aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/types2/signature.go
blob: d28e7b8944a7d5b38014cd9f67ee7f354ae6aa0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package types2

import (
	"cmd/compile/internal/syntax"
	"fmt"
)

// ----------------------------------------------------------------------------
// API

// A Signature represents a (non-builtin) function or method type.
// The receiver is ignored when comparing signatures for identity.
type Signature struct {
	// We need to keep the scope in Signature (rather than passing it around
	// and store it in the Func Object) because when type-checking a function
	// literal we call the general type checker which returns a general Type.
	// We then unpack the *Signature and use the scope for the literal body.
	rparams  *TParamList // receiver type parameters from left to right, or nil
	tparams  *TParamList // type parameters from left to right, or nil
	scope    *Scope      // function scope, present for package-local signatures
	recv     *Var        // nil if not a method
	params   *Tuple      // (incoming) parameters from left to right; or nil
	results  *Tuple      // (outgoing) results from left to right; or nil
	variadic bool        // true if the last parameter's type is of the form ...T (or string, for append built-in only)
}

// NewSignature returns a new function type for the given receiver, parameters,
// and results, either of which may be nil. If variadic is set, the function
// is variadic, it must have at least one parameter, and the last parameter
// must be of unnamed slice type.
func NewSignature(recv *Var, params, results *Tuple, variadic bool) *Signature {
	if variadic {
		n := params.Len()
		if n == 0 {
			panic("variadic function must have at least one parameter")
		}
		if _, ok := params.At(n - 1).typ.(*Slice); !ok {
			panic("variadic parameter must be of unnamed slice type")
		}
	}
	return &Signature{recv: recv, params: params, results: results, variadic: variadic}
}

// Recv returns the receiver of signature s (if a method), or nil if a
// function. It is ignored when comparing signatures for identity.
//
// For an abstract method, Recv returns the enclosing interface either
// as a *Named or an *Interface. Due to embedding, an interface may
// contain methods whose receiver type is a different interface.
func (s *Signature) Recv() *Var { return s.recv }

// TParams returns the type parameters of signature s, or nil.
func (s *Signature) TParams() *TParamList { return s.tparams }

// SetTParams sets the type parameters of signature s.
func (s *Signature) SetTParams(tparams []*TypeParam) { s.tparams = bindTParams(tparams) }

// RParams returns the receiver type parameters of signature s, or nil.
func (s *Signature) RParams() *TParamList { return s.rparams }

// SetRParams sets the receiver type params of signature s.
func (s *Signature) SetRParams(rparams []*TypeParam) { s.rparams = bindTParams(rparams) }

// Params returns the parameters of signature s, or nil.
func (s *Signature) Params() *Tuple { return s.params }

// Results returns the results of signature s, or nil.
func (s *Signature) Results() *Tuple { return s.results }

// Variadic reports whether the signature s is variadic.
func (s *Signature) Variadic() bool { return s.variadic }

func (s *Signature) Underlying() Type { return s }
func (s *Signature) String() string   { return TypeString(s, nil) }

// ----------------------------------------------------------------------------
// Implementation

// Disabled by default, but enabled when running tests (via types_test.go).
var acceptMethodTypeParams bool

// funcType type-checks a function or method type.
func (check *Checker) funcType(sig *Signature, recvPar *syntax.Field, tparams []*syntax.Field, ftyp *syntax.FuncType) {
	check.openScope(ftyp, "function")
	check.scope.isFunc = true
	check.recordScope(ftyp, check.scope)
	sig.scope = check.scope
	defer check.closeScope()

	var recvTyp syntax.Expr // rewritten receiver type; valid if != nil
	if recvPar != nil {
		// collect generic receiver type parameters, if any
		// - a receiver type parameter is like any other type parameter, except that it is declared implicitly
		// - the receiver specification acts as local declaration for its type parameters, which may be blank
		_, rname, rparams := check.unpackRecv(recvPar.Type, true)
		if len(rparams) > 0 {
			// Blank identifiers don't get declared and regular type-checking of the instantiated
			// parameterized receiver type expression fails in Checker.collectParams of receiver.
			// Identify blank type parameters and substitute each with a unique new identifier named
			// "n_" (where n is the parameter index) and which cannot conflict with any user-defined
			// name.
			var smap map[*syntax.Name]*syntax.Name // substitution map from "_" to "!n" identifiers
			for i, p := range rparams {
				if p.Value == "_" {
					new := *p
					new.Value = fmt.Sprintf("%d_", i)
					rparams[i] = &new // use n_ identifier instead of _ so it can be looked up
					if smap == nil {
						smap = make(map[*syntax.Name]*syntax.Name)
					}
					smap[p] = &new
				}
			}
			if smap != nil {
				// blank identifiers were found => use rewritten receiver type
				recvTyp = isubst(recvPar.Type, smap)
			}
			rlist := make([]*TypeParam, len(rparams))
			for i, rparam := range rparams {
				rlist[i] = check.declareTypeParam(rparam)
			}
			sig.rparams = bindTParams(rlist)
			// determine receiver type to get its type parameters
			// and the respective type parameter bounds
			var recvTParams []*TypeParam
			if rname != nil {
				// recv should be a Named type (otherwise an error is reported elsewhere)
				// Also: Don't report an error via genericType since it will be reported
				//       again when we type-check the signature.
				// TODO(gri) maybe the receiver should be marked as invalid instead?
				if recv := asNamed(check.genericType(rname, false)); recv != nil {
					recvTParams = recv.TParams().list()
				}
			}
			// provide type parameter bounds
			// - only do this if we have the right number (otherwise an error is reported elsewhere)
			if sig.RParams().Len() == len(recvTParams) {
				// We have a list of *TypeNames but we need a list of Types.
				list := make([]Type, sig.RParams().Len())
				for i, t := range sig.RParams().list() {
					list[i] = t
				}
				smap := makeSubstMap(recvTParams, list)
				for i, tpar := range sig.RParams().list() {
					bound := recvTParams[i].bound
					// bound is (possibly) parameterized in the context of the
					// receiver type declaration. Substitute parameters for the
					// current context.
					tpar.bound = check.subst(tpar.obj.pos, bound, smap, nil)
				}
			}
		}
	}

	if tparams != nil {
		sig.tparams = check.collectTypeParams(tparams)
		// Always type-check method type parameters but complain if they are not enabled.
		// (A separate check is needed when type-checking interface method signatures because
		// they don't have a receiver specification.)
		if recvPar != nil && !acceptMethodTypeParams {
			check.error(ftyp, "methods cannot have type parameters")
		}
	}

	// Value (non-type) parameters' scope starts in the function body. Use a temporary scope for their
	// declarations and then squash that scope into the parent scope (and report any redeclarations at
	// that time).
	scope := NewScope(check.scope, nopos, nopos, "function body (temp. scope)")
	var recvList []*Var // TODO(gri) remove the need for making a list here
	if recvPar != nil {
		recvList, _ = check.collectParams(scope, []*syntax.Field{recvPar}, recvTyp, false) // use rewritten receiver type, if any
	}
	params, variadic := check.collectParams(scope, ftyp.ParamList, nil, true)
	results, _ := check.collectParams(scope, ftyp.ResultList, nil, false)
	scope.Squash(func(obj, alt Object) {
		var err error_
		err.errorf(obj, "%s redeclared in this block", obj.Name())
		err.recordAltDecl(alt)
		check.report(&err)
	})

	if recvPar != nil {
		// recv parameter list present (may be empty)
		// spec: "The receiver is specified via an extra parameter section preceding the
		// method name. That parameter section must declare a single parameter, the receiver."
		var recv *Var
		switch len(recvList) {
		case 0:
			// error reported by resolver
			recv = NewParam(nopos, nil, "", Typ[Invalid]) // ignore recv below
		default:
			// more than one receiver
			check.error(recvList[len(recvList)-1].Pos(), "method must have exactly one receiver")
			fallthrough // continue with first receiver
		case 1:
			recv = recvList[0]
		}

		// TODO(gri) We should delay rtyp expansion to when we actually need the
		//           receiver; thus all checks here should be delayed to later.
		rtyp, _ := deref(recv.typ)

		// spec: "The receiver type must be of the form T or *T where T is a type name."
		// (ignore invalid types - error was reported before)
		if rtyp != Typ[Invalid] {
			var err string
			switch T := rtyp.(type) {
			case *Named:
				T.expand(nil)
				// spec: "The type denoted by T is called the receiver base type; it must not
				// be a pointer or interface type and it must be declared in the same package
				// as the method."
				if T.obj.pkg != check.pkg {
					err = "type not defined in this package"
					if check.conf.CompilerErrorMessages {
						check.errorf(recv.pos, "cannot define new methods on non-local type %s", recv.typ)
						err = ""
					}
				} else {
					// The underlying type of a receiver base type can be a type parameter;
					// e.g. for methods with a generic receiver T[P] with type T[P any] P.
					underIs(T, func(u Type) bool {
						switch u := u.(type) {
						case *Basic:
							// unsafe.Pointer is treated like a regular pointer
							if u.kind == UnsafePointer {
								err = "unsafe.Pointer"
								return false
							}
						case *Pointer, *Interface:
							err = "pointer or interface type"
							return false
						}
						return true
					})
				}
			case *Basic:
				err = "basic or unnamed type"
				if check.conf.CompilerErrorMessages {
					check.errorf(recv.pos, "cannot define new methods on non-local type %s", recv.typ)
					err = ""
				}
			default:
				check.errorf(recv.pos, "invalid receiver type %s", recv.typ)
			}
			if err != "" {
				check.errorf(recv.pos, "invalid receiver type %s (%s)", recv.typ, err)
				// ok to continue
			}
		}
		sig.recv = recv
	}

	sig.params = NewTuple(params...)
	sig.results = NewTuple(results...)
	sig.variadic = variadic
}

// collectParams declares the parameters of list in scope and returns the corresponding
// variable list. If type0 != nil, it is used instead of the first type in list.
func (check *Checker) collectParams(scope *Scope, list []*syntax.Field, type0 syntax.Expr, variadicOk bool) (params []*Var, variadic bool) {
	if list == nil {
		return
	}

	var named, anonymous bool

	var typ Type
	var prev syntax.Expr
	for i, field := range list {
		ftype := field.Type
		// type-check type of grouped fields only once
		if ftype != prev {
			prev = ftype
			if i == 0 && type0 != nil {
				ftype = type0
			}
			if t, _ := ftype.(*syntax.DotsType); t != nil {
				ftype = t.Elem
				if variadicOk && i == len(list)-1 {
					variadic = true
				} else {
					check.softErrorf(t, "can only use ... with final parameter in list")
					// ignore ... and continue
				}
			}
			typ = check.varType(ftype)
		}
		// The parser ensures that f.Tag is nil and we don't
		// care if a constructed AST contains a non-nil tag.
		if field.Name != nil {
			// named parameter
			name := field.Name.Value
			if name == "" {
				check.error(field.Name, invalidAST+"anonymous parameter")
				// ok to continue
			}
			par := NewParam(field.Name.Pos(), check.pkg, name, typ)
			check.declare(scope, field.Name, par, scope.pos)
			params = append(params, par)
			named = true
		} else {
			// anonymous parameter
			par := NewParam(field.Pos(), check.pkg, "", typ)
			check.recordImplicit(field, par)
			params = append(params, par)
			anonymous = true
		}
	}

	if named && anonymous {
		check.error(list[0], invalidAST+"list contains both named and anonymous parameters")
		// ok to continue
	}

	// For a variadic function, change the last parameter's type from T to []T.
	// Since we type-checked T rather than ...T, we also need to retro-actively
	// record the type for ...T.
	if variadic {
		last := params[len(params)-1]
		last.typ = &Slice{elem: last.typ}
		check.recordTypeAndValue(list[len(list)-1].Type, typexpr, last.typ, nil)
	}

	return
}

// isubst returns an x with identifiers substituted per the substitution map smap.
// isubst only handles the case of (valid) method receiver type expressions correctly.
func isubst(x syntax.Expr, smap map[*syntax.Name]*syntax.Name) syntax.Expr {
	switch n := x.(type) {
	case *syntax.Name:
		if alt := smap[n]; alt != nil {
			return alt
		}
	// case *syntax.StarExpr:
	// 	X := isubst(n.X, smap)
	// 	if X != n.X {
	// 		new := *n
	// 		new.X = X
	// 		return &new
	// 	}
	case *syntax.Operation:
		if n.Op == syntax.Mul && n.Y == nil {
			X := isubst(n.X, smap)
			if X != n.X {
				new := *n
				new.X = X
				return &new
			}
		}
	case *syntax.IndexExpr:
		Index := isubst(n.Index, smap)
		if Index != n.Index {
			new := *n
			new.Index = Index
			return &new
		}
	case *syntax.ListExpr:
		var elems []syntax.Expr
		for i, elem := range n.ElemList {
			new := isubst(elem, smap)
			if new != elem {
				if elems == nil {
					elems = make([]syntax.Expr, len(n.ElemList))
					copy(elems, n.ElemList)
				}
				elems[i] = new
			}
		}
		if elems != nil {
			new := *n
			new.ElemList = elems
			return &new
		}
	case *syntax.ParenExpr:
		return isubst(n.X, smap) // no need to keep parentheses
	default:
		// Other receiver type expressions are invalid.
		// It's fine to ignore those here as they will
		// be checked elsewhere.
	}
	return x
}