aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/internal/obj/pcln.go
blob: 67c4f9a62bdf9ac383aff0802515539ebaae6725 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package obj

import (
	"cmd/internal/goobj"
	"cmd/internal/objabi"
	"encoding/binary"
	"log"
)

// funcpctab writes to dst a pc-value table mapping the code in func to the values
// returned by valfunc parameterized by arg. The invocation of valfunc to update the
// current value is, for each p,
//
//	sym = valfunc(func, p, 0, arg);
//	record sym.P as value at p->pc;
//	sym = valfunc(func, p, 1, arg);
//
// where func is the function, val is the current value, p is the instruction being
// considered, and arg can be used to further parameterize valfunc.
func funcpctab(ctxt *Link, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) *LSym {
	dbg := desc == ctxt.Debugpcln
	dst := []byte{}
	sym := &LSym{
		Type:      objabi.SRODATA,
		Attribute: AttrContentAddressable,
	}

	if dbg {
		ctxt.Logf("funcpctab %s [valfunc=%s]\n", func_.Name, desc)
	}

	val := int32(-1)
	oldval := val
	fn := func_.Func()
	if fn.Text == nil {
		// Return the emtpy symbol we've built so far.
		return sym
	}

	pc := fn.Text.Pc

	if dbg {
		ctxt.Logf("%6x %6d %v\n", uint64(pc), val, fn.Text)
	}

	buf := make([]byte, binary.MaxVarintLen32)
	started := false
	for p := fn.Text; p != nil; p = p.Link {
		// Update val. If it's not changing, keep going.
		val = valfunc(ctxt, func_, val, p, 0, arg)

		if val == oldval && started {
			val = valfunc(ctxt, func_, val, p, 1, arg)
			if dbg {
				ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p)
			}
			continue
		}

		// If the pc of the next instruction is the same as the
		// pc of this instruction, this instruction is not a real
		// instruction. Keep going, so that we only emit a delta
		// for a true instruction boundary in the program.
		if p.Link != nil && p.Link.Pc == p.Pc {
			val = valfunc(ctxt, func_, val, p, 1, arg)
			if dbg {
				ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p)
			}
			continue
		}

		// The table is a sequence of (value, pc) pairs, where each
		// pair states that the given value is in effect from the current position
		// up to the given pc, which becomes the new current position.
		// To generate the table as we scan over the program instructions,
		// we emit a "(value" when pc == func->value, and then
		// each time we observe a change in value we emit ", pc) (value".
		// When the scan is over, we emit the closing ", pc)".
		//
		// The table is delta-encoded. The value deltas are signed and
		// transmitted in zig-zag form, where a complement bit is placed in bit 0,
		// and the pc deltas are unsigned. Both kinds of deltas are sent
		// as variable-length little-endian base-128 integers,
		// where the 0x80 bit indicates that the integer continues.

		if dbg {
			ctxt.Logf("%6x %6d %v\n", uint64(p.Pc), val, p)
		}

		if started {
			pcdelta := (p.Pc - pc) / int64(ctxt.Arch.MinLC)
			n := binary.PutUvarint(buf, uint64(pcdelta))
			dst = append(dst, buf[:n]...)
			pc = p.Pc
		}

		delta := val - oldval
		n := binary.PutVarint(buf, int64(delta))
		dst = append(dst, buf[:n]...)
		oldval = val
		started = true
		val = valfunc(ctxt, func_, val, p, 1, arg)
	}

	if started {
		if dbg {
			ctxt.Logf("%6x done\n", uint64(fn.Text.Pc+func_.Size))
		}
		v := (func_.Size - pc) / int64(ctxt.Arch.MinLC)
		if v < 0 {
			ctxt.Diag("negative pc offset: %v", v)
		}
		n := binary.PutUvarint(buf, uint64(v))
		dst = append(dst, buf[:n]...)
		// add terminating varint-encoded 0, which is just 0
		dst = append(dst, 0)
	}

	if dbg {
		ctxt.Logf("wrote %d bytes to %p\n", len(dst), dst)
		for _, p := range dst {
			ctxt.Logf(" %02x", p)
		}
		ctxt.Logf("\n")
	}

	sym.Size = int64(len(dst))
	sym.P = dst
	return sym
}

// pctofileline computes either the file number (arg == 0)
// or the line number (arg == 1) to use at p.
// Because p.Pos applies to p, phase == 0 (before p)
// takes care of the update.
func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
	if p.As == ATEXT || p.As == ANOP || p.Pos.Line() == 0 || phase == 1 {
		return oldval
	}
	f, l := getFileIndexAndLine(ctxt, p.Pos)
	if arg == nil {
		return l
	}
	pcln := arg.(*Pcln)
	pcln.UsedFiles[goobj.CUFileIndex(f)] = struct{}{}
	return int32(f)
}

// pcinlineState holds the state used to create a function's inlining
// tree and the PC-value table that maps PCs to nodes in that tree.
type pcinlineState struct {
	globalToLocal map[int]int
	localTree     InlTree
}

// addBranch adds a branch from the global inlining tree in ctxt to
// the function's local inlining tree, returning the index in the local tree.
func (s *pcinlineState) addBranch(ctxt *Link, globalIndex int) int {
	if globalIndex < 0 {
		return -1
	}

	localIndex, ok := s.globalToLocal[globalIndex]
	if ok {
		return localIndex
	}

	// Since tracebacks don't include column information, we could
	// use one node for multiple calls of the same function on the
	// same line (e.g., f(x) + f(y)). For now, we use one node for
	// each inlined call.
	call := ctxt.InlTree.nodes[globalIndex]
	call.Parent = s.addBranch(ctxt, call.Parent)
	localIndex = len(s.localTree.nodes)
	s.localTree.nodes = append(s.localTree.nodes, call)
	s.globalToLocal[globalIndex] = localIndex
	return localIndex
}

func (s *pcinlineState) setParentPC(ctxt *Link, globalIndex int, pc int32) {
	localIndex, ok := s.globalToLocal[globalIndex]
	if !ok {
		// We know where to unwind to when we need to unwind a body identified
		// by globalIndex. But there may be no instructions generated by that
		// body (it's empty, or its instructions were CSEd with other things, etc.).
		// In that case, we don't need an unwind entry.
		// TODO: is this really right? Seems to happen a whole lot...
		return
	}
	s.localTree.setParentPC(localIndex, pc)
}

// pctoinline computes the index into the local inlining tree to use at p.
// If p is not the result of inlining, pctoinline returns -1. Because p.Pos
// applies to p, phase == 0 (before p) takes care of the update.
func (s *pcinlineState) pctoinline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
	if phase == 1 {
		return oldval
	}

	posBase := ctxt.PosTable.Pos(p.Pos).Base()
	if posBase == nil {
		return -1
	}

	globalIndex := posBase.InliningIndex()
	if globalIndex < 0 {
		return -1
	}

	if s.globalToLocal == nil {
		s.globalToLocal = make(map[int]int)
	}

	return int32(s.addBranch(ctxt, globalIndex))
}

// pctospadj computes the sp adjustment in effect.
// It is oldval plus any adjustment made by p itself.
// The adjustment by p takes effect only after p, so we
// apply the change during phase == 1.
func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
	if oldval == -1 { // starting
		oldval = 0
	}
	if phase == 0 {
		return oldval
	}
	if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 {
		ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj)
		ctxt.DiagFlush()
		log.Fatalf("bad code")
	}

	return oldval + p.Spadj
}

// pctopcdata computes the pcdata value in effect at p.
// A PCDATA instruction sets the value in effect at future
// non-PCDATA instructions.
// Since PCDATA instructions have no width in the final code,
// it does not matter which phase we use for the update.
func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
	if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) {
		return oldval
	}
	if int64(int32(p.To.Offset)) != p.To.Offset {
		ctxt.Diag("overflow in PCDATA instruction: %v", p)
		ctxt.DiagFlush()
		log.Fatalf("bad code")
	}

	return int32(p.To.Offset)
}

func linkpcln(ctxt *Link, cursym *LSym) {
	pcln := &cursym.Func().Pcln
	pcln.UsedFiles = make(map[goobj.CUFileIndex]struct{})

	npcdata := 0
	nfuncdata := 0
	for p := cursym.Func().Text; p != nil; p = p.Link {
		// Find the highest ID of any used PCDATA table. This ignores PCDATA table
		// that consist entirely of "-1", since that's the assumed default value.
		//   From.Offset is table ID
		//   To.Offset is data
		if p.As == APCDATA && p.From.Offset >= int64(npcdata) && p.To.Offset != -1 { // ignore -1 as we start at -1, if we only see -1, nothing changed
			npcdata = int(p.From.Offset + 1)
		}
		// Find the highest ID of any FUNCDATA table.
		//   From.Offset is table ID
		if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) {
			nfuncdata = int(p.From.Offset + 1)
		}
	}

	pcln.Pcdata = make([]*LSym, npcdata)
	pcln.Funcdata = make([]*LSym, nfuncdata)
	pcln.Funcdataoff = make([]int64, nfuncdata)
	pcln.Funcdataoff = pcln.Funcdataoff[:nfuncdata]

	pcln.Pcsp = funcpctab(ctxt, cursym, "pctospadj", pctospadj, nil)
	pcln.Pcfile = funcpctab(ctxt, cursym, "pctofile", pctofileline, pcln)
	pcln.Pcline = funcpctab(ctxt, cursym, "pctoline", pctofileline, nil)

	// Check that all the Progs used as inline markers are still reachable.
	// See issue #40473.
	fn := cursym.Func()
	inlMarkProgs := make(map[*Prog]struct{}, len(fn.InlMarks))
	for _, inlMark := range fn.InlMarks {
		inlMarkProgs[inlMark.p] = struct{}{}
	}
	for p := fn.Text; p != nil; p = p.Link {
		if _, ok := inlMarkProgs[p]; ok {
			delete(inlMarkProgs, p)
		}
	}
	if len(inlMarkProgs) > 0 {
		ctxt.Diag("one or more instructions used as inline markers are no longer reachable")
	}

	pcinlineState := new(pcinlineState)
	pcln.Pcinline = funcpctab(ctxt, cursym, "pctoinline", pcinlineState.pctoinline, nil)
	for _, inlMark := range fn.InlMarks {
		pcinlineState.setParentPC(ctxt, int(inlMark.id), int32(inlMark.p.Pc))
	}
	pcln.InlTree = pcinlineState.localTree
	if ctxt.Debugpcln == "pctoinline" && len(pcln.InlTree.nodes) > 0 {
		ctxt.Logf("-- inlining tree for %s:\n", cursym)
		dumpInlTree(ctxt, pcln.InlTree)
		ctxt.Logf("--\n")
	}

	// tabulate which pc and func data we have.
	havepc := make([]uint32, (npcdata+31)/32)
	havefunc := make([]uint32, (nfuncdata+31)/32)
	for p := fn.Text; p != nil; p = p.Link {
		if p.As == AFUNCDATA {
			if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 {
				ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset)
			}
			havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
		}

		if p.As == APCDATA && p.To.Offset != -1 {
			havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
		}
	}

	// pcdata.
	for i := 0; i < npcdata; i++ {
		if (havepc[i/32]>>uint(i%32))&1 == 0 {
			// use an empty symbol.
			pcln.Pcdata[i] = &LSym{
				Type:      objabi.SRODATA,
				Attribute: AttrContentAddressable,
			}
		} else {
			pcln.Pcdata[i] = funcpctab(ctxt, cursym, "pctopcdata", pctopcdata, interface{}(uint32(i)))
		}
	}

	// funcdata
	if nfuncdata > 0 {
		for p := fn.Text; p != nil; p = p.Link {
			if p.As != AFUNCDATA {
				continue
			}
			i := int(p.From.Offset)
			pcln.Funcdataoff[i] = p.To.Offset
			if p.To.Type != TYPE_CONST {
				// TODO: Dedup.
				//funcdata_bytes += p->to.sym->size;
				pcln.Funcdata[i] = p.To.Sym
			}
		}
	}
}

// PCIter iterates over encoded pcdata tables.
type PCIter struct {
	p       []byte
	PC      uint32
	NextPC  uint32
	PCScale uint32
	Value   int32
	start   bool
	Done    bool
}

// newPCIter creates a PCIter with a scale factor for the PC step size.
func NewPCIter(pcScale uint32) *PCIter {
	it := new(PCIter)
	it.PCScale = pcScale
	return it
}

// Next advances it to the Next pc.
func (it *PCIter) Next() {
	it.PC = it.NextPC
	if it.Done {
		return
	}
	if len(it.p) == 0 {
		it.Done = true
		return
	}

	// Value delta
	val, n := binary.Varint(it.p)
	if n <= 0 {
		log.Fatalf("bad Value varint in pciterNext: read %v", n)
	}
	it.p = it.p[n:]

	if val == 0 && !it.start {
		it.Done = true
		return
	}

	it.start = false
	it.Value += int32(val)

	// pc delta
	pc, n := binary.Uvarint(it.p)
	if n <= 0 {
		log.Fatalf("bad pc varint in pciterNext: read %v", n)
	}
	it.p = it.p[n:]

	it.NextPC = it.PC + uint32(pc)*it.PCScale
}

// init prepares it to iterate over p,
// and advances it to the first pc.
func (it *PCIter) Init(p []byte) {
	it.p = p
	it.PC = 0
	it.NextPC = 0
	it.Value = -1
	it.start = true
	it.Done = false
	it.Next()
}