aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/types2/unify.go
blob: 3e2b299e49266f6a2f705c01a4432e8589c8a15d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements type unification.
//
// Type unification attempts to make two types x and y structurally
// equivalent by determining the types for a given list of (bound)
// type parameters which may occur within x and y. If x and y are
// structurally different (say []T vs chan T), or conflicting
// types are determined for type parameters, unification fails.
// If unification succeeds, as a side-effect, the types of the
// bound type parameters may be determined.
//
// Unification typically requires multiple calls u.unify(x, y) to
// a given unifier u, with various combinations of types x and y.
// In each call, additional type parameter types may be determined
// as a side effect and recorded in u.
// If a call fails (returns false), unification fails.
//
// In the unification context, structural equivalence of two types
// ignores the difference between a defined type and its underlying
// type if one type is a defined type and the other one is not.
// It also ignores the difference between an (external, unbound)
// type parameter and its core type.
// If two types are not structurally equivalent, they cannot be Go
// identical types. On the other hand, if they are structurally
// equivalent, they may be Go identical or at least assignable, or
// they may be in the type set of a constraint.
// Whether they indeed are identical or assignable is determined
// upon instantiation and function argument passing.

package types2

import (
	"bytes"
	"fmt"
	"sort"
	"strings"
)

const (
	// Upper limit for recursion depth. Used to catch infinite recursions
	// due to implementation issues (e.g., see issues go.dev/issue/48619, go.dev/issue/48656).
	unificationDepthLimit = 50

	// Whether to panic when unificationDepthLimit is reached.
	// If disabled, a recursion depth overflow results in a (quiet)
	// unification failure.
	panicAtUnificationDepthLimit = true

	// If enableCoreTypeUnification is set, unification will consider
	// the core types, if any, of non-local (unbound) type parameters.
	enableCoreTypeUnification = true

	// If enableInterfaceInference is set, type inference uses
	// shared methods for improved type inference involving
	// interfaces.
	enableInterfaceInference = true

	// If traceInference is set, unification will print a trace of its operation.
	// Interpretation of trace:
	//   x ≡ y    attempt to unify types x and y
	//   p ➞ y    type parameter p is set to type y (p is inferred to be y)
	//   p ⇄ q    type parameters p and q match (p is inferred to be q and vice versa)
	//   x ≢ y    types x and y cannot be unified
	//   [p, q, ...] ➞ [x, y, ...]    mapping from type parameters to types
	traceInference = false
)

// A unifier maintains a list of type parameters and
// corresponding types inferred for each type parameter.
// A unifier is created by calling newUnifier.
type unifier struct {
	// handles maps each type parameter to its inferred type through
	// an indirection *Type called (inferred type) "handle".
	// Initially, each type parameter has its own, separate handle,
	// with a nil (i.e., not yet inferred) type.
	// After a type parameter P is unified with a type parameter Q,
	// P and Q share the same handle (and thus type). This ensures
	// that inferring the type for a given type parameter P will
	// automatically infer the same type for all other parameters
	// unified (joined) with P.
	handles map[*TypeParam]*Type
	depth   int // recursion depth during unification
}

// newUnifier returns a new unifier initialized with the given type parameter
// and corresponding type argument lists. The type argument list may be shorter
// than the type parameter list, and it may contain nil types. Matching type
// parameters and arguments must have the same index.
func newUnifier(tparams []*TypeParam, targs []Type) *unifier {
	assert(len(tparams) >= len(targs))
	handles := make(map[*TypeParam]*Type, len(tparams))
	// Allocate all handles up-front: in a correct program, all type parameters
	// must be resolved and thus eventually will get a handle.
	// Also, sharing of handles caused by unified type parameters is rare and
	// so it's ok to not optimize for that case (and delay handle allocation).
	for i, x := range tparams {
		var t Type
		if i < len(targs) {
			t = targs[i]
		}
		handles[x] = &t
	}
	return &unifier{handles, 0}
}

// unifyMode controls the behavior of the unifier.
type unifyMode uint

const (
	// If assign is set, we are unifying types involved in an assignment:
	// they may match inexactly at the top, but element types must match
	// exactly.
	assign unifyMode = 1 << iota

	// If exact is set, types unify if they are identical (or can be
	// made identical with suitable arguments for type parameters).
	// Otherwise, a named type and a type literal unify if their
	// underlying types unify, channel directions are ignored, and
	// if there is an interface, the other type must implement the
	// interface.
	exact
)

func (m unifyMode) String() string {
	switch m {
	case 0:
		return "inexact"
	case assign:
		return "assign"
	case exact:
		return "exact"
	case assign | exact:
		return "assign, exact"
	}
	return fmt.Sprintf("mode %d", m)
}

// unify attempts to unify x and y and reports whether it succeeded.
// As a side-effect, types may be inferred for type parameters.
// The mode parameter controls how types are compared.
func (u *unifier) unify(x, y Type, mode unifyMode) bool {
	return u.nify(x, y, mode, nil)
}

func (u *unifier) tracef(format string, args ...interface{}) {
	fmt.Println(strings.Repeat(".  ", u.depth) + sprintf(nil, true, format, args...))
}

// String returns a string representation of the current mapping
// from type parameters to types.
func (u *unifier) String() string {
	// sort type parameters for reproducible strings
	tparams := make(typeParamsById, len(u.handles))
	i := 0
	for tpar := range u.handles {
		tparams[i] = tpar
		i++
	}
	sort.Sort(tparams)

	var buf bytes.Buffer
	w := newTypeWriter(&buf, nil)
	w.byte('[')
	for i, x := range tparams {
		if i > 0 {
			w.string(", ")
		}
		w.typ(x)
		w.string(": ")
		w.typ(u.at(x))
	}
	w.byte(']')
	return buf.String()
}

type typeParamsById []*TypeParam

func (s typeParamsById) Len() int           { return len(s) }
func (s typeParamsById) Less(i, j int) bool { return s[i].id < s[j].id }
func (s typeParamsById) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }

// join unifies the given type parameters x and y.
// If both type parameters already have a type associated with them
// and they are not joined, join fails and returns false.
func (u *unifier) join(x, y *TypeParam) bool {
	if traceInference {
		u.tracef("%s ⇄ %s", x, y)
	}
	switch hx, hy := u.handles[x], u.handles[y]; {
	case hx == hy:
		// Both type parameters already share the same handle. Nothing to do.
	case *hx != nil && *hy != nil:
		// Both type parameters have (possibly different) inferred types. Cannot join.
		return false
	case *hx != nil:
		// Only type parameter x has an inferred type. Use handle of x.
		u.setHandle(y, hx)
	// This case is treated like the default case.
	// case *hy != nil:
	// 	// Only type parameter y has an inferred type. Use handle of y.
	//	u.setHandle(x, hy)
	default:
		// Neither type parameter has an inferred type. Use handle of y.
		u.setHandle(x, hy)
	}
	return true
}

// asTypeParam returns x.(*TypeParam) if x is a type parameter recorded with u.
// Otherwise, the result is nil.
func (u *unifier) asTypeParam(x Type) *TypeParam {
	if x, _ := x.(*TypeParam); x != nil {
		if _, found := u.handles[x]; found {
			return x
		}
	}
	return nil
}

// setHandle sets the handle for type parameter x
// (and all its joined type parameters) to h.
func (u *unifier) setHandle(x *TypeParam, h *Type) {
	hx := u.handles[x]
	assert(hx != nil)
	for y, hy := range u.handles {
		if hy == hx {
			u.handles[y] = h
		}
	}
}

// at returns the (possibly nil) type for type parameter x.
func (u *unifier) at(x *TypeParam) Type {
	return *u.handles[x]
}

// set sets the type t for type parameter x;
// t must not be nil.
func (u *unifier) set(x *TypeParam, t Type) {
	assert(t != nil)
	if traceInference {
		u.tracef("%s ➞ %s", x, t)
	}
	*u.handles[x] = t
}

// unknowns returns the number of type parameters for which no type has been set yet.
func (u *unifier) unknowns() int {
	n := 0
	for _, h := range u.handles {
		if *h == nil {
			n++
		}
	}
	return n
}

// inferred returns the list of inferred types for the given type parameter list.
// The result is never nil and has the same length as tparams; result types that
// could not be inferred are nil. Corresponding type parameters and result types
// have identical indices.
func (u *unifier) inferred(tparams []*TypeParam) []Type {
	list := make([]Type, len(tparams))
	for i, x := range tparams {
		list[i] = u.at(x)
	}
	return list
}

// nify implements the core unification algorithm which is an
// adapted version of Checker.identical. For changes to that
// code the corresponding changes should be made here.
// Must not be called directly from outside the unifier.
func (u *unifier) nify(x, y Type, mode unifyMode, p *ifacePair) (result bool) {
	u.depth++
	if traceInference {
		u.tracef("%s ≡ %s\t// %s", x, y, mode)
	}
	defer func() {
		if traceInference && !result {
			u.tracef("%s ≢ %s", x, y)
		}
		u.depth--
	}()

	// nothing to do if x == y
	if x == y {
		return true
	}

	// Stop gap for cases where unification fails.
	if u.depth > unificationDepthLimit {
		if traceInference {
			u.tracef("depth %d >= %d", u.depth, unificationDepthLimit)
		}
		if panicAtUnificationDepthLimit {
			panic("unification reached recursion depth limit")
		}
		return false
	}

	// Unification is symmetric, so we can swap the operands.
	// Ensure that if we have at least one
	// - defined type, make sure one is in y
	// - type parameter recorded with u, make sure one is in x
	if _, ok := x.(*Named); ok || u.asTypeParam(y) != nil {
		if traceInference {
			u.tracef("%s ≡ %s\t// swap", y, x)
		}
		x, y = y, x
	}

	// Unification will fail if we match a defined type against a type literal.
	// If we are matching types in an assignment, at the top-level, types with
	// the same type structure are permitted as long as at least one of them
	// is not a defined type. To accommodate for that possibility, we continue
	// unification with the underlying type of a defined type if the other type
	// is a type literal. This is controlled by the exact unification mode.
	// We also continue if the other type is a basic type because basic types
	// are valid underlying types and may appear as core types of type constraints.
	// If we exclude them, inferred defined types for type parameters may not
	// match against the core types of their constraints (even though they might
	// correctly match against some of the types in the constraint's type set).
	// Finally, if unification (incorrectly) succeeds by matching the underlying
	// type of a defined type against a basic type (because we include basic types
	// as type literals here), and if that leads to an incorrectly inferred type,
	// we will fail at function instantiation or argument assignment time.
	//
	// If we have at least one defined type, there is one in y.
	if ny, _ := y.(*Named); mode&exact == 0 && ny != nil && isTypeLit(x) && !(enableInterfaceInference && IsInterface(x)) {
		if traceInference {
			u.tracef("%s ≡ under %s", x, ny)
		}
		y = ny.under()
		// Per the spec, a defined type cannot have an underlying type
		// that is a type parameter.
		assert(!isTypeParam(y))
		// x and y may be identical now
		if x == y {
			return true
		}
	}

	// Cases where at least one of x or y is a type parameter recorded with u.
	// If we have at least one type parameter, there is one in x.
	// If we have exactly one type parameter, because it is in x,
	// isTypeLit(x) is false and y was not changed above. In other
	// words, if y was a defined type, it is still a defined type
	// (relevant for the logic below).
	switch px, py := u.asTypeParam(x), u.asTypeParam(y); {
	case px != nil && py != nil:
		// both x and y are type parameters
		if u.join(px, py) {
			return true
		}
		// both x and y have an inferred type - they must match
		return u.nify(u.at(px), u.at(py), mode, p)

	case px != nil:
		// x is a type parameter, y is not
		if x := u.at(px); x != nil {
			// x has an inferred type which must match y
			if u.nify(x, y, mode, p) {
				// If we have a match, possibly through underlying types,
				// and y is a defined type, make sure we record that type
				// for type parameter x, which may have until now only
				// recorded an underlying type (go.dev/issue/43056).
				if _, ok := y.(*Named); ok {
					u.set(px, y)
				}
				return true
			}
			return false
		}
		// otherwise, infer type from y
		u.set(px, y)
		return true
	}

	// x != y if we get here
	assert(x != y)

	// Type elements (array, slice, etc. elements) use emode for unification.
	// Element types must match exactly if the types are used in an assignment.
	emode := mode
	if mode&assign != 0 {
		emode |= exact
	}

	// If EnableInterfaceInference is set and we don't require exact unification,
	// if both types are interfaces, one interface must have a subset of the
	// methods of the other and corresponding method signatures must unify.
	// If only one type is an interface, all its methods must be present in the
	// other type and corresponding method signatures must unify.
	if enableInterfaceInference && mode&exact == 0 {
		// One or both interfaces may be defined types.
		// Look under the name, but not under type parameters (go.dev/issue/60564).
		var xi *Interface
		if _, ok := x.(*TypeParam); !ok {
			xi, _ = under(x).(*Interface)
		}
		var yi *Interface
		if _, ok := y.(*TypeParam); !ok {
			yi, _ = under(y).(*Interface)
		}
		// If we have two interfaces, check the type terms for equivalence,
		// and unify common methods if possible.
		if xi != nil && yi != nil {
			xset := xi.typeSet()
			yset := yi.typeSet()
			if xset.comparable != yset.comparable {
				return false
			}
			// For now we require terms to be equal.
			// We should be able to relax this as well, eventually.
			if !xset.terms.equal(yset.terms) {
				return false
			}
			// Interface types are the only types where cycles can occur
			// that are not "terminated" via named types; and such cycles
			// can only be created via method parameter types that are
			// anonymous interfaces (directly or indirectly) embedding
			// the current interface. Example:
			//
			//    type T interface {
			//        m() interface{T}
			//    }
			//
			// If two such (differently named) interfaces are compared,
			// endless recursion occurs if the cycle is not detected.
			//
			// If x and y were compared before, they must be equal
			// (if they were not, the recursion would have stopped);
			// search the ifacePair stack for the same pair.
			//
			// This is a quadratic algorithm, but in practice these stacks
			// are extremely short (bounded by the nesting depth of interface
			// type declarations that recur via parameter types, an extremely
			// rare occurrence). An alternative implementation might use a
			// "visited" map, but that is probably less efficient overall.
			q := &ifacePair{xi, yi, p}
			for p != nil {
				if p.identical(q) {
					return true // same pair was compared before
				}
				p = p.prev
			}
			// The method set of x must be a subset of the method set
			// of y or vice versa, and the common methods must unify.
			xmethods := xset.methods
			ymethods := yset.methods
			// The smaller method set must be the subset, if it exists.
			if len(xmethods) > len(ymethods) {
				xmethods, ymethods = ymethods, xmethods
			}
			// len(xmethods) <= len(ymethods)
			// Collect the ymethods in a map for quick lookup.
			ymap := make(map[string]*Func, len(ymethods))
			for _, ym := range ymethods {
				ymap[ym.Id()] = ym
			}
			// All xmethods must exist in ymethods and corresponding signatures must unify.
			for _, xm := range xmethods {
				if ym := ymap[xm.Id()]; ym == nil || !u.nify(xm.typ, ym.typ, emode, p) {
					return false
				}
			}
			return true
		}

		// We don't have two interfaces. If we have one, make sure it's in xi.
		if yi != nil {
			xi = yi
			y = x
		}

		// If we have one interface, at a minimum each of the interface methods
		// must be implemented and thus unify with a corresponding method from
		// the non-interface type, otherwise unification fails.
		if xi != nil {
			// All xi methods must exist in y and corresponding signatures must unify.
			xmethods := xi.typeSet().methods
			for _, xm := range xmethods {
				obj, _, _ := LookupFieldOrMethod(y, false, xm.pkg, xm.name)
				if ym, _ := obj.(*Func); ym == nil || !u.nify(xm.typ, ym.typ, emode, p) {
					return false
				}
			}
			return true
		}
	}

	// Unless we have exact unification, neither x nor y are interfaces now.
	// Except for unbound type parameters (see below), x and y must be structurally
	// equivalent to unify.

	// If we get here and x or y is a type parameter, they are unbound
	// (not recorded with the unifier).
	// Ensure that if we have at least one type parameter, it is in x
	// (the earlier swap checks for _recorded_ type parameters only).
	// This ensures that the switch switches on the type parameter.
	//
	// TODO(gri) Factor out type parameter handling from the switch.
	if isTypeParam(y) {
		if traceInference {
			u.tracef("%s ≡ %s\t// swap", y, x)
		}
		x, y = y, x
	}

	switch x := x.(type) {
	case *Basic:
		// Basic types are singletons except for the rune and byte
		// aliases, thus we cannot solely rely on the x == y check
		// above. See also comment in TypeName.IsAlias.
		if y, ok := y.(*Basic); ok {
			return x.kind == y.kind
		}

	case *Array:
		// Two array types unify if they have the same array length
		// and their element types unify.
		if y, ok := y.(*Array); ok {
			// If one or both array lengths are unknown (< 0) due to some error,
			// assume they are the same to avoid spurious follow-on errors.
			return (x.len < 0 || y.len < 0 || x.len == y.len) && u.nify(x.elem, y.elem, emode, p)
		}

	case *Slice:
		// Two slice types unify if their element types unify.
		if y, ok := y.(*Slice); ok {
			return u.nify(x.elem, y.elem, emode, p)
		}

	case *Struct:
		// Two struct types unify if they have the same sequence of fields,
		// and if corresponding fields have the same names, their (field) types unify,
		// and they have identical tags. Two embedded fields are considered to have the same
		// name. Lower-case field names from different packages are always different.
		if y, ok := y.(*Struct); ok {
			if x.NumFields() == y.NumFields() {
				for i, f := range x.fields {
					g := y.fields[i]
					if f.embedded != g.embedded ||
						x.Tag(i) != y.Tag(i) ||
						!f.sameId(g.pkg, g.name) ||
						!u.nify(f.typ, g.typ, emode, p) {
						return false
					}
				}
				return true
			}
		}

	case *Pointer:
		// Two pointer types unify if their base types unify.
		if y, ok := y.(*Pointer); ok {
			return u.nify(x.base, y.base, emode, p)
		}

	case *Tuple:
		// Two tuples types unify if they have the same number of elements
		// and the types of corresponding elements unify.
		if y, ok := y.(*Tuple); ok {
			if x.Len() == y.Len() {
				if x != nil {
					for i, v := range x.vars {
						w := y.vars[i]
						if !u.nify(v.typ, w.typ, mode, p) {
							return false
						}
					}
				}
				return true
			}
		}

	case *Signature:
		// Two function types unify if they have the same number of parameters
		// and result values, corresponding parameter and result types unify,
		// and either both functions are variadic or neither is.
		// Parameter and result names are not required to match.
		// TODO(gri) handle type parameters or document why we can ignore them.
		if y, ok := y.(*Signature); ok {
			return x.variadic == y.variadic &&
				u.nify(x.params, y.params, emode, p) &&
				u.nify(x.results, y.results, emode, p)
		}

	case *Interface:
		assert(!enableInterfaceInference || mode&exact != 0) // handled before this switch

		// Two interface types unify if they have the same set of methods with
		// the same names, and corresponding function types unify.
		// Lower-case method names from different packages are always different.
		// The order of the methods is irrelevant.
		if y, ok := y.(*Interface); ok {
			xset := x.typeSet()
			yset := y.typeSet()
			if xset.comparable != yset.comparable {
				return false
			}
			if !xset.terms.equal(yset.terms) {
				return false
			}
			a := xset.methods
			b := yset.methods
			if len(a) == len(b) {
				// Interface types are the only types where cycles can occur
				// that are not "terminated" via named types; and such cycles
				// can only be created via method parameter types that are
				// anonymous interfaces (directly or indirectly) embedding
				// the current interface. Example:
				//
				//    type T interface {
				//        m() interface{T}
				//    }
				//
				// If two such (differently named) interfaces are compared,
				// endless recursion occurs if the cycle is not detected.
				//
				// If x and y were compared before, they must be equal
				// (if they were not, the recursion would have stopped);
				// search the ifacePair stack for the same pair.
				//
				// This is a quadratic algorithm, but in practice these stacks
				// are extremely short (bounded by the nesting depth of interface
				// type declarations that recur via parameter types, an extremely
				// rare occurrence). An alternative implementation might use a
				// "visited" map, but that is probably less efficient overall.
				q := &ifacePair{x, y, p}
				for p != nil {
					if p.identical(q) {
						return true // same pair was compared before
					}
					p = p.prev
				}
				if debug {
					assertSortedMethods(a)
					assertSortedMethods(b)
				}
				for i, f := range a {
					g := b[i]
					if f.Id() != g.Id() || !u.nify(f.typ, g.typ, emode, q) {
						return false
					}
				}
				return true
			}
		}

	case *Map:
		// Two map types unify if their key and value types unify.
		if y, ok := y.(*Map); ok {
			return u.nify(x.key, y.key, emode, p) && u.nify(x.elem, y.elem, emode, p)
		}

	case *Chan:
		// Two channel types unify if their value types unify
		// and if they have the same direction.
		// The channel direction is ignored for inexact unification.
		if y, ok := y.(*Chan); ok {
			return (mode&exact == 0 || x.dir == y.dir) && u.nify(x.elem, y.elem, emode, p)
		}

	case *Named:
		// Two named types unify if their type names originate in the same type declaration.
		// If they are instantiated, their type argument lists must unify.
		if y, ok := y.(*Named); ok {
			// Check type arguments before origins so they unify
			// even if the origins don't match; for better error
			// messages (see go.dev/issue/53692).
			xargs := x.TypeArgs().list()
			yargs := y.TypeArgs().list()
			if len(xargs) != len(yargs) {
				return false
			}
			for i, xarg := range xargs {
				if !u.nify(xarg, yargs[i], mode, p) {
					return false
				}
			}
			return indenticalOrigin(x, y)
		}

	case *TypeParam:
		// x must be an unbound type parameter (see comment above).
		if debug {
			assert(u.asTypeParam(x) == nil)
		}
		// By definition, a valid type argument must be in the type set of
		// the respective type constraint. Therefore, the type argument's
		// underlying type must be in the set of underlying types of that
		// constraint. If there is a single such underlying type, it's the
		// constraint's core type. It must match the type argument's under-
		// lying type, irrespective of whether the actual type argument,
		// which may be a defined type, is actually in the type set (that
		// will be determined at instantiation time).
		// Thus, if we have the core type of an unbound type parameter,
		// we know the structure of the possible types satisfying such
		// parameters. Use that core type for further unification
		// (see go.dev/issue/50755 for a test case).
		if enableCoreTypeUnification {
			// Because the core type is always an underlying type,
			// unification will take care of matching against a
			// defined or literal type automatically.
			// If y is also an unbound type parameter, we will end
			// up here again with x and y swapped, so we don't
			// need to take care of that case separately.
			if cx := coreType(x); cx != nil {
				if traceInference {
					u.tracef("core %s ≡ %s", x, y)
				}
				// If y is a defined type, it may not match against cx which
				// is an underlying type (incl. int, string, etc.). Use assign
				// mode here so that the unifier automatically takes under(y)
				// if necessary.
				return u.nify(cx, y, assign, p)
			}
		}
		// x != y and there's nothing to do

	case nil:
		// avoid a crash in case of nil type

	default:
		panic(sprintf(nil, true, "u.nify(%s, %s, %d)", x, y, mode))
	}

	return false
}