aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/x86/387.go
blob: 594adb2cd52402b577a0bf0a28c924e9af6aa285 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package x86

import (
	"cmd/compile/internal/gc"
	"cmd/compile/internal/ssa"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"cmd/internal/obj/x86"
	"math"
)

// Generates code for v using 387 instructions.
func ssaGenValue387(s *gc.SSAGenState, v *ssa.Value) {
	// The SSA compiler pretends that it has an SSE backend.
	// If we don't have one of those, we need to translate
	// all the SSE ops to equivalent 387 ops. That's what this
	// function does.

	switch v.Op {
	case ssa.Op386MOVSSconst, ssa.Op386MOVSDconst:
		iv := uint64(v.AuxInt)
		if iv == 0x0000000000000000 { // +0.0
			s.Prog(x86.AFLDZ)
		} else if iv == 0x3ff0000000000000 { // +1.0
			s.Prog(x86.AFLD1)
		} else if iv == 0x8000000000000000 { // -0.0
			s.Prog(x86.AFLDZ)
			s.Prog(x86.AFCHS)
		} else if iv == 0xbff0000000000000 { // -1.0
			s.Prog(x86.AFLD1)
			s.Prog(x86.AFCHS)
		} else if iv == 0x400921fb54442d18 { // +pi
			s.Prog(x86.AFLDPI)
		} else if iv == 0xc00921fb54442d18 { // -pi
			s.Prog(x86.AFLDPI)
			s.Prog(x86.AFCHS)
		} else { // others
			p := s.Prog(loadPush(v.Type))
			p.From.Type = obj.TYPE_FCONST
			p.From.Val = math.Float64frombits(iv)
			p.To.Type = obj.TYPE_REG
			p.To.Reg = x86.REG_F0
		}
		popAndSave(s, v)

	case ssa.Op386MOVSSconst2, ssa.Op386MOVSDconst2:
		p := s.Prog(loadPush(v.Type))
		p.From.Type = obj.TYPE_MEM
		p.From.Reg = v.Args[0].Reg()
		p.To.Type = obj.TYPE_REG
		p.To.Reg = x86.REG_F0
		popAndSave(s, v)

	case ssa.Op386MOVSSload, ssa.Op386MOVSDload, ssa.Op386MOVSSloadidx1, ssa.Op386MOVSDloadidx1, ssa.Op386MOVSSloadidx4, ssa.Op386MOVSDloadidx8:
		p := s.Prog(loadPush(v.Type))
		p.From.Type = obj.TYPE_MEM
		p.From.Reg = v.Args[0].Reg()
		gc.AddAux(&p.From, v)
		switch v.Op {
		case ssa.Op386MOVSSloadidx1, ssa.Op386MOVSDloadidx1:
			p.From.Scale = 1
			p.From.Index = v.Args[1].Reg()
			if p.From.Index == x86.REG_SP {
				p.From.Reg, p.From.Index = p.From.Index, p.From.Reg
			}
		case ssa.Op386MOVSSloadidx4:
			p.From.Scale = 4
			p.From.Index = v.Args[1].Reg()
		case ssa.Op386MOVSDloadidx8:
			p.From.Scale = 8
			p.From.Index = v.Args[1].Reg()
		}
		p.To.Type = obj.TYPE_REG
		p.To.Reg = x86.REG_F0
		popAndSave(s, v)

	case ssa.Op386MOVSSstore, ssa.Op386MOVSDstore:
		// Push to-be-stored value on top of stack.
		push(s, v.Args[1])

		// Pop and store value.
		var op obj.As
		switch v.Op {
		case ssa.Op386MOVSSstore:
			op = x86.AFMOVFP
		case ssa.Op386MOVSDstore:
			op = x86.AFMOVDP
		}
		p := s.Prog(op)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = x86.REG_F0
		p.To.Type = obj.TYPE_MEM
		p.To.Reg = v.Args[0].Reg()
		gc.AddAux(&p.To, v)

	case ssa.Op386MOVSSstoreidx1, ssa.Op386MOVSDstoreidx1, ssa.Op386MOVSSstoreidx4, ssa.Op386MOVSDstoreidx8:
		push(s, v.Args[2])
		var op obj.As
		switch v.Op {
		case ssa.Op386MOVSSstoreidx1, ssa.Op386MOVSSstoreidx4:
			op = x86.AFMOVFP
		case ssa.Op386MOVSDstoreidx1, ssa.Op386MOVSDstoreidx8:
			op = x86.AFMOVDP
		}
		p := s.Prog(op)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = x86.REG_F0
		p.To.Type = obj.TYPE_MEM
		p.To.Reg = v.Args[0].Reg()
		gc.AddAux(&p.To, v)
		switch v.Op {
		case ssa.Op386MOVSSstoreidx1, ssa.Op386MOVSDstoreidx1:
			p.To.Scale = 1
			p.To.Index = v.Args[1].Reg()
			if p.To.Index == x86.REG_SP {
				p.To.Reg, p.To.Index = p.To.Index, p.To.Reg
			}
		case ssa.Op386MOVSSstoreidx4:
			p.To.Scale = 4
			p.To.Index = v.Args[1].Reg()
		case ssa.Op386MOVSDstoreidx8:
			p.To.Scale = 8
			p.To.Index = v.Args[1].Reg()
		}

	case ssa.Op386ADDSS, ssa.Op386ADDSD, ssa.Op386SUBSS, ssa.Op386SUBSD,
		ssa.Op386MULSS, ssa.Op386MULSD, ssa.Op386DIVSS, ssa.Op386DIVSD:
		if v.Reg() != v.Args[0].Reg() {
			v.Fatalf("input[0] and output not in same register %s", v.LongString())
		}

		// Push arg1 on top of stack
		push(s, v.Args[1])

		// Set precision if needed.  64 bits is the default.
		switch v.Op {
		case ssa.Op386ADDSS, ssa.Op386SUBSS, ssa.Op386MULSS, ssa.Op386DIVSS:
			// Save AX so we can use it as scratch space.
			p := s.Prog(x86.AMOVL)
			p.From.Type = obj.TYPE_REG
			p.From.Reg = x86.REG_AX
			s.AddrScratch(&p.To)
			// Install a 32-bit version of the control word.
			installControlWord(s, gc.ControlWord32, x86.REG_AX)
			// Restore AX.
			p = s.Prog(x86.AMOVL)
			s.AddrScratch(&p.From)
			p.To.Type = obj.TYPE_REG
			p.To.Reg = x86.REG_AX
		}

		var op obj.As
		switch v.Op {
		case ssa.Op386ADDSS, ssa.Op386ADDSD:
			op = x86.AFADDDP
		case ssa.Op386SUBSS, ssa.Op386SUBSD:
			op = x86.AFSUBDP
		case ssa.Op386MULSS, ssa.Op386MULSD:
			op = x86.AFMULDP
		case ssa.Op386DIVSS, ssa.Op386DIVSD:
			op = x86.AFDIVDP
		}
		p := s.Prog(op)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = x86.REG_F0
		p.To.Type = obj.TYPE_REG
		p.To.Reg = s.SSEto387[v.Reg()] + 1

		// Restore precision if needed.
		switch v.Op {
		case ssa.Op386ADDSS, ssa.Op386SUBSS, ssa.Op386MULSS, ssa.Op386DIVSS:
			restoreControlWord(s)
		}

	case ssa.Op386UCOMISS, ssa.Op386UCOMISD:
		push(s, v.Args[0])

		// Compare.
		p := s.Prog(x86.AFUCOMP)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = x86.REG_F0
		p.To.Type = obj.TYPE_REG
		p.To.Reg = s.SSEto387[v.Args[1].Reg()] + 1

		// Save AX.
		p = s.Prog(x86.AMOVL)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = x86.REG_AX
		s.AddrScratch(&p.To)

		// Move status word into AX.
		p = s.Prog(x86.AFSTSW)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = x86.REG_AX

		// Then move the flags we need to the integer flags.
		s.Prog(x86.ASAHF)

		// Restore AX.
		p = s.Prog(x86.AMOVL)
		s.AddrScratch(&p.From)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = x86.REG_AX

	case ssa.Op386SQRTSD:
		push(s, v.Args[0])
		s.Prog(x86.AFSQRT)
		popAndSave(s, v)

	case ssa.Op386FCHS:
		push(s, v.Args[0])
		s.Prog(x86.AFCHS)
		popAndSave(s, v)

	case ssa.Op386CVTSL2SS, ssa.Op386CVTSL2SD:
		p := s.Prog(x86.AMOVL)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = v.Args[0].Reg()
		s.AddrScratch(&p.To)
		p = s.Prog(x86.AFMOVL)
		s.AddrScratch(&p.From)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = x86.REG_F0
		popAndSave(s, v)

	case ssa.Op386CVTTSD2SL, ssa.Op386CVTTSS2SL:
		push(s, v.Args[0])

		// Load control word which truncates (rounds towards zero).
		installControlWord(s, gc.ControlWord64trunc, v.Reg())

		// Now do the conversion.
		p := s.Prog(x86.AFMOVLP)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = x86.REG_F0
		s.AddrScratch(&p.To)
		p = s.Prog(x86.AMOVL)
		s.AddrScratch(&p.From)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = v.Reg()

		// Restore control word.
		restoreControlWord(s)

	case ssa.Op386CVTSS2SD:
		// float32 -> float64 is a nop
		push(s, v.Args[0])
		popAndSave(s, v)

	case ssa.Op386CVTSD2SS:
		// Round to nearest float32.
		push(s, v.Args[0])
		p := s.Prog(x86.AFMOVFP)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = x86.REG_F0
		s.AddrScratch(&p.To)
		p = s.Prog(x86.AFMOVF)
		s.AddrScratch(&p.From)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = x86.REG_F0
		popAndSave(s, v)

	case ssa.OpLoadReg:
		if !v.Type.IsFloat() {
			ssaGenValue(s, v)
			return
		}
		// Load+push the value we need.
		p := s.Prog(loadPush(v.Type))
		gc.AddrAuto(&p.From, v.Args[0])
		p.To.Type = obj.TYPE_REG
		p.To.Reg = x86.REG_F0
		// Move the value to its assigned register.
		popAndSave(s, v)

	case ssa.OpStoreReg:
		if !v.Type.IsFloat() {
			ssaGenValue(s, v)
			return
		}
		push(s, v.Args[0])
		var op obj.As
		switch v.Type.Size() {
		case 4:
			op = x86.AFMOVFP
		case 8:
			op = x86.AFMOVDP
		}
		p := s.Prog(op)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = x86.REG_F0
		gc.AddrAuto(&p.To, v)

	case ssa.OpCopy:
		if !v.Type.IsFloat() {
			ssaGenValue(s, v)
			return
		}
		push(s, v.Args[0])
		popAndSave(s, v)

	case ssa.Op386CALLstatic, ssa.Op386CALLclosure, ssa.Op386CALLinter:
		flush387(s) // Calls must empty the FP stack.
		fallthrough // then issue the call as normal
	default:
		ssaGenValue(s, v)
	}
}

// push pushes v onto the floating-point stack.  v must be in a register.
func push(s *gc.SSAGenState, v *ssa.Value) {
	p := s.Prog(x86.AFMOVD)
	p.From.Type = obj.TYPE_REG
	p.From.Reg = s.SSEto387[v.Reg()]
	p.To.Type = obj.TYPE_REG
	p.To.Reg = x86.REG_F0
}

// popAndSave pops a value off of the floating-point stack and stores
// it in the register assigned to v.
func popAndSave(s *gc.SSAGenState, v *ssa.Value) {
	r := v.Reg()
	if _, ok := s.SSEto387[r]; ok {
		// Pop value, write to correct register.
		p := s.Prog(x86.AFMOVDP)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = x86.REG_F0
		p.To.Type = obj.TYPE_REG
		p.To.Reg = s.SSEto387[v.Reg()] + 1
	} else {
		// Don't actually pop value. This 387 register is now the
		// new home for the not-yet-assigned-a-home SSE register.
		// Increase the register mapping of all other registers by one.
		for rSSE, r387 := range s.SSEto387 {
			s.SSEto387[rSSE] = r387 + 1
		}
		s.SSEto387[r] = x86.REG_F0
	}
}

// loadPush returns the opcode for load+push of the given type.
func loadPush(t *types.Type) obj.As {
	if t.Size() == 4 {
		return x86.AFMOVF
	}
	return x86.AFMOVD
}

// flush387 removes all entries from the 387 floating-point stack.
func flush387(s *gc.SSAGenState) {
	for k := range s.SSEto387 {
		p := s.Prog(x86.AFMOVDP)
		p.From.Type = obj.TYPE_REG
		p.From.Reg = x86.REG_F0
		p.To.Type = obj.TYPE_REG
		p.To.Reg = x86.REG_F0
		delete(s.SSEto387, k)
	}
}

func ssaGenBlock387(s *gc.SSAGenState, b, next *ssa.Block) {
	// Empty the 387's FP stack before the block ends.
	flush387(s)

	ssaGenBlock(s, b, next)
}

// installControlWord saves the current floating-point control
// word and installs a new one loaded from cw.
// scratchReg must be an unused register.
// This call must be paired with restoreControlWord.
// Bytes 4-5 of the scratch space (s.AddrScratch) are used between
// this call and restoreControlWord.
func installControlWord(s *gc.SSAGenState, cw *obj.LSym, scratchReg int16) {
	// Save current control word.
	p := s.Prog(x86.AFSTCW)
	s.AddrScratch(&p.To)
	p.To.Offset += 4

	// Materialize address of new control word.
	// Note: this must be a seperate instruction to handle PIE correctly.
	// See issue 41503.
	p = s.Prog(x86.ALEAL)
	p.From.Type = obj.TYPE_MEM
	p.From.Name = obj.NAME_EXTERN
	p.From.Sym = cw
	p.To.Type = obj.TYPE_REG
	p.To.Reg = scratchReg

	// Load replacement control word.
	p = s.Prog(x86.AFLDCW)
	p.From.Type = obj.TYPE_MEM
	p.From.Reg = scratchReg
}
func restoreControlWord(s *gc.SSAGenState) {
	p := s.Prog(x86.AFLDCW)
	s.AddrScratch(&p.From)
	p.From.Offset += 4
}