT, r)
			opset(AFSQRTS, r)
		case AFADD:
			opset(AFADDS, r)
			opset(AFDIV, r)
			opset(AFDIVS, r)
			opset(AFSUB, r)
			opset(AFSUBS, r)
		case AFMADD:
			opset(AFMADDS, r)
			opset(AFMSUB, r)
			opset(AFMSUBS, r)
		case AFMUL:
			opset(AFMULS, r)
		case AFCMPO:
			opset(AFCMPU, r)
			opset(ACEBR, r)
		case AAND:
			opset(AOR, r)
			opset(AXOR, r)
		case AANDW:
			opset(AORW, r)
			opset(AXORW, r)
		case ASLD:
			opset(ASRD, r)
			opset(ASLW, r)
			opset(ASRW, r)
			opset(ASRAD, r)
			opset(ASRAW, r)
			opset(ARLL, r)
			opset(ARLLG, r)
		case ARNSBG:
			opset(ARXSBG, r)
			opset(AROSBG, r)
			opset(ARNSBGT, r)
			opset(ARXSBGT, r)
			opset(AROSBGT, r)
			opset(ARISBG, r)
			opset(ARISBGN, r)
			opset(ARISBGZ, r)
			opset(ARISBGNZ, r)
			opset(ARISBHG, r)
			opset(ARISBLG, r)
			opset(ARISBHGZ, r)
			opset(ARISBLGZ, r)
		case ACSG:
			opset(ACS, r)
		case ASUB:
			opset(ASUBC, r)
			opset(ASUBE, r)
			opset(ASUBW, r)
		case ANEG:
			opset(ANEGW, r)
		case AFMOVD:
			opset(AFMOVS, r)
		case AMOVDBR:
			opset(AMOVWBR, r)
		case ACMP:
			opset(ACMPW, r)
		case ACMPU:
			opset(ACMPWU, r)
		case ATMHH:
			opset(ATMHL, r)
			opset(ATMLH, r)
			opset(ATMLL, r)
		case ACEFBRA:
			opset(ACDFBRA, r)
			opset(ACEGBRA, r)
			opset(ACDGBRA, r)
			opset(ACELFBR, r)
			opset(ACDLFBR, r)
			opset(ACELGBR, r)
			opset(ACDLGBR, r)
		case ACFEBRA:
			opset(ACFDBRA, r)
			opset(ACGEBRA, r)
			opset(ACGDBRA, r)
			opset(ACLFEBR, r)
			opset(ACLFDBR, r)
			opset(ACLGEBR, r)
			opset(ACLGDBR, r)
		case AFIEBR:
			opset(AFIDBR, r)
		case ACMPBEQ:
			opset(ACMPBGE, r)
			opset(ACMPBGT, r)
			opset(ACMPBLE, r)
			opset(ACMPBLT, r)
			opset(ACMPBNE, r)
		case ACMPUBEQ:
			opset(ACMPUBGE, r)
			opset(ACMPUBGT, r)
			opset(ACMPUBLE, r)
			opset(ACMPUBLT, r)
			opset(ACMPUBNE, r)
		case ACGRJ:
			opset(ACRJ, r)
		case ACLGRJ:
			opset(ACLRJ, r)
		case ACGIJ:
			opset(ACIJ, r)
		case ACLGIJ:
			opset(ACLIJ, r)
		case AMOVDEQ:
			opset(AMOVDGE, r)
			opset(AMOVDGT, r)
			opset(AMOVDLE, r)
			opset(AMOVDLT, r)
			opset(AMOVDNE, r)
		case ALOCGR:
			opset(ALOCR, r)
		case ALTDBR:
			opset(ALTEBR, r)
		case ATCDB:
			opset(ATCEB, r)
		case AVL:
			opset(AVLLEZB, r)
			opset(AVLLEZH, r)
			opset(AVLLEZF, r)
			opset(AVLLEZG, r)
			opset(AVLREPB, r)
			opset(AVLREPH, r)
			opset(AVLREPF, r)
			opset(AVLREPG, r)
		case AVLEG:
			opset(AVLBB, r)
			opset(AVLEB, r)
			opset(AVLEH, r)
			opset(AVLEF, r)
			opset(AVLEG, r)
			opset(AVLREP, r)
		case AVSTEG:
			opset(AVSTEB, r)
			opset(AVSTEH, r)
			opset(AVSTEF, r)
		case AVSCEG:
			opset(AVSCEF, r)
		case AVGEG:
			opset(AVGEF, r)
		case AVESLG:
			opset(AVESLB, r)
			opset(AVESLH, r)
			opset(AVESLF, r)
			opset(AVERLLB, r)
			opset(AVERLLH, r)
			opset(AVERLLF, r)
			opset(AVERLLG, r)
			opset(AVESRAB, r)
			opset(AVESRAH, r)
			opset(AVESRAF, r)
			opset(AVESRAG, r)
			opset(AVESRLB, r)
			opset(AVESRLH, r)
			opset(AVESRLF, r)
			opset(AVESRLG, r)
		case AVLGVG:
			opset(AVLGVB, r)
			opset(AVLGVH, r)
			opset(AVLGVF, r)
		case AVLVGG:
			opset(AVLVGB, r)
			opset(AVLVGH, r)
			opset(AVLVGF, r)
		case AVZERO:
			opset(AVONE, r)
		case AVREPIG:
			opset(AVREPIB, r)
			opset(AVREPIH, r)
			opset(AVREPIF, r)
		case AVLEIG:
			opset(AVLEIB, r)
			opset(AVLEIH, r)
			opset(AVLEIF, r)
		case AVGMG:
			opset(AVGMB, r)
			opset(AVGMH, r)
			opset(AVGMF, r)
		case AVREPG:
			opset(AVREPB, r)
			opset(AVREPH, r)
			opset(AVREPF, r)
		case AVERIMG:
			opset(AVERIMB, r)
			opset(AVERIMH, r)
			opset(AVERIMF, r)
		case AVFTCIDB:
			opset(AWFTCIDB, r)
		case AVLR:
			opset(AVUPHB, r)
			opset(AVUPHH, r)
			opset(AVUPHF, r)
			opset(AVUPLHB, r)
			opset(AVUPLHH, r)
			opset(AVUPLHF, r)
			opset(AVUPLB, r)
			opset(AVUPLHW, r)
			opset(AVUPLF, r)
			opset(AVUPLLB, r)
			opset(AVUPLLH, r)
			opset(AVUPLLF, r)
			opset(AVCLZB, r)
			opset(AVCLZH, r)
			opset(AVCLZF, r)
			opset(AVCLZG, r)
			opset(AVCTZB, r)
			opset(AVCTZH, r)
			opset(AVCTZF, r)
			opset(AVCTZG, r)
			opset(AVLDEB, r)
			opset(AWLDEB, r)
			opset(AVFLCDB, r)
			opset(AWFLCDB, r)
			opset(AVFLNDB, r)
			opset(AWFLNDB, r)
			opset(AVFLPDB, r)
			opset(AWFLPDB, r)
			opset(AVFSQDB, r)
			opset(AWFSQDB, r)
			opset(AVISTRB, r)
			opset(AVISTRH, r)
			opset(AVISTRF, r)
			opset(AVISTRBS, r)
			opset(AVISTRHS, r)
			opset(AVISTRFS, r)
			opset(AVLCB, r)
			opset(AVLCH, r)
			opset(AVLCF, r)
			opset(AVLCG, r)
			opset(AVLPB, r)
			opset(AVLPH, r)
			opset(AVLPF, r)
			opset(AVLPG, r)
			opset(AVPOPCT, r)
			opset(AVSEGB, r)
			opset(AVSEGH, r)
			opset(AVSEGF, r)
		case AVECG:
			opset(AVECB, r)
			opset(AVECH, r)
			opset(AVECF, r)
			opset(AVECLB, r)
			opset(AVECLH, r)
			opset(AVECLF, r)
			opset(AVECLG, r)
			opset(AWFCDB, r)
			opset(AWFKDB, r)
		case AVCEQG:
			opset(AVCEQB, r)
			opset(AVCEQH, r)
			opset(AVCEQF, r)
			opset(AVCEQBS, r)
			opset(AVCEQHS, r)
			opset(AVCEQFS, r)
			opset(AVCEQGS, r)
			opset(AVCHB, r)
			opset(AVCHH, r)
			opset(AVCHF, r)
			opset(AVCHG, r)
			opset(AVCHBS, r)
			opset(AVCHHS, r)
			opset(AVCHFS, r)
			opset(AVCHGS, r)
			opset(AVCHLB, r)
			opset(AVCHLH, r)
			opset(AVCHLF, r)
			opset(AVCHLG, r)
			opset(AVCHLBS, r)
			opset(AVCHLHS, r)
			opset(AVCHLFS, r)
			opset(AVCHLGS, r)
		case AVFAEF:
			opset(AVFAEB, r)
			opset(AVFAEH, r)
			opset(AVFAEBS, r)
			opset(AVFAEHS, r)
			opset(AVFAEFS, r)
			opset(AVFAEZB, r)
			opset(AVFAEZH, r)
			opset(AVFAEZF, r)
			opset(AVFAEZBS, r)
			opset(AVFAEZHS, r)
			opset(AVFAEZFS, r)
			opset(AVFEEB, r)
			opset(AVFEEH, r)
			opset(AVFEEF, r)
			opset(AVFEEBS, r)
			opset(AVFEEHS, r)
			opset(AVFEEFS, r)
			opset(AVFEEZB, r)
			opset(AVFEEZH, r)
			opset(AVFEEZF, r)
			opset(AVFEEZBS, r)
			opset(AVFEEZHS, r)
			opset(AVFEEZFS, r)
			opset(AVFENEB, r)
			opset(AVFENEH, r)
			opset(AVFENEF, r)
			opset(AVFENEBS, r)
			opset(AVFENEHS, r)
			opset(AVFENEFS, r)
			opset(AVFENEZB, r)
			opset(AVFENEZH, r)
			opset(AVFENEZF, r)
			opset(AVFENEZBS, r)
			opset(AVFENEZHS, r)
			opset(AVFENEZFS, r)
		case AVPKSG:
			opset(AVPKSH, r)
			opset(AVPKSF, r)
			opset(AVPKSHS, r)
			opset(AVPKSFS, r)
			opset(AVPKSGS, r)
			opset(AVPKLSH, r)
			opset(AVPKLSF, r)
			opset(AVPKLSG, r)
			opset(AVPKLSHS, r)
			opset(AVPKLSFS, r)
			opset(AVPKLSGS, r)
		case AVAQ:
			opset(AVAB, r)
			opset(AVAH, r)
			opset(AVAF, r)
			opset(AVAG, r)
			opset(AVACCB, r)
			opset(AVACCH, r)
			opset(AVACCF, r)
			opset(AVACCG, r)
			opset(AVACCQ, r)
			opset(AVN, r)
			opset(AVNC, r)
			opset(AVAVGB, r)
			opset(AVAVGH, r)
			opset(AVAVGF, r)
			opset(AVAVGG, r)
			opset(AVAVGLB, r)
			opset(AVAVGLH, r)
			opset(AVAVGLF, r)
			opset(AVAVGLG, r)
			opset(AVCKSM, r)
			opset(AVX, r)
			opset(AVFADB, r)
			opset(AWFADB, r)
			opset(AVFCEDB, r)
			opset(AVFCEDBS, r)
			opset(AWFCEDB, r)
			opset(AWFCEDBS, r)
			opset(AVFCHDB, r)
			opset(AVFCHDBS, r)
			opset(AWFCHDB, r)
			opset(AWFCHDBS, r)
			opset(AVFCHEDB, r)
			opset(AVFCHEDBS, r)
			opset(AWFCHEDB, r)
			opset(AWFCHEDBS, r)
			opset(AVFMDB, r)
			opset(AWFMDB, r)
			opset(AVGFMB, r)
			opset(AVGFMH, r)
			opset(AVGFMF, r)
			opset(AVGFMG, r)
			opset(AVMXB, r)
			opset(AVMXH, r)
			opset(AVMXF, r)
			opset(AVMXG, r)
			opset(AVMXLB, r)
			opset(AVMXLH, r)
			opset(AVMXLF, r)
			opset(AVMXLG, r)
			opset(AVMNB, r)
			opset(AVMNH, r)
			opset(AVMNF, r)
			opset(AVMNG, r)
			opset(AVMNLB, r)
			opset(AVMNLH, r)
			opset(AVMNLF, r)
			opset(AVMNLG, r)
			opset(AVMRHB, r)
			opset(AVMRHH, r)
			opset(AVMRHF, r)
			opset(AVMRHG, r)
			opset(AVMRLB, r)
			opset(AVMRLH, r)
			opset(AVMRLF, r)
			opset(AVMRLG, r)
			opset(AVMEB, r)
			opset(AVMEH, r)
			opset(AVMEF, r)
			opset(AVMLEB, r)
			opset(AVMLEH, r)
			opset(AVMLEF, r)
			opset(AVMOB, r)
			opset(AVMOH, r)
			opset(AVMOF, r)
			opset(AVMLOB, r)
			opset(AVMLOH, r)
			opset(AVMLOF, r)
			opset(AVMHB, r)
			opset(AVMHH, r)
			opset(AVMHF, r)
			opset(AVMLHB, r)
			opset(AVMLHH, r)
			opset(AVMLHF, r)
			opset(AVMLH, r)
			opset(AVMLHW, r)
			opset(AVMLF, r)
			opset(AVNO, r)
			opset(AVO, r)
			opset(AVPKH, r)
			opset(AVPKF, r)
			opset(AVPKG, r)
			opset(AVSUMGH, r)
			opset(AVSUMGF, r)
			opset(AVSUMQF, r)
			opset(AVSUMQG, r)
			opset(AVSUMB, r)
			opset(AVSUMH, r)
		case AVERLLVG:
			opset(AVERLLVB, r)
			opset(AVERLLVH, r)
			opset(AVERLLVF, r)
			opset(AVESLVB, r)
			opset(AVESLVH, r)
			opset(AVESLVF, r)
			opset(AVESLVG, r)
			opset(AVESRAVB, r)
			opset(AVESRAVH, r)
			opset(AVESRAVF, r)
			opset(AVESRAVG, r)
			opset(AVESRLVB, r)
			opset(AVESRLVH, r)
			opset(AVESRLVF, r)
			opset(AVESRLVG, r)
			opset(AVFDDB, r)
			opset(AWFDDB, r)
			opset(AVFSDB, r)
			opset(AWFSDB, r)
			opset(AVSL, r)
			opset(AVSLB, r)
			opset(AVSRA, r)
			opset(AVSRAB, r)
			opset(AVSRL, r)
			opset(AVSRLB, r)
			opset(AVSB, r)
			opset(AVSH, r)
			opset(AVSF, r)
			opset(AVSG, r)
			opset(AVSQ, r)
			opset(AVSCBIB, r)
			opset(AVSCBIH, r)
			opset(AVSCBIF, r)
			opset(AVSCBIG, r)
			opset(AVSCBIQ, r)
		case AVACQ:
			opset(AVACCCQ, r)
			opset(AVGFMAB, r)
			opset(AVGFMAH, r)
			opset(AVGFMAF, r)
			opset(AVGFMAG, r)
			opset(AVMALB, r)
			opset(AVMALHW, r)
			opset(AVMALF, r)
			opset(AVMAHB, r)
			opset(AVMAHH, r)
			opset(AVMAHF, r)
			opset(AVMALHB, r)
			opset(AVMALHH, r)
			opset(AVMALHF, r)
			opset(AVMAEB, r)
			opset(AVMAEH, r)
			opset(AVMAEF, r)
			opset(AVMALEB, r)
			opset(AVMALEH, r)
			opset(AVMALEF, r)
			opset(AVMAOB, r)
			opset(AVMAOH, r)
			opset(AVMAOF, r)
			opset(AVMALOB, r)
			opset(AVMALOH, r)
			opset(AVMALOF, r)
			opset(AVSTRCB, r)
			opset(AVSTRCH, r)
			opset(AVSTRCF, r)
			opset(AVSTRCBS, r)
			opset(AVSTRCHS, r)
			opset(AVSTRCFS, r)
			opset(AVSTRCZB, r)
			opset(AVSTRCZH, r)
			opset(AVSTRCZF, r)
			opset(AVSTRCZBS, r)
			opset(AVSTRCZHS, r)
			opset(AVSTRCZFS, r)
			opset(AVSBCBIQ, r)
			opset(AVSBIQ, r)
			opset(AVMSLG, r)
			opset(AVMSLEG, r)
			opset(AVMSLOG, r)
			opset(AVMSLEOG, r)
		case AVSEL:
			opset(AVFMADB, r)
			opset(AWFMADB, r)
			opset(AVFMSDB, r)
			opset(AWFMSDB, r)
			opset(AVPERM, r)
		}
	}
}

const (
	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD

	// added in z13
	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
	op_VMSL   uint32 = 0xE7B8 // 	VRR-d	VECTOR MULTIPLY SUM LOGICAL
)

func oclass(a *obj.Addr) int {
	return int(a.Class) - 1
}

// Add a relocation for the immediate in a RIL style instruction.
// The addend will be adjusted as required.
func (c *ctxtz) addrilreloc(sym *obj.LSym, add int64) *obj.Reloc {
	if sym == nil {
		c.ctxt.Diag("require symbol to apply relocation")
	}
	offset := int64(2) // relocation offset from start of instruction
	rel := obj.Addrel(c.cursym)
	rel.Off = int32(c.pc + offset)
	rel.Siz = 4
	rel.Sym = sym
	rel.Add = add + offset + int64(rel.Siz)
	rel.Type = objabi.R_PCRELDBL
	return rel
}

func (c *ctxtz) addrilrelocoffset(sym *obj.LSym, add, offset int64) *obj.Reloc {
	if sym == nil {
		c.ctxt.Diag("require symbol to apply relocation")
	}
	offset += int64(2) // relocation offset from start of instruction
	rel := obj.Addrel(c.cursym)
	rel.Off = int32(c.pc + offset)
	rel.Siz = 4
	rel.Sym = sym
	rel.Add = add + offset + int64(rel.Siz)
	rel.Type = objabi.R_PCRELDBL
	return rel
}

// Add a CALL relocation for the immediate in a RIL style instruction.
// The addend will be adjusted as required.
func (c *ctxtz) addcallreloc(sym *obj.LSym, add int64) *obj.Reloc {
	if sym == nil {
		c.ctxt.Diag("require symbol to apply relocation")
	}
	offset := int64(2) // relocation offset from start of instruction
	rel := obj.Addrel(c.cursym)
	rel.Off = int32(c.pc + offset)
	rel.Siz = 4
	rel.Sym = sym
	rel.Add = add + offset + int64(rel.Siz)
	rel.Type = objabi.R_CALL
	return rel
}

func (c *ctxtz) branchMask(p *obj.Prog) CCMask {
	switch p.As {
	case ABRC, ALOCR, ALOCGR,
		ACRJ, ACGRJ, ACIJ, ACGIJ,
		ACLRJ, ACLGRJ, ACLIJ, ACLGIJ:
		return CCMask(p.From.Offset)
	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
		return Equal
	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
		return GreaterOrEqual
	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
		return Greater
	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
		return LessOrEqual
	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
		return Less
	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
		return NotEqual
	case ABLEU: // LE or unordered
		return NotGreater
	case ABLTU: // LT or unordered
		return LessOrUnordered
	case ABVC:
		return Never // needs extra instruction
	case ABVS:
		return Unordered
	}
	c.ctxt.Diag("unknown conditional branch %v", p.As)
	return Always
}

func regtmp(p *obj.Prog) uint32 {
	p.Mark |= USETMP
	return REGTMP
}

func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
	o := c.oplook(p)

	if o == nil {
		return
	}

	// If REGTMP is used in generated code, we need to set USETMP on p.Mark.
	// So we use regtmp(p) for REGTMP.

	switch o.i {
	default:
		c.ctxt.Diag("unknown index %d", o.i)

	case 0: // PSEUDO OPS
		break

	case 1: // mov reg reg
		switch p.As {
		default:
			c.ctxt.Diag("unhandled operation: %v", p.As)
		case AMOVD:
			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		// sign extend
		case AMOVW:
			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		case AMOVH:
			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		case AMOVB:
			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		// zero extend
		case AMOVWZ:
			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		case AMOVHZ:
			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		case AMOVBZ:
			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		// reverse bytes
		case AMOVDBR:
			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		case AMOVWBR:
			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		// floating point
		case AFMOVD, AFMOVS:
			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		}

	case 2: // arithmetic op reg [reg] reg
		r := p.Reg
		if r == 0 {
			r = p.To.Reg
		}

		var opcode uint32

		switch p.As {
		default:
			c.ctxt.Diag("invalid opcode")
		case AADD:
			opcode = op_AGRK
		case AADDC:
			opcode = op_ALGRK
		case AADDE:
			opcode = op_ALCGR
		case AADDW:
			opcode = op_ARK
		case AMULLW:
			opcode = op_MSGFR
		case AMULLD:
			opcode = op_MSGR
		case ADIVW, AMODW:
			opcode = op_DSGFR
		case ADIVWU, AMODWU:
			opcode = op_DLR
		case ADIVD, AMODD:
			opcode = op_DSGR
		case ADIVDU, AMODDU:
			opcode = op_DLGR
		}

		switch p.As {
		default:

		case AADD, AADDC, AADDW:
			if p.As == AADDW && r == p.To.Reg {
				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
			} else {
				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
			}

		case AADDE, AMULLW, AMULLD:
			if r == p.To.Reg {
				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
			} else if p.From.Reg == p.To.Reg {
				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
			} else {
				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
			}

		case ADIVW, ADIVWU, ADIVD, ADIVDU:
			if p.As == ADIVWU || p.As == ADIVDU {
				zRI(op_LGHI, regtmp(p), 0, asm)
			}
			zRRE(op_LGR, REGTMP2, uint32(r), asm)
			zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)

		case AMODW, AMODWU, AMODD, AMODDU:
			if p.As == AMODWU || p.As == AMODDU {
				zRI(op_LGHI, regtmp(p), 0, asm)
			}
			zRRE(op_LGR, REGTMP2, uint32(r), asm)
			zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
			zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)

		}

	case 3: // mov $constant reg
		v := c.vregoff(&p.From)
		switch p.As {
		case AMOVBZ:
			v = int64(uint8(v))
		case AMOVHZ:
			v = int64(uint16(v))
		case AMOVWZ:
			v = int64(uint32(v))
		case AMOVB:
			v = int64(int8(v))
		case AMOVH:
			v = int64(int16(v))
		case AMOVW:
			v = int64(int32(v))
		}
		if int64(int16(v)) == v {
			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
		} else if v&0xffff0000 == v {
			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
		} else if v&0xffff00000000 == v {
			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
		} else if uint64(v)&0xffff000000000000 == uint64(v) {
			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
		} else if int64(int32(v)) == v {
			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
		} else if int64(uint32(v)) == v {
			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
		} else {
			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
		}

	case 4: // multiply high (a*b)>>64
		r := p.Reg
		if r == 0 {
			r = p.To.Reg
		}
		zRRE(op_LGR, REGTMP2, uint32(r), asm)
		zRRE(op_MLGR, regtmp(p), uint32(p.From.Reg), asm)
		switch p.As {
		case AMULHDU:
			// Unsigned: move result into correct register.
			zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
		case AMULHD:
			// Signed: need to convert result.
			// See Hacker's Delight 8-3.
			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
			zRRE(op_NGR, REGTMP2, uint32(r), asm)
			zRRE(op_SGR, regtmp(p), REGTMP2, asm)
			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), regtmp(p), asm)
		}

	case 5: // syscall
		zI(op_SVC, 0, asm)

	case 6: // logical op reg [reg] reg
		var oprr, oprre, oprrf uint32
		switch p.As {
		case AAND:
			oprre = op_NGR
			oprrf = op_NGRK
		case AANDW:
			oprr = op_NR
			oprrf = op_NRK
		case AOR:
			oprre = op_OGR
			oprrf = op_OGRK
		case AORW:
			oprr = op_OR
			oprrf = op_ORK
		case AXOR:
			oprre = op_XGR
			oprrf = op_XGRK
		case AXORW:
			oprr = op_XR
			oprrf = op_XRK
		}
		if p.Reg == 0 {
			if oprr != 0 {
				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
			} else {
				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
			}
		} else {
			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		}

	case 7: // shift/rotate reg [reg] reg
		d2 := c.vregoff(&p.From)
		b2 := p.From.Reg
		r3 := p.Reg
		if r3 == 0 {
			r3 = p.To.Reg
		}
		r1 := p.To.Reg
		var opcode uint32
		switch p.As {
		default:
		case ASLD:
			opcode = op_SLLG
		case ASRD:
			opcode = op_SRLG
		case ASLW:
			opcode = op_SLLK
		case ASRW:
			opcode = op_SRLK
		case ARLL:
			opcode = op_RLL
		case ARLLG:
			opcode = op_RLLG
		case ASRAW:
			opcode = op_SRAK
		case ASRAD:
			opcode = op_SRAG
		}
		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)

	case 8: // find leftmost one
		if p.To.Reg&1 != 0 {
			c.ctxt.Diag("target must be an even-numbered register")
		}
		// FLOGR also writes a mask to p.To.Reg+1.
		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)

	case 9: // population count
		zRRE(op_POPCNT, uint32(p.To.Reg), uint32(p.From.Reg), asm)

	case 10: // subtract reg [reg] reg
		r := int(p.Reg)

		switch p.As {
		default:
		case ASUB:
			if r == 0 {
				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
			} else {
				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
			}
		case ASUBC:
			if r == 0 {
				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
			} else {
				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
			}
		case ASUBE:
			if r == 0 {
				r = int(p.To.Reg)
			}
			if r == int(p.To.Reg) {
				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
			} else if p.From.Reg == p.To.Reg {
				zRRE(op_LGR, regtmp(p), uint32(p.From.Reg), asm)
				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
				zRRE(op_SLBGR, uint32(p.To.Reg), regtmp(p), asm)
			} else {
				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
			}
		case ASUBW:
			if r == 0 {
				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
			} else {
				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
			}
		}

	case 11: // br/bl
		v := int32(0)

		if p.To.Target() != nil {
			v = int32((p.To.Target().Pc - p.Pc) >> 1)
		}

		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
			zRI(op_BRC, 0xF, uint32(v), asm)
		} else {
			if p.As == ABL {
				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
			} else {
				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
			}
			if p.To.Sym != nil {
				c.addcallreloc(p.To.Sym, p.To.Offset)
			}
		}

	case 12:
		r1 := p.To.Reg
		d2 := c.vregoff(&p.From)
		b2 := p.From.Reg
		if b2 == 0 {
			b2 = REGSP
		}
		x2 := p.From.Index
		if -DISP20/2 > d2 || d2 >= DISP20/2 {
			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
			if x2 != 0 {
				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
			}
			x2 = int16(regtmp(p))
			d2 = 0
		}
		var opx, opxy uint32
		switch p.As {
		case AADD:
			opxy = op_AG
		case AADDC:
			opxy = op_ALG
		case AADDE:
			opxy = op_ALCG
		case AADDW:
			opx = op_A
			opxy = op_AY
		case AMULLW:
			opx = op_MS
			opxy = op_MSY
		case AMULLD:
			opxy = op_MSG
		case ASUB:
			opxy = op_SG
		case ASUBC:
			opxy = op_SLG
		case ASUBE:
			opxy = op_SLBG
		case ASUBW:
			opx = op_S
			opxy = op_SY
		case AAND:
			opxy = op_NG
		case AANDW:
			opx = op_N
			opxy = op_NY
		case AOR:
			opxy = op_OG
		case AORW:
			opx = op_O
			opxy = op_OY
		case AXOR:
			opxy = op_XG
		case AXORW:
			opx = op_X
			opxy = op_XY
		}
		if opx != 0 && 0 <= d2 && d2 < DISP12 {
			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
		} else {
			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
		}

	case 13: // rotate, followed by operation
		r1 := p.To.Reg
		r2 := p.RestArgs[2].Reg
		i3 := uint8(p.From.Offset)        // start
		i4 := uint8(p.RestArgs[0].Offset) // end
		i5 := uint8(p.RestArgs[1].Offset) // rotate amount
		switch p.As {
		case ARNSBGT, ARXSBGT, AROSBGT:
			i3 |= 0x80 // test-results
		case ARISBGZ, ARISBGNZ, ARISBHGZ, ARISBLGZ:
			i4 |= 0x80 // zero-remaining-bits
		}
		var opcode uint32
		switch p.As {
		case ARNSBG, ARNSBGT:
			opcode = op_RNSBG
		case ARXSBG, ARXSBGT:
			opcode = op_RXSBG
		case AROSBG, AROSBGT:
			opcode = op_ROSBG
		case ARISBG, ARISBGZ:
			opcode = op_RISBG
		case ARISBGN, ARISBGNZ:
			opcode = op_RISBGN
		case ARISBHG, ARISBHGZ:
			opcode = op_RISBHG
		case ARISBLG, ARISBLGZ:
			opcode = op_RISBLG
		}
		zRIE(_f, uint32(opcode), uint32(r1), uint32(r2), 0, uint32(i3), uint32(i4), 0, uint32(i5), asm)

	case 15: // br/bl (reg)
		r := p.To.Reg
		if p.As == ABCL || p.As == ABL {
			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
		} else {
			zRR(op_BCR, uint32(Always), uint32(r), asm)
		}

	case 16: // conditional branch
		v := int32(0)
		if p.To.Target() != nil {
			v = int32((p.To.Target().Pc - p.Pc) >> 1)
		}
		mask := uint32(c.branchMask(p))
		if p.To.Sym == nil && int32(int16(v)) == v {
			zRI(op_BRC, mask, uint32(v), asm)
		} else {
			zRIL(_c, op_BRCL, mask, uint32(v), asm)
		}
		if p.To.Sym != nil {
			c.addrilreloc(p.To.Sym, p.To.Offset)
		}

	case 17: // move on condition
		m3 := uint32(c.branchMask(p))
		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)

	case 18: // br/bl reg
		if p.As == ABL {
			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
		} else {
			zRR(op_BCR, uint32(Always), uint32(p.To.Reg), asm)
		}

	case 19: // mov $sym+n(SB) reg
		d := c.vregoff(&p.From)
		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
		if d&1 != 0 {
			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
			d -= 1
		}
		c.addrilreloc(p.From.Sym, d)

	case 21: // subtract $constant [reg] reg
		v := c.vregoff(&p.From)
		r := p.Reg
		if r == 0 {
			r = p.To.Reg
		}
		switch p.As {
		case ASUB:
			zRIL(_a, op_LGFI, uint32(regtmp(p)), uint32(v), asm)
			zRRF(op_SLGRK, uint32(regtmp(p)), 0, uint32(p.To.Reg), uint32(r), asm)
		case ASUBC:
			if r != p.To.Reg {
				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
			}
			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
		case ASUBW:
			if r != p.To.Reg {
				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
			}
			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
		}

	case 22: // add/multiply $constant [reg] reg
		v := c.vregoff(&p.From)
		r := p.Reg
		if r == 0 {
			r = p.To.Reg
		}
		var opri, opril, oprie uint32
		switch p.As {
		case AADD:
			opri = op_AGHI
			opril = op_AGFI
			oprie = op_AGHIK
		case AADDC:
			opril = op_ALGFI
			oprie = op_ALGHSIK
		case AADDW:
			opri = op_AHI
			opril = op_AFI
			oprie = op_AHIK
		case AMULLW:
			opri = op_MHI
			opril = op_MSFI
		case AMULLD:
			opri = op_MGHI
			opril = op_MSGFI
		}
		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
			switch p.As {
			case AADD, AADDC, AMULLD:
				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
			case AADDW, AMULLW:
				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
			}
			r = p.To.Reg
		}
		if opri != 0 && r == p.To.Reg && int64(int16(v)) == v {
			zRI(opri, uint32(p.To.Reg), uint32(v), asm)
		} else if oprie != 0 && int64(int16(v)) == v {
			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
		} else {
			zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
		}

	case 23: // 64-bit logical op $constant reg
		// TODO(mundaym): merge with case 24.
		v := c.vregoff(&p.From)
		switch p.As {
		default:
			c.ctxt.Diag("%v is not supported", p)
		case AAND:
			if v >= 0 { // needs zero extend
				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
				zRRE(op_NGR, uint32(p.To.Reg), regtmp(p), asm)
			} else if int64(int16(v)) == v {
				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
			}
		case AOR:
			if int64(uint32(v)) != v { // needs sign extend
				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
				zRRE(op_OGR, uint32(p.To.Reg), regtmp(p), asm)
			} else if int64(uint16(v)) == v {
				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
			} else {
				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
			}
		case AXOR:
			if int64(uint32(v)) != v { // needs sign extend
				zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
				zRRE(op_XGR, uint32(p.To.Reg), regtmp(p), asm)
			} else {
				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
			}
		}

	case 24: // 32-bit logical op $constant reg
		v := c.vregoff(&p.From)
		switch p.As {
		case AANDW:
			if uint32(v&0xffff0000) == 0xffff0000 {
				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
			} else if uint32(v&0x0000ffff) == 0x0000ffff {
				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
			} else {
				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
			}
		case AORW:
			if uint32(v&0xffff0000) == 0 {
				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
			} else if uint32(v&0x0000ffff) == 0 {
				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
			} else {
				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
			}
		case AXORW:
			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
		}

	case 25: // load on condition (register)
		m3 := uint32(c.branchMask(p))
		var opcode uint32
		switch p.As {
		case ALOCR:
			opcode = op_LOCR
		case ALOCGR:
			opcode = op_LOCGR
		}
		zRRF(opcode, m3, 0, uint32(p.To.Reg), uint32(p.Reg), asm)

	case 26: // MOVD $offset(base)(index), reg
		v := c.regoff(&p.From)
		r := p.From.Reg
		if r == 0 {
			r = REGSP
		}
		i := p.From.Index
		if v >= 0 && v < DISP12 {
			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
		} else if v >= -DISP20/2 && v < DISP20/2 {
			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
		} else {
			zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
			zRX(op_LA, uint32(p.To.Reg), uint32(r), regtmp(p), uint32(i), asm)
		}

	case 31: // dword
		wd := uint64(c.vregoff(&p.From))
		*asm = append(*asm,
			uint8(wd>>56),
			uint8(wd>>48),
			uint8(wd>>40),
			uint8(wd>>32),
			uint8(wd>>24),
			uint8(wd>>16),
			uint8(wd>>8),
			uint8(wd))

	case 32: // float op freg freg
		var opcode uint32
		switch p.As {
		default:
			c.ctxt.Diag("invalid opcode")
		case AFADD:
			opcode = op_ADBR
		case AFADDS:
			opcode = op_AEBR
		case AFDIV:
			opcode = op_DDBR
		case AFDIVS:
			opcode = op_DEBR
		case AFMUL:
			opcode = op_MDBR
		case AFMULS:
			opcode = op_MEEBR
		case AFSUB:
			opcode = op_SDBR
		case AFSUBS:
			opcode = op_SEBR
		}
		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)

	case 33: // float op [freg] freg
		r := p.From.Reg
		if oclass(&p.From) == C_NONE {
			r = p.To.Reg
		}
		var opcode uint32
		switch p.As {
		default:
		case AFABS:
			opcode = op_LPDBR
		case AFNABS:
			opcode = op_LNDBR
		case ALPDFR:
			opcode = op_LPDFR
		case ALNDFR:
			opcode = op_LNDFR
		case AFNEG:
			opcode = op_LCDFR
		case AFNEGS:
			opcode = op_LCEBR
		case ALEDBR:
			opcode = op_LEDBR
		case ALDEBR:
			opcode = op_LDEBR
		case AFSQRT:
			opcode = op_SQDBR
		case AFSQRTS:
			opcode = op_SQEBR
		}
		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)

	case 34: // float multiply-add freg freg freg
		var opcode uint32
		switch p.As {
		default:
			c.ctxt.Diag("invalid opcode")
		case AFMADD:
			opcode = op_MADBR
		case AFMADDS:
			opcode = op_MAEBR
		case AFMSUB:
			opcode = op_MSDBR
		case AFMSUBS:
			opcode = op_MSEBR
		}
		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)

	case 35: // mov reg mem (no relocation)
		d2 := c.regoff(&p.To)
		b2 := p.To.Reg
		if b2 == 0 {
			b2 = REGSP
		}
		x2 := p.To.Index
		if d2 < -DISP20/2 || d2 >= DISP20/2 {
			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
			if x2 != 0 {
				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
			}
			x2 = int16(regtmp(p))
			d2 = 0
		}
		// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
		if op, ok := c.zopstore12(p.As); ok && isU12(d2) {
			zRX(op, uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
		} else {
			zRXY(c.zopstore(p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
		}

	case 36: // mov mem reg (no relocation)
		d2 := c.regoff(&p.From)
		b2 := p.From.Reg
		if b2 == 0 {
			b2 = REGSP
		}
		x2 := p.From.Index
		if d2 < -DISP20/2 || d2 >= DISP20/2 {
			zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
			if x2 != 0 {
				zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
			}
			x2 = int16(regtmp(p))
			d2 = 0
		}
		// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
		if op, ok := c.zopload12(p.As); ok && isU12(d2) {
			zRX(op, uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
		} else {
			zRXY(c.zopload(p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
		}

	case 40: // word/byte
		wd := uint32(c.regoff(&p.From))
		if p.As == AWORD { //WORD
			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
		} else { //BYTE
			*asm = append(*asm, uint8(wd))
		}

	case 41: // branch on count
		r1 := p.From.Reg
		ri2 := (p.To.Target().Pc - p.Pc) >> 1
		if int64(int16(ri2)) != ri2 {
			c.ctxt.Diag("branch target too far away")
		}
		var opcode uint32
		switch p.As {
		case ABRCT:
			opcode = op_BRCT
		case ABRCTG:
			opcode = op_BRCTG
		}
		zRI(opcode, uint32(r1), uint32(ri2), asm)

	case 47: // negate [reg] reg
		r := p.From.Reg
		if r == 0 {
			r = p.To.Reg
		}
		switch p.As {
		case ANEG:
			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
		case ANEGW:
			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
		}

	case 48: // floating-point round to integer
		m3 := c.vregoff(&p.From)
		if 0 > m3 || m3 > 7 {
			c.ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
		}
		var opcode uint32
		switch p.As {
		case AFIEBR:
			opcode = op_FIEBR
		case AFIDBR:
			opcode = op_FIDBR
		}
		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)

	case 49: // copysign
		zRRF(op_CPSDR, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(p.Reg), asm)

	case 50: // load and test
		var opcode uint32
		switch p.As {
		case ALTEBR:
			opcode = op_LTEBR
		case ALTDBR:
			opcode = op_LTDBR
		}
		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)

	case 51: // test data class (immediate only)
		var opcode uint32
		switch p.As {
		case ATCEB:
			opcode = op_TCEB
		case ATCDB:
			opcode = op_TCDB
		}
		d2 := c.regoff(&p.To)
		zRXE(opcode, uint32(p.From.Reg), 0, 0, uint32(d2), 0, asm)

	case 62: // equivalent of Mul64 in math/bits
		zRRE(op_MLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)

	case 66:
		zRR(op_BCR, uint32(Never), 0, asm)

	case 67: // fmov $0 freg
		var opcode uint32
		switch p.As {
		case AFMOVS:
			opcode = op_LZER
		case AFMOVD:
			opcode = op_LZDR
		}
		zRRE(opcode, uint32(p.To.Reg), 0, asm)

	case 68: // movw areg reg
		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)

	case 69: // movw reg areg
		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)

	case 70: // cmp reg reg
		if p.As == ACMPW || p.As == ACMPWU {
			zRR(c.zoprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
		} else {
			zRRE(c.zoprre(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
		}

	case 71: // cmp reg $constant
		v := c.vregoff(&p.To)
		switch p.As {
		case ACMP, ACMPW:
			if int64(int32(v)) != v {
				c.ctxt.Diag("%v overflows an int32", v)
			}
		case ACMPU, ACMPWU:
			if int64(uint32(v)) != v {
				c.ctxt.Diag("%v overflows a uint32", v)
			}
		}
		if p.As == ACMP && int64(int16(v)) == v {
			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
		} else if p.As == ACMPW && int64(int16(v)) == v {
			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
		} else {
			zRIL(_a, c.zopril(p.As), uint32(p.From.Reg), uint32(v), asm)
		}

	case 72: // mov $constant mem
		v := c.regoff(&p.From)
		d := c.regoff(&p.To)
		r := p.To.Reg
		if p.To.Index != 0 {
			c.ctxt.Diag("cannot use index register")
		}
		if r == 0 {
			r = REGSP
		}
		var opcode uint32
		switch p.As {
		case AMOVD:
			opcode = op_MVGHI
		case AMOVW, AMOVWZ:
			opcode = op_MVHI
		case AMOVH, AMOVHZ:
			opcode = op_MVHHI
		case AMOVB, AMOVBZ:
			opcode = op_MVI
		}
		if d < 0 || d >= DISP12 {
			if r == int16(regtmp(p)) {
				c.ctxt.Diag("displacement must be in range [0, 4096) to use %v", r)
			}
			if d >= -DISP20/2 && d < DISP20/2 {
				if opcode == op_MVI {
					opcode = op_MVIY
				} else {
					zRXY(op_LAY, uint32(regtmp(p)), 0, uint32(r), uint32(d), asm)
					r = int16(regtmp(p))
					d = 0
				}
			} else {
				zRIL(_a, op_LGFI, regtmp(p), uint32(d), asm)
				zRX(op_LA, regtmp(p), regtmp(p), uint32(r), 0, asm)
				r = int16(regtmp(p))
				d = 0
			}
		}
		switch opcode {
		case op_MVI:
			zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
		case op_MVIY:
			zSIY(opcode, uint32(v), uint32(r), uint32(d), asm)
		default:
			zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
		}

	case 74: // mov reg addr (including relocation)
		i2 := c.regoff(&p.To)
		switch p.As {
		case AMOVD:
			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
			zRIL(_b, op_LARL, regtmp(p), 0, asm)
			adj := uint32(0) // adjustment needed for odd addresses
			if i2&1 != 0 {
				i2 -= 1
				adj = 1
			}
			zRX(op_STC, uint32(p.From.Reg), 0, regtmp(p), adj, asm)
		case AFMOVD:
			zRIL(_b, op_LARL, regtmp(p), 0, asm)
			zRX(op_STD, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
		case AFMOVS:
			zRIL(_b, op_LARL, regtmp(p), 0, asm)
			zRX(op_STE, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
		}
		c.addrilreloc(p.To.Sym, int64(i2))

	case 75: // mov addr reg (including relocation)
		i2 := c.regoff(&p.From)
		switch p.As {
		case AMOVD:
			if i2&1 != 0 {
				zRIL(_b, op_LARL, regtmp(p), 0, asm)
				zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 1, asm)
				i2 -= 1
			} else {
				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
			}
		case AMOVW:
			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
		case AMOVWZ:
			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
		case AMOVH:
			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
		case AMOVHZ:
			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
		case AMOVB, AMOVBZ:
			zRIL(_b, op_LARL, regtmp(p), 0, asm)
			adj := uint32(0) // adjustment needed for odd addresses
			if i2&1 != 0 {
				i2 -= 1
				adj = 1
			}
			switch p.As {
			case AMOVB:
				zRXY(op_LGB, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
			case AMOVBZ:
				zRXY(op_LLGC, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
			}
		case AFMOVD:
			zRIL(_a, op_LARL, regtmp(p), 0, asm)
			zRX(op_LD, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
		case AFMOVS:
			zRIL(_a, op_LARL, regtmp(p), 0, asm)
			zRX(op_LE, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
		}
		c.addrilreloc(p.From.Sym, int64(i2))

	case 76: // set program mask
		zRR(op_SPM, uint32(p.From.Reg), 0, asm)

	case 77: // syscall $constant
		if p.From.Offset > 255 || p.From.Offset < 1 {
			c.ctxt.Diag("illegal system call; system call number out of range: %v", p)
			zE(op_TRAP2, asm) // trap always
		} else {
			zI(op_SVC, uint32(p.From.Offset), asm)
		}

	case 78: // undef
		// "An instruction consisting entirely of binary 0s is guaranteed
		// always to be an illegal instruction."
		*asm = append(*asm, 0, 0, 0, 0)

	case 79: // compare and swap reg reg reg
		v := c.regoff(&p.To)
		if v < 0 {
			v = 0
		}
		if p.As == ACS {
			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
		} else if p.As == ACSG {
			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
		}

	case 80: // sync
		zRR(op_BCR, uint32(NotEqual), 0, asm)

	case 81: // float to fixed and fixed to float moves (no conversion)
		switch p.As {
		case ALDGR:
			zRRE(op_LDGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		case ALGDR:
			zRRE(op_LGDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
		}

	case 82: // fixed to float conversion
		var opcode uint32
		switch p.As {
		default:
			log.Fatalf("unexpected opcode %v", p.As)
		case ACEFBRA:
			opcode = op_CEFBRA
		case ACDFBRA:
			opcode = op_CDFBRA
		case ACEGBRA:
			opcode = op_CEGBRA
		case ACDGBRA:
			opcode = op_CDGBRA
		case ACELFBR:
			opcode = op_CELFBR
		case ACDLFBR:
			opcode = op_CDLFBR
		case ACELGBR:
			opcode = op_CELGBR
		case ACDLGBR:
			opcode = op_CDLGBR
		}
		// set immediate operand M3 to 0 to use the default BFP rounding mode
		// (usually round to nearest, ties to even)
		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
		// M4 is reserved and must be 0
		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)

	case 83: // float to fixed conversion
		var opcode uint32
		switch p.As {
		default:
			log.Fatalf("unexpected opcode %v", p.As)
		case ACFEBRA:
			opcode = op_CFEBRA
		case ACFDBRA:
			opcode = op_CFDBRA
		case ACGEBRA:
			opcode = op_CGEBRA
		case ACGDBRA:
			opcode = op_CGDBRA
		case ACLFEBR:
			opcode = op_CLFEBR
		case ACLFDBR:
			opcode = op_CLFDBR
		case ACLGEBR:
			opcode = op_CLGEBR
		case ACLGDBR:
			opcode = op_CLGDBR
		}
		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
		// M4 is reserved and must be 0
		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)

	case 84: // storage-and-storage operations $length mem mem
		l := c.regoff(&p.From)
		if l < 1 || l > 256 {
			c.ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
		}
		if p.GetFrom3().Index != 0 || p.To.Index != 0 {
			c.ctxt.Diag("cannot use index reg")
		}
		b1 := p.To.Reg
		b2 := p.GetFrom3().Reg
		if b1 == 0 {
			b1 = REGSP
		}
		if b2 == 0 {
			b2 = REGSP
		}
		d1 := c.regoff(&p.To)
		d2 := c.regoff(p.GetFrom3())
		if d1 < 0 || d1 >= DISP12 {
			if b2 == int16(regtmp(p)) {
				c.ctxt.Diag("regtmp(p) conflict")
			}
			if b1 != int16(regtmp(p)) {
				zRRE(op_LGR, regtmp(p), uint32(b1), asm)
			}
			zRIL(_a, op_AGFI, regtmp(p), uint32(d1), asm)
			if d1 == d2 && b1 == b2 {
				d2 = 0
				b2 = int16(regtmp(p))
			}
			d1 = 0
			b1 = int16(regtmp(p))
		}
		if d2 < 0 || d2 >= DISP12 {
			if b1 == REGTMP2 {
				c.ctxt.Diag("REGTMP2 conflict")
			}
			if b2 != REGTMP2 {
				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
			}
			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
			d2 = 0
			b2 = REGTMP2
		}
		var opcode uint32
		switch p.As {
		default:
			c.ctxt.Diag("unexpected opcode %v", p.As)
		case AMVC:
			opcode = op_MVC
		case AMVCIN:
			opcode = op_MVCIN
		case ACLC:
			opcode = op_CLC
			// swap operand order for CLC so that it matches CMP
			b1, b2 = b2, b1
			d1, d2 = d2, d1
		case AXC:
			opcode = op_XC
		case AOC:
			opcode = op_OC
		case ANC:
			opcode = op_NC
		}
		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)

	case 85: // load address relative long
		v := c.regoff(&p.From)
		if p.From.Sym == nil {
			if (v & 1) != 0 {
				c.ctxt.Diag("cannot use LARL with odd offset: %v", v)
			}
		} else {
			c.addrilreloc(p.From.Sym, int64(v))
			v = 0
		}
		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)

	case 86: // load address
		d := c.vregoff(&p.From)
		x := p.From.Index
		b := p.From.Reg
		if b == 0 {
			b = REGSP
		}
		switch p.As {
		case ALA:
			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
		case ALAY:
			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
		}

	case 87: // execute relative long
		v := c.vregoff(&p.From)
		if p.From.Sym == nil {
			if v&1 != 0 {
				c.ctxt.Diag("cannot use EXRL with odd offset: %v", v)
			}
		} else {
			c.addrilreloc(p.From.Sym, v)
			v = 0
		}
		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)

	case 88: // store clock
		var opcode uint32
		switch p.As {
		case ASTCK:
			opcode = op_STCK
		case ASTCKC:
			opcode = op_STCKC
		case ASTCKE:
			opcode = op_STCKE
		case ASTCKF:
			opcode = op_STCKF
		}
		v := c.vregoff(&p.To)
		r := p.To.Reg
		if r == 0 {
			r = REGSP
		}
		zS(opcode, uint32(r), uint32(v), asm)

	case 89: // compare and branch reg reg
		var v int32
		if p.To.Target() != nil {
			v = int32((p.To.Target().Pc - p.Pc) >> 1)
		}

		// Some instructions take a mask as the first argument.
		r1, r2 := p.From.Reg, p.Reg
		if p.From.Type == obj.TYPE_CONST {
			r1, r2 = p.Reg, p.RestArgs[0].Reg
		}
		m3 := uint32(c.branchMask(p))

		var opcode uint32
		switch p.As {
		case ACRJ:
			// COMPARE AND BRANCH RELATIVE (32)
			opcode = op_CRJ
		case ACGRJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
			// COMPARE AND BRANCH RELATIVE (64)
			opcode = op_CGRJ
		case ACLRJ:
			// COMPARE LOGICAL AND BRANCH RELATIVE (32)
			opcode = op_CLRJ
		case ACLGRJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
			// COMPARE LOGICAL AND BRANCH RELATIVE (64)
			opcode = op_CLGRJ
		}

		if int32(int16(v)) != v {
			// The branch is too far for one instruction so crack
			// `CMPBEQ x, y, target` into:
			//
			//     CMPBNE x, y, 2(PC)
			//     BR     target
			//
			// Note that the instruction sequence MUST NOT clobber
			// the condition code.
			m3 ^= 0xe // invert 3-bit mask
			zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(sizeRIE+sizeRIL)/2, 0, 0, m3, 0, asm)
			zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
		} else {
			zRIE(_b, opcode, uint32(r1), uint32(r2), uint32(v), 0, 0, m3, 0, asm)
		}

	case 90: // compare and branch reg $constant
		var v int32
		if p.To.Target() != nil {
			v = int32((p.To.Target().Pc - p.Pc) >> 1)
		}

		// Some instructions take a mask as the first argument.
		r1, i2 := p.From.Reg, p.RestArgs[0].Offset
		if p.From.Type == obj.TYPE_CONST {
			r1 = p.Reg
		}
		m3 := uint32(c.branchMask(p))

		var opcode uint32
		switch p.As {
		case ACIJ:
			opcode = op_CIJ
		case ACGIJ, ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
			opcode = op_CGIJ
		case ACLIJ:
			opcode = op_CLIJ
		case ACLGIJ, ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
			opcode = op_CLGIJ
		}
		if int32(int16(v)) != v {
			// The branch is too far for one instruction so crack
			// `CMPBEQ x, $0, target` into:
			//
			//     CMPBNE x, $0, 2(PC)
			//     BR     target
			//
			// Note that the instruction sequence MUST NOT clobber
			// the condition code.
			m3 ^= 0xe // invert 3-bit mask
			zRIE(_c, opcode, uint32(r1), m3, uint32(sizeRIE+sizeRIL)/2, 0, 0, 0, uint32(i2), asm)
			zRIL(_c, op_BRCL, uint32(Always), uint32(v-sizeRIE/2), asm)
		} else {
			zRIE(_c, opcode, uint32(r1), m3, uint32(v), 0, 0, 0, uint32(i2), asm)
		}

	case 91: // test under mask (immediate)
		var opcode uint32
		switch p.As {
		case ATMHH:
			opcode = op_TMHH
		case ATMHL:
			opcode = op_TMHL
		case ATMLH:
			opcode = op_TMLH
		case ATMLL:
			opcode = op_TMLL
		}
		zRI(opcode, uint32(p.From.Reg), uint32(c.vregoff(&p.To)), asm)

	case 92: // insert program mask
		zRRE(op_IPM, uint32(p.From.Reg), 0, asm)

	case 93: // GOT lookup
		v := c.vregoff(&p.To)
		if v != 0 {
			c.ctxt.Diag("invalid offset against GOT slot %v", p)
		}
		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
		rel := obj.Addrel(c.cursym)
		rel.Off = int32(c.pc + 2)
		rel.Siz = 4
		rel.Sym = p.From.Sym
		rel.Type = objabi.R_GOTPCREL
		rel.Add = 2 + int64(rel.Siz)

	case 94: // TLS local exec model
		zRIL(_b, op_LARL, regtmp(p), (sizeRIL+sizeRXY+sizeRI)>>1, asm)
		zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
		rel := obj.Addrel(c.cursym)
		rel.Off = int32(c.pc + sizeRIL + sizeRXY + sizeRI)
		rel.Siz = 8
		rel.Sym = p.From.Sym
		rel.Type = objabi.R_TLS_LE
		rel.Add = 0

	case 95: // TLS initial exec model
		// Assembly                   | Relocation symbol    | Done Here?
		// --------------------------------------------------------------
		// ear  %r11, %a0             |                      |
		// sllg %r11, %r11, 32        |                      |
		// ear  %r11, %a1             |                      |
		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
		// la   %r10, 0(%r10, %r11)   |                      |
		// --------------------------------------------------------------

		// R_390_TLS_IEENT
		zRIL(_b, op_LARL, regtmp(p), 0, asm)
		ieent := obj.Addrel(c.cursym)
		ieent.Off = int32(c.pc + 2)
		ieent.Siz = 4
		ieent.Sym = p.From.Sym
		ieent.Type = objabi.R_TLS_IE
		ieent.Add = 2 + int64(ieent.Siz)

		// R_390_TLS_LOAD
		zRXY(op_LGF, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
		// TODO(mundaym): add R_390_TLS_LOAD relocation here
		// not strictly required but might allow the linker to optimize

	case 96: // clear macro
		length := c.vregoff(&p.From)
		offset := c.vregoff(&p.To)
		reg := p.To.Reg
		if reg == 0 {
			reg = REGSP
		}
		if length <= 0 {
			c.ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
		}
		for length > 0 {
			if offset < 0 || offset >= DISP12 {
				if offset >= -DISP20/2 && offset < DISP20/2 {
					zRXY(op_LAY, regtmp(p), uint32(reg), 0, uint32(offset), asm)
				} else {
					if reg != int16(regtmp(p)) {
						zRRE(op_LGR, regtmp(p), uint32(reg), asm)
					}
					zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
				}
				reg = int16(regtmp(p))
				offset = 0
			}
			size := length
			if size > 256 {
				size = 256
			}

			switch size {
			case 1:
				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
			case 2:
				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
			case 4:
				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
			case 8:
				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
			default:
				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
			}

			length -= size
			offset += size
		}

	case 97: // store multiple
		rstart := p.From.Reg
		rend := p.Reg
		offset := c.regoff(&p.To)
		reg := p.To.Reg
		if reg == 0 {
			reg = REGSP
		}
		if offset < -DISP20/2 || offset >= DISP20/2 {
			if reg != int16(regtmp(p)) {
				zRRE(op_LGR, regtmp(p), uint32(reg), asm)
			}
			zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
			reg = int16(regtmp(p))
			offset = 0
		}
		switch p.As {
		case ASTMY:
			if offset >= 0 && offset < DISP12 {
				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
			} else {
				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
			}
		case ASTMG:
			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
		}

	case 98: // load multiple
		rstart := p.Reg
		rend := p.To.Reg
		offset := c.regoff(&p.From)
		reg := p.From.Reg
		if reg == 0 {
			reg = REGSP
		}
		if offset < -DISP20/2 || offset >= DISP20/2 {
			if reg != int16(regtmp(p)) {
				zRRE(op_LGR, regtmp(p), uint32(reg), asm)
			}
			zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
			reg = int16(regtmp(p))
			offset = 0
		}
		switch p.As {
		case ALMY:
			if offset >= 0 && offset < DISP12 {
				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
			} else {
				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
			}
		case ALMG:
			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
		}

	case 99: // interlocked load and op
		if p.To.Index != 0 {
			c.ctxt.Diag("cannot use indexed address")
		}
		offset := c.regoff(&p.To)
		if offset < -DISP20/2 || offset >= DISP20/2 {
			c.ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
		}
		var opcode uint32
		switch p.As {
		case ALAA:
			opcode = op_LAA
		case ALAAG:
			opcode = op_LAAG
		case ALAAL:
			opcode = op_LAAL
		case ALAALG:
			opcode = op_LAALG
		case ALAN:
			opcode = op_LAN
		case ALANG:
			opcode = op_LANG
		case ALAX:
			opcode = op_LAX
		case ALAXG:
			opcode = op_LAXG
		case ALAO:
			opcode = op_LAO
		case ALAOG:
			opcode = op_LAOG
		}
		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)

	case 100: // VRX STORE
		op, m3, _ := vop(p.As)
		v1 := p.From.Reg
		if p.Reg != 0 {
			m3 = uint32(c.vregoff(&p.From))
			v1 = p.Reg
		}
		b2 := p.To.Reg
		if b2 == 0 {
			b2 = REGSP
		}
		d2 := uint32(c.vregoff(&p.To))
		zVRX(op, uint32(v1), uint32(p.To.Index), uint32(b2), d2, m3, asm)

	case 101: // VRX LOAD
		op, m3, _ := vop(p.As)
		src := &p.From
		if p.GetFrom3() != nil {
			m3 = uint32(c.vregoff(&p.From))
			src = p.GetFrom3()
		}
		b2 := src.Reg
		if b2 == 0 {
			b2 = REGSP
		}
		d2 := uint32(c.vregoff(src))
		zVRX(op, uint32(p.To.Reg), uint32(src.Index), uint32(b2), d2, m3, asm)

	case 102: // VRV SCATTER
		op, _, _ := vop(p.As)
		m3 := uint32(c.vregoff(&p.From))
		b2 := p.To.Reg
		if b2 == 0 {
			b2 = REGSP
		}
		d2 := uint32(c.vregoff(&p.To))
		zVRV(op, uint32(p.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)

	case 103: // VRV GATHER
		op, _, _ := vop(p.As)
		m3 := uint32(c.vregoff(&p.From))
		b2 := p.GetFrom3().Reg
		if b2 == 0 {
			b2 = REGSP
		}
		d2 := uint32(c.vregoff(p.GetFrom3()))
		zVRV(op, uint32(p.To.Reg), uint32(p.GetFrom3().Index), uint32(b2), d2, m3, asm)

	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
		op, m4, _ := vop(p.As)
		fr := p.Reg
		if fr == 0 {
			fr = p.To.Reg
		}
		bits := uint32(c.vregoff(&p.From))
		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)

	case 105: // VRS STORE MULTIPLE
		op, _, _ := vop(p.As)
		offset := uint32(c.vregoff(&p.To))
		reg := p.To.Reg
		if reg == 0 {
			reg = REGSP
		}
		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)

	case 106: // VRS LOAD MULTIPLE
		op, _, _ := vop(p.As)
		offset := uint32(c.vregoff(&p.From))
		reg := p.From.Reg
		if reg == 0 {
			reg = REGSP
		}
		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)

	case 107: // VRS STORE WITH LENGTH
		op, _, _ := vop(p.As)
		offset := uint32(c.vregoff(&p.To))
		reg := p.To.Reg
		if reg == 0 {
			reg = REGSP
		}
		zVRS(op, uint32(p.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)

	case 108: // VRS LOAD WITH LENGTH
		op, _, _ := vop(p.As)
		offset := uint32(c.vregoff(p.GetFrom3()))
		reg := p.GetFrom3().Reg
		if reg == 0 {
			reg = REGSP
		}
		zVRS(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(reg), offset, 0, asm)

	case 109: // VRI-a
		op, m3, _ := vop(p.As)
		i2 := uint32(c.vregoff(&p.From))
		if p.GetFrom3() != nil {
			m3 = uint32(c.vregoff(&p.From))
			i2 = uint32(c.vregoff(p.GetFrom3()))
		}
		switch p.As {
		case AVZERO:
			i2 = 0
		case AVONE:
			i2 = 0xffff
		}
		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)

	case 110:
		op, m4, _ := vop(p.As)
		i2 := uint32(c.vregoff(&p.From))
		i3 := uint32(c.vregoff(p.GetFrom3()))
		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)

	case 111:
		op, m4, _ := vop(p.As)
		i2 := uint32(c.vregoff(&p.From))
		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)

	case 112:
		op, m5, _ := vop(p.As)
		i4 := uint32(c.vregoff(&p.From))
		zVRId(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), i4, m5, asm)

	case 113:
		op, m4, _ := vop(p.As)
		m5 := singleElementMask(p.As)
		i3 := uint32(c.vregoff(&p.From))
		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)

	case 114: // VRR-a
		op, m3, m5 := vop(p.As)
		m4 := singleElementMask(p.As)
		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)

	case 115: // VRR-a COMPARE
		op, m3, m5 := vop(p.As)
		m4 := singleElementMask(p.As)
		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)

	case 117: // VRR-b
		op, m4, m5 := vop(p.As)
		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)

	case 118: // VRR-c
		op, m4, m6 := vop(p.As)
		m5 := singleElementMask(p.As)
		v3 := p.Reg
		if v3 == 0 {
			v3 = p.To.Reg
		}
		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)

	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
		op, m4, m6 := vop(p.As)
		m5 := singleElementMask(p.As)
		v2 := p.Reg
		if v2 == 0 {
			v2 = p.To.Reg
		}
		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)

	case 120: // VRR-d
		op, m6, _ := vop(p.As)
		m5 := singleElementMask(p.As)
		v1 := uint32(p.To.Reg)
		v2 := uint32(p.From.Reg)
		v3 := uint32(p.Reg)
		v4 := uint32(p.GetFrom3().Reg)
		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)

	case 121: // VRR-e
		op, m6, _ := vop(p.As)
		m5 := singleElementMask(p.As)
		v1 := uint32(p.To.Reg)
		v2 := uint32(p.From.Reg)
		v3 := uint32(p.Reg)
		v4 := uint32(p.GetFrom3().Reg)
		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)

	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
		op, _, _ := vop(p.As)
		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)

	case 123: // VPDI $m4, V2, V3, V1
		op, _, _ := vop(p.As)
		m4 := c.regoff(&p.From)
		zVRRc(op, uint32(p.To.Reg), uint32(p.Reg), uint32(p.GetFrom3().Reg), 0, 0, uint32(m4), asm)
	}
}

func (c *ctxtz) vregoff(a *obj.Addr) int64 {
	c.instoffset = 0
	if a != nil {
		c.aclass(a)
	}
	return c.instoffset
}

func (c *ctxtz) regoff(a *obj.Addr) int32 {
	return int32(c.vregoff(a))
}

// find if the displacement is within 12 bit
func isU12(displacement int32) bool {
	return displacement >= 0 && displacement < DISP12
}

// zopload12 returns the RX op with 12 bit displacement for the given load
func (c *ctxtz) zopload12(a obj.As) (uint32, bool) {
	switch a {
	case AFMOVD:
		return op_LD, true
	case AFMOVS:
		return op_LE, true
	}
	return 0, false
}

// zopload returns the RXY op for the given load
func (c *ctxtz) zopload(a obj.As) uint32 {
	switch a {
	// fixed point load
	case AMOVD:
		return op_LG
	case AMOVW:
		return op_LGF
	case AMOVWZ:
		return op_LLGF
	case AMOVH:
		return op_LGH
	case AMOVHZ:
		return op_LLGH
	case AMOVB:
		return op_LGB
	case AMOVBZ:
		return op_LLGC

	// floating point load
	case AFMOVD:
		return op_LDY
	case AFMOVS:
		return op_LEY

	// byte reversed load
	case AMOVDBR:
		return op_LRVG
	case AMOVWBR:
		return op_LRV
	case AMOVHBR:
		return op_LRVH
	}

	c.ctxt.Diag("unknown store opcode %v", a)
	return 0
}

// zopstore12 returns the RX op with 12 bit displacement for the given store
func (c *ctxtz) zopstore12(a obj.As) (uint32, bool) {
	switch a {
	case AFMOVD:
		return op_STD, true
	case AFMOVS:
		return op_STE, true
	case AMOVW, AMOVWZ:
		return op_ST, true
	case AMOVH, AMOVHZ:
		return op_STH, true
	case AMOVB, AMOVBZ:
		return op_STC, true
	}
	return 0, false
}

// zopstore returns the RXY op for the given store
func (c *ctxtz) zopstore(a obj.As) uint32 {
	switch a {
	// fixed point store
	case AMOVD:
		return op_STG
	case AMOVW, AMOVWZ:
		return op_STY
	case AMOVH, AMOVHZ:
		return op_STHY
	case AMOVB, AMOVBZ:
		return op_STCY

	// floating point store
	case AFMOVD:
		return op_STDY
	case AFMOVS:
		return op_STEY

	// byte reversed store
	case AMOVDBR:
		return op_STRVG
	case AMOVWBR:
		return op_STRV
	case AMOVHBR:
		return op_STRVH
	}

	c.ctxt.Diag("unknown store opcode %v", a)
	return 0
}

// zoprre returns the RRE op for the given a
func (c *ctxtz) zoprre(a obj.As) uint32 {
	switch a {
	case ACMP:
		return op_CGR
	case ACMPU:
		return op_CLGR
	case AFCMPO: //ordered
		return op_KDBR
	case AFCMPU: //unordered
		return op_CDBR
	case ACEBR:
		return op_CEBR
	}
	c.ctxt.Diag("unknown rre opcode %v", a)
	return 0
}

// zoprr returns the RR op for the given a
func (c *ctxtz) zoprr(a obj.As) uint32 {
	switch a {
	case ACMPW:
		return op_CR
	case ACMPWU:
		return op_CLR
	}
	c.ctxt.Diag("unknown rr opcode %v", a)
	return 0
}

// zopril returns the RIL op for the given a
func (c *ctxtz) zopril(a obj.As) uint32 {
	switch a {
	case ACMP:
		return op_CGFI
	case ACMPU:
		return op_CLGFI
	case ACMPW:
		return op_CFI
	case ACMPWU:
		return op_CLFI
	}
	c.ctxt.Diag("unknown ril opcode %v", a)
	return 0
}

// z instructions sizes
const (
	sizeE    = 2
	sizeI    = 2
	sizeIE   = 4
	sizeMII  = 6
	sizeRI   = 4
	sizeRI1  = 4
	sizeRI2  = 4
	sizeRI3  = 4
	sizeRIE  = 6
	sizeRIE1 = 6
	sizeRIE2 = 6
	sizeRIE3 = 6
	sizeRIE4 = 6
	sizeRIE5 = 6
	sizeRIE6 = 6
	sizeRIL  = 6
	sizeRIL1 = 6
	sizeRIL2 = 6
	sizeRIL3 = 6
	sizeRIS  = 6
	sizeRR   = 2
	sizeRRD  = 4
	sizeRRE  = 4
	sizeRRF  = 4
	sizeRRF1 = 4
	sizeRRF2 = 4
	sizeRRF3 = 4
	sizeRRF4 = 4
	sizeRRF5 = 4
	sizeRRR  = 2
	sizeRRS  = 6
	sizeRS   = 4
	sizeRS1  = 4
	sizeRS2  = 4
	sizeRSI  = 4
	sizeRSL  = 6
	sizeRSY  = 6
	sizeRSY1 = 6
	sizeRSY2 = 6
	sizeRX   = 4
	sizeRX1  = 4
	sizeRX2  = 4
	sizeRXE  = 6
	sizeRXF  = 6
	sizeRXY  = 6
	sizeRXY1 = 6
	sizeRXY2 = 6
	sizeS    = 4
	sizeSI   = 4
	sizeSIL  = 6
	sizeSIY  = 6
	sizeSMI  = 6
	sizeSS   = 6
	sizeSS1  = 6
	sizeSS2  = 6
	sizeSS3  = 6
	sizeSS4  = 6
	sizeSS5  = 6
	sizeSS6  = 6
	sizeSSE  = 6
	sizeSSF  = 6
)

// instruction format variations
type form int

const (
	_a form = iota
	_b
	_c
	_d
	_e
	_f
)

func zE(op uint32, asm *[]byte) {
	*asm = append(*asm, uint8(op>>8), uint8(op))
}

func zI(op, i1 uint32, asm *[]byte) {
	*asm = append(*asm, uint8(op>>8), uint8(i1))
}

func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
		uint8(ri2),
		uint8(ri3>>16),
		uint8(ri3>>8),
		uint8(ri3))
}

func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
		uint8(i2_ri2>>8),
		uint8(i2_ri2))
}

// Expected argument values for the instruction formats.
//
// Format    a1  a2   a3  a4  a5  a6  a7
// ------------------------------------
// a         r1,  0,  i2,  0,  0, m3,  0
// b         r1, r2, ri4,  0,  0, m3,  0
// c         r1, m3, ri4,  0,  0,  0, i2
// d         r1, r3,  i2,  0,  0,  0,  0
// e         r1, r3, ri2,  0,  0,  0,  0
// f         r1, r2,   0, i3, i4,  0, i5
// g         r1, m3,  i2,  0,  0,  0,  0
func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))

	switch f {
	default:
		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
	case _f:
		*asm = append(*asm, uint8(i3), uint8(i4))
	}

	switch f {
	case _a, _b:
		*asm = append(*asm, uint8(m3)<<4)
	default:
		*asm = append(*asm, uint8(i2_i5))
	}

	*asm = append(*asm, uint8(op))
}

func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
	if f == _a || f == _b {
		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
	}
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
		uint8(i2_ri2>>24),
		uint8(i2_ri2>>16),
		uint8(i2_ri2>>8),
		uint8(i2_ri2))
}

func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r1)<<4)|uint8(m3&0x0F),
		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
		uint8(d4),
		uint8(i2),
		uint8(op))
}

func zRR(op, r1, r2 uint32, asm *[]byte) {
	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
}

func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		uint8(op),
		uint8(r1)<<4,
		(uint8(r3)<<4)|uint8(r2&0x0F))
}

func zRRE(op, r1, r2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		uint8(op),
		0,
		(uint8(r1)<<4)|uint8(r2&0x0F))
}

func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		uint8(op),
		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
		(uint8(r1)<<4)|uint8(r2&0x0F))
}

func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r1)<<4)|uint8(r2&0x0F),
		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
		uint8(d4),
		uint8(m3)<<4,
		uint8(op))
}

func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
		uint8(d2))
}

func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r1)<<4)|uint8(r3&0x0F),
		uint8(ri2>>8),
		uint8(ri2))
}

func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		uint8(l1),
		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
		uint8(d2),
		uint8(op))
}

func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
	dl2 := uint16(d2) & 0x0FFF
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
		uint8(dl2),
		uint8(d2>>12),
		uint8(op))
}

func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
		uint8(d2))
}

func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r1)<<4)|uint8(x2&0x0F),
		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
		uint8(d2),
		uint8(m3)<<4,
		uint8(op))
}

func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r3)<<4)|uint8(x2&0x0F),
		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
		uint8(d2),
		uint8(m1)<<4,
		uint8(op))
}

func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
	dl2 := uint16(d2) & 0x0FFF
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
		uint8(dl2),
		uint8(d2>>12),
		uint8(op))
}

func zS(op, b2, d2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		uint8(op),
		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
		uint8(d2))
}

func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		uint8(i2),
		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
		uint8(d1))
}

func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		uint8(op),
		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
		uint8(d1),
		uint8(i2>>8),
		uint8(i2))
}

func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
	dl1 := uint16(d1) & 0x0FFF
	*asm = append(*asm,
		uint8(op>>8),
		uint8(i2),
		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
		uint8(dl1),
		uint8(d1>>12),
		uint8(op))
}

func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		uint8(m1)<<4,
		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
		uint8(d3),
		uint8(ri2>>8),
		uint8(ri2))
}

// Expected argument values for the instruction formats.
//
// Format    a1  a2  a3  a4  a5  a6
// -------------------------------
// a         l1,  0, b1, d1, b2, d2
// b         l1, l2, b1, d1, b2, d2
// c         l1, i3, b1, d1, b2, d2
// d         r1, r3, b1, d1, b2, d2
// e         r1, r3, b2, d2, b4, d4
// f          0, l2, b1, d1, b2, d2
func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
	*asm = append(*asm, uint8(op>>8))

	switch f {
	case _a:
		*asm = append(*asm, uint8(l1_r1))
	case _b, _c, _d, _e:
		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
	case _f:
		*asm = append(*asm, uint8(l2_i3_r3))
	}

	*asm = append(*asm,
		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
		uint8(d1_d2),
		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
		uint8(d2_d4))
}

func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		uint8(op),
		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
		uint8(d1),
		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
		uint8(d2))
}

func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(r3)<<4)|(uint8(op)&0x0F),
		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
		uint8(d1),
		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
		uint8(d2))
}

func rxb(va, vb, vc, vd uint32) uint8 {
	mask := uint8(0)
	if va >= REG_V16 && va <= REG_V31 {
		mask |= 0x8
	}
	if vb >= REG_V16 && vb <= REG_V31 {
		mask |= 0x4
	}
	if vc >= REG_V16 && vc <= REG_V31 {
		mask |= 0x2
	}
	if vd >= REG_V16 && vd <= REG_V31 {
		mask |= 0x1
	}
	return mask
}

func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(x2)&0xf),
		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
		uint8(d2),
		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
		uint8(op))
}

func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(v2)&0xf),
		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
		uint8(d2),
		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
		uint8(op))
}

func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
		uint8(d2),
		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
		uint8(op))
}

func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(v2)&0xf),
		0,
		(uint8(m5)<<4)|(uint8(m4)&0xf),
		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
		uint8(op))
}

func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(v2)&0xf),
		uint8(v3)<<4,
		uint8(m5)<<4,
		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
		uint8(op))
}

func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(v2)&0xf),
		uint8(v3)<<4,
		(uint8(m6)<<4)|(uint8(m5)&0xf),
		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
		uint8(op))
}

func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(v2)&0xf),
		(uint8(v3)<<4)|(uint8(m5)&0xf),
		uint8(m6)<<4,
		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
		uint8(op))
}

func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(v2)&0xf),
		(uint8(v3)<<4)|(uint8(m6)&0xf),
		uint8(m5),
		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
		uint8(op))
}

func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(r2)&0xf),
		uint8(r3)<<4,
		0,
		rxb(v1, 0, 0, 0),
		uint8(op))
}

func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		uint8(v1)<<4,
		uint8(i2>>8),
		uint8(i2),
		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
		uint8(op))
}

func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		uint8(v1)<<4,
		uint8(i2),
		uint8(i3),
		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
		uint8(op))
}

func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(v3)&0xf),
		uint8(i2>>8),
		uint8(i2),
		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
		uint8(op))
}

func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(v2)&0xf),
		uint8(v3)<<4,
		uint8(i4),
		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
		uint8(op))
}

func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
	*asm = append(*asm,
		uint8(op>>8),
		(uint8(v1)<<4)|(uint8(v2)&0xf),
		uint8(i3>>4),
		(uint8(i3)<<4)|(uint8(m5)&0xf),
		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
		uint8(op))
}