aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/types2/decl.go
blob: d7a33546aa4478391e33a86f442a1131002f4ae6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package types2

import (
	"cmd/compile/internal/syntax"
	"fmt"
	"go/constant"
)

func (err *error_) recordAltDecl(obj Object) {
	if pos := obj.Pos(); pos.IsKnown() {
		// We use "other" rather than "previous" here because
		// the first declaration seen may not be textually
		// earlier in the source.
		err.errorf(pos, "other declaration of %s", obj.Name())
	}
}

func (check *Checker) declare(scope *Scope, id *syntax.Name, obj Object, pos syntax.Pos) {
	// spec: "The blank identifier, represented by the underscore
	// character _, may be used in a declaration like any other
	// identifier but the declaration does not introduce a new
	// binding."
	if obj.Name() != "_" {
		if alt := scope.Insert(obj); alt != nil {
			var err error_
			err.errorf(obj, "%s redeclared in this block", obj.Name())
			err.recordAltDecl(alt)
			check.report(&err)
			return
		}
		obj.setScopePos(pos)
	}
	if id != nil {
		check.recordDef(id, obj)
	}
}

// pathString returns a string of the form a->b-> ... ->g for a path [a, b, ... g].
func pathString(path []Object) string {
	var s string
	for i, p := range path {
		if i > 0 {
			s += "->"
		}
		s += p.Name()
	}
	return s
}

// objDecl type-checks the declaration of obj in its respective (file) context.
// For the meaning of def, see Checker.definedType, in typexpr.go.
func (check *Checker) objDecl(obj Object, def *Named) {
	if check.conf.Trace && obj.Type() == nil {
		if check.indent == 0 {
			fmt.Println() // empty line between top-level objects for readability
		}
		check.trace(obj.Pos(), "-- checking %s (%s, objPath = %s)", obj, obj.color(), pathString(check.objPath))
		check.indent++
		defer func() {
			check.indent--
			check.trace(obj.Pos(), "=> %s (%s)", obj, obj.color())
		}()
	}

	// Checking the declaration of obj means inferring its type
	// (and possibly its value, for constants).
	// An object's type (and thus the object) may be in one of
	// three states which are expressed by colors:
	//
	// - an object whose type is not yet known is painted white (initial color)
	// - an object whose type is in the process of being inferred is painted grey
	// - an object whose type is fully inferred is painted black
	//
	// During type inference, an object's color changes from white to grey
	// to black (pre-declared objects are painted black from the start).
	// A black object (i.e., its type) can only depend on (refer to) other black
	// ones. White and grey objects may depend on white and black objects.
	// A dependency on a grey object indicates a cycle which may or may not be
	// valid.
	//
	// When objects turn grey, they are pushed on the object path (a stack);
	// they are popped again when they turn black. Thus, if a grey object (a
	// cycle) is encountered, it is on the object path, and all the objects
	// it depends on are the remaining objects on that path. Color encoding
	// is such that the color value of a grey object indicates the index of
	// that object in the object path.

	// During type-checking, white objects may be assigned a type without
	// traversing through objDecl; e.g., when initializing constants and
	// variables. Update the colors of those objects here (rather than
	// everywhere where we set the type) to satisfy the color invariants.
	if obj.color() == white && obj.Type() != nil {
		obj.setColor(black)
		return
	}

	switch obj.color() {
	case white:
		assert(obj.Type() == nil)
		// All color values other than white and black are considered grey.
		// Because black and white are < grey, all values >= grey are grey.
		// Use those values to encode the object's index into the object path.
		obj.setColor(grey + color(check.push(obj)))
		defer func() {
			check.pop().setColor(black)
		}()

	case black:
		assert(obj.Type() != nil)
		return

	default:
		// Color values other than white or black are considered grey.
		fallthrough

	case grey:
		// We have a cycle.
		// In the existing code, this is marked by a non-nil type
		// for the object except for constants and variables whose
		// type may be non-nil (known), or nil if it depends on the
		// not-yet known initialization value.
		// In the former case, set the type to Typ[Invalid] because
		// we have an initialization cycle. The cycle error will be
		// reported later, when determining initialization order.
		// TODO(gri) Report cycle here and simplify initialization
		// order code.
		switch obj := obj.(type) {
		case *Const:
			if check.cycle(obj) || obj.typ == nil {
				obj.typ = Typ[Invalid]
			}

		case *Var:
			if check.cycle(obj) || obj.typ == nil {
				obj.typ = Typ[Invalid]
			}

		case *TypeName:
			if check.cycle(obj) {
				// break cycle
				// (without this, calling underlying()
				// below may lead to an endless loop
				// if we have a cycle for a defined
				// (*Named) type)
				obj.typ = Typ[Invalid]
			}

		case *Func:
			if check.cycle(obj) {
				// Don't set obj.typ to Typ[Invalid] here
				// because plenty of code type-asserts that
				// functions have a *Signature type. Grey
				// functions have their type set to an empty
				// signature which makes it impossible to
				// initialize a variable with the function.
			}

		default:
			unreachable()
		}
		assert(obj.Type() != nil)
		return
	}

	d := check.objMap[obj]
	if d == nil {
		check.dump("%v: %s should have been declared", obj.Pos(), obj)
		unreachable()
	}

	// save/restore current context and setup object context
	defer func(ctxt context) {
		check.context = ctxt
	}(check.context)
	check.context = context{
		scope: d.file,
	}

	// Const and var declarations must not have initialization
	// cycles. We track them by remembering the current declaration
	// in check.decl. Initialization expressions depending on other
	// consts, vars, or functions, add dependencies to the current
	// check.decl.
	switch obj := obj.(type) {
	case *Const:
		check.decl = d // new package-level const decl
		check.constDecl(obj, d.vtyp, d.init, d.inherited)
	case *Var:
		check.decl = d // new package-level var decl
		check.varDecl(obj, d.lhs, d.vtyp, d.init)
	case *TypeName:
		// invalid recursive types are detected via path
		check.typeDecl(obj, d.tdecl, def)
		check.collectMethods(obj) // methods can only be added to top-level types
	case *Func:
		// functions may be recursive - no need to track dependencies
		check.funcDecl(obj, d)
	default:
		unreachable()
	}
}

// cycle checks if the cycle starting with obj is valid and
// reports an error if it is not.
func (check *Checker) cycle(obj Object) (isCycle bool) {
	// The object map contains the package scope objects and the non-interface methods.
	if debug {
		info := check.objMap[obj]
		inObjMap := info != nil && (info.fdecl == nil || info.fdecl.Recv == nil) // exclude methods
		isPkgObj := obj.Parent() == check.pkg.scope
		if isPkgObj != inObjMap {
			check.dump("%v: inconsistent object map for %s (isPkgObj = %v, inObjMap = %v)", obj.Pos(), obj, isPkgObj, inObjMap)
			unreachable()
		}
	}

	// Count cycle objects.
	assert(obj.color() >= grey)
	start := obj.color() - grey // index of obj in objPath
	cycle := check.objPath[start:]
	nval := 0 // number of (constant or variable) values in the cycle
	ndef := 0 // number of type definitions in the cycle
	for _, obj := range cycle {
		switch obj := obj.(type) {
		case *Const, *Var:
			nval++
		case *TypeName:
			// Determine if the type name is an alias or not. For
			// package-level objects, use the object map which
			// provides syntactic information (which doesn't rely
			// on the order in which the objects are set up). For
			// local objects, we can rely on the order, so use
			// the object's predicate.
			// TODO(gri) It would be less fragile to always access
			// the syntactic information. We should consider storing
			// this information explicitly in the object.
			var alias bool
			if d := check.objMap[obj]; d != nil {
				alias = d.tdecl.Alias // package-level object
			} else {
				alias = obj.IsAlias() // function local object
			}
			if !alias {
				ndef++
			}
		case *Func:
			// ignored for now
		default:
			unreachable()
		}
	}

	if check.conf.Trace {
		check.trace(obj.Pos(), "## cycle detected: objPath = %s->%s (len = %d)", pathString(cycle), obj.Name(), len(cycle))
		check.trace(obj.Pos(), "## cycle contains: %d values, %d type definitions", nval, ndef)
		defer func() {
			if isCycle {
				check.trace(obj.Pos(), "=> error: cycle is invalid")
			}
		}()
	}

	// A cycle involving only constants and variables is invalid but we
	// ignore them here because they are reported via the initialization
	// cycle check.
	if nval == len(cycle) {
		return false
	}

	// A cycle involving only types (and possibly functions) must have at least
	// one type definition to be permitted: If there is no type definition, we
	// have a sequence of alias type names which will expand ad infinitum.
	if nval == 0 && ndef > 0 {
		return false // cycle is permitted
	}

	check.cycleError(cycle)

	return true
}

type typeInfo uint

// validType verifies that the given type does not "expand" infinitely
// producing a cycle in the type graph. Cycles are detected by marking
// defined types.
// (Cycles involving alias types, as in "type A = [10]A" are detected
// earlier, via the objDecl cycle detection mechanism.)
func (check *Checker) validType(typ Type, path []Object) typeInfo {
	const (
		unknown typeInfo = iota
		marked
		valid
		invalid
	)

	switch t := typ.(type) {
	case *Array:
		return check.validType(t.elem, path)

	case *Struct:
		for _, f := range t.fields {
			if check.validType(f.typ, path) == invalid {
				return invalid
			}
		}

	case *Interface:
		for _, etyp := range t.embeddeds {
			if check.validType(etyp, path) == invalid {
				return invalid
			}
		}

	case *Named:
		t.expand(check.typMap)

		// don't touch the type if it is from a different package or the Universe scope
		// (doing so would lead to a race condition - was issue #35049)
		if t.obj.pkg != check.pkg {
			return valid
		}

		// don't report a 2nd error if we already know the type is invalid
		// (e.g., if a cycle was detected earlier, via under).
		if t.underlying == Typ[Invalid] {
			t.info = invalid
			return invalid
		}

		switch t.info {
		case unknown:
			t.info = marked
			t.info = check.validType(t.fromRHS, append(path, t.obj)) // only types of current package added to path
		case marked:
			// cycle detected
			for i, tn := range path {
				if t.obj.pkg != check.pkg {
					panic("type cycle via package-external type")
				}
				if tn == t.obj {
					check.cycleError(path[i:])
					t.info = invalid
					return t.info
				}
			}
			panic("cycle start not found")
		}
		return t.info
	}

	return valid
}

// cycleError reports a declaration cycle starting with
// the object in cycle that is "first" in the source.
func (check *Checker) cycleError(cycle []Object) {
	// TODO(gri) Should we start with the last (rather than the first) object in the cycle
	//           since that is the earliest point in the source where we start seeing the
	//           cycle? That would be more consistent with other error messages.
	i := firstInSrc(cycle)
	obj := cycle[i]
	var err error_
	if check.conf.CompilerErrorMessages {
		err.errorf(obj, "invalid recursive type %s", obj.Name())
	} else {
		err.errorf(obj, "illegal cycle in declaration of %s", obj.Name())
	}
	for range cycle {
		err.errorf(obj, "%s refers to", obj.Name())
		i++
		if i >= len(cycle) {
			i = 0
		}
		obj = cycle[i]
	}
	err.errorf(obj, "%s", obj.Name())
	check.report(&err)
}

// firstInSrc reports the index of the object with the "smallest"
// source position in path. path must not be empty.
func firstInSrc(path []Object) int {
	fst, pos := 0, path[0].Pos()
	for i, t := range path[1:] {
		if t.Pos().Cmp(pos) < 0 {
			fst, pos = i+1, t.Pos()
		}
	}
	return fst
}

func (check *Checker) constDecl(obj *Const, typ, init syntax.Expr, inherited bool) {
	assert(obj.typ == nil)

	// use the correct value of iota and errpos
	defer func(iota constant.Value, errpos syntax.Pos) {
		check.iota = iota
		check.errpos = errpos
	}(check.iota, check.errpos)
	check.iota = obj.val
	check.errpos = nopos

	// provide valid constant value under all circumstances
	obj.val = constant.MakeUnknown()

	// determine type, if any
	if typ != nil {
		t := check.typ(typ)
		if !isConstType(t) {
			// don't report an error if the type is an invalid C (defined) type
			// (issue #22090)
			if under(t) != Typ[Invalid] {
				check.errorf(typ, "invalid constant type %s", t)
			}
			obj.typ = Typ[Invalid]
			return
		}
		obj.typ = t
	}

	// check initialization
	var x operand
	if init != nil {
		if inherited {
			// The initialization expression is inherited from a previous
			// constant declaration, and (error) positions refer to that
			// expression and not the current constant declaration. Use
			// the constant identifier position for any errors during
			// init expression evaluation since that is all we have
			// (see issues #42991, #42992).
			check.errpos = obj.pos
		}
		check.expr(&x, init)
	}
	check.initConst(obj, &x)
}

func (check *Checker) varDecl(obj *Var, lhs []*Var, typ, init syntax.Expr) {
	assert(obj.typ == nil)

	// If we have undefined variable types due to errors,
	// mark variables as used to avoid follow-on errors.
	// Matches compiler behavior.
	defer func() {
		if obj.typ == Typ[Invalid] {
			obj.used = true
		}
		for _, lhs := range lhs {
			if lhs.typ == Typ[Invalid] {
				lhs.used = true
			}
		}
	}()

	// determine type, if any
	if typ != nil {
		obj.typ = check.varType(typ)
		// We cannot spread the type to all lhs variables if there
		// are more than one since that would mark them as checked
		// (see Checker.objDecl) and the assignment of init exprs,
		// if any, would not be checked.
		//
		// TODO(gri) If we have no init expr, we should distribute
		// a given type otherwise we need to re-evalate the type
		// expr for each lhs variable, leading to duplicate work.
	}

	// check initialization
	if init == nil {
		if typ == nil {
			// error reported before by arityMatch
			obj.typ = Typ[Invalid]
		}
		return
	}

	if lhs == nil || len(lhs) == 1 {
		assert(lhs == nil || lhs[0] == obj)
		var x operand
		check.expr(&x, init)
		check.initVar(obj, &x, "variable declaration")
		return
	}

	if debug {
		// obj must be one of lhs
		found := false
		for _, lhs := range lhs {
			if obj == lhs {
				found = true
				break
			}
		}
		if !found {
			panic("inconsistent lhs")
		}
	}

	// We have multiple variables on the lhs and one init expr.
	// Make sure all variables have been given the same type if
	// one was specified, otherwise they assume the type of the
	// init expression values (was issue #15755).
	if typ != nil {
		for _, lhs := range lhs {
			lhs.typ = obj.typ
		}
	}

	check.initVars(lhs, []syntax.Expr{init}, nopos)
}

// isImportedConstraint reports whether typ is an imported type constraint.
func (check *Checker) isImportedConstraint(typ Type) bool {
	named, _ := typ.(*Named)
	if named == nil || named.obj.pkg == check.pkg || named.obj.pkg == nil {
		return false
	}
	u, _ := named.under().(*Interface)
	return u != nil && u.IsConstraint()
}

func (check *Checker) typeDecl(obj *TypeName, tdecl *syntax.TypeDecl, def *Named) {
	assert(obj.typ == nil)

	var rhs Type
	check.later(func() {
		check.validType(obj.typ, nil)
		// If typ is local, an error was already reported where typ is specified/defined.
		if check.isImportedConstraint(rhs) && !check.allowVersion(check.pkg, 1, 18) {
			check.errorf(tdecl.Type.Pos(), "using type constraint %s requires go1.18 or later", rhs)
		}
	})

	alias := tdecl.Alias
	if alias && tdecl.TParamList != nil {
		// The parser will ensure this but we may still get an invalid AST.
		// Complain and continue as regular type definition.
		check.error(tdecl, "generic type cannot be alias")
		alias = false
	}

	// alias declaration
	if alias {
		if !check.allowVersion(check.pkg, 1, 9) {
			if check.conf.CompilerErrorMessages {
				check.error(tdecl, "type aliases only supported as of -lang=go1.9")
			} else {
				check.error(tdecl, "type aliases requires go1.9 or later")
			}
		}

		obj.typ = Typ[Invalid]
		rhs = check.anyType(tdecl.Type)
		obj.typ = rhs
		return
	}

	// type definition or generic type declaration
	named := check.newNamed(obj, nil, nil, nil, nil)
	def.setUnderlying(named)

	if tdecl.TParamList != nil {
		check.openScope(tdecl, "type parameters")
		defer check.closeScope()
		named.tparams = check.collectTypeParams(tdecl.TParamList)
	}

	// determine underlying type of named
	rhs = check.definedType(tdecl.Type, named)
	assert(rhs != nil)
	named.fromRHS = rhs
	// The underlying type of named may be itself a named type that is
	// incomplete:
	//
	//	type (
	//		A B
	//		B *C
	//		C A
	//	)
	//
	// The type of C is the (named) type of A which is incomplete,
	// and which has as its underlying type the named type B.
	// Determine the (final, unnamed) underlying type by resolving
	// any forward chain.
	// TODO(gri) Investigate if we can just use named.fromRHS here
	//           and rely on lazy computation of the underlying type.
	named.underlying = under(named)

	// If the RHS is a type parameter, it must be from this type declaration.
	if tpar, _ := named.underlying.(*TypeParam); tpar != nil && tparamIndex(named.TParams().list(), tpar) < 0 {
		check.errorf(tdecl.Type, "cannot use function type parameter %s as RHS in type declaration", tpar)
		named.underlying = Typ[Invalid]
	}
}

func (check *Checker) collectTypeParams(list []*syntax.Field) *TParamList {
	tparams := make([]*TypeParam, len(list))

	// Declare type parameters up-front.
	// The scope of type parameters starts at the beginning of the type parameter
	// list (so we can have mutually recursive parameterized type bounds).
	for i, f := range list {
		tparams[i] = check.declareTypeParam(f.Name)
	}

	var bound Type
	for i, f := range list {
		// Optimization: Re-use the previous type bound if it hasn't changed.
		// This also preserves the grouped output of type parameter lists
		// when printing type strings.
		if i == 0 || f.Type != list[i-1].Type {
			bound = check.boundType(f.Type)
		}
		tparams[i].bound = bound
	}

	return bindTParams(tparams)
}

func (check *Checker) declareTypeParam(name *syntax.Name) *TypeParam {
	tname := NewTypeName(name.Pos(), check.pkg, name.Value, nil)
	tpar := check.NewTypeParam(tname, nil)                   // assigns type to tname as a side-effect
	check.declare(check.scope, name, tname, check.scope.pos) // TODO(gri) check scope position
	return tpar
}

// boundType type-checks the type expression e and returns its type, or Typ[Invalid].
// The type must be an interface, including the predeclared type "any".
func (check *Checker) boundType(e syntax.Expr) Type {
	// The predeclared identifier "any" is visible only as a type bound in a type parameter list.
	// If we allow "any" for general use, this if-statement can be removed (issue #33232).
	if name, _ := unparen(e).(*syntax.Name); name != nil && name.Value == "any" && check.lookup("any") == universeAny {
		return universeAny.Type()
	}

	bound := check.typ(e)
	check.later(func() {
		u := under(bound)
		if _, ok := u.(*Interface); !ok && u != Typ[Invalid] {
			check.errorf(e, "%s is not an interface", bound)
		}
	})
	return bound
}

func (check *Checker) collectMethods(obj *TypeName) {
	// get associated methods
	// (Checker.collectObjects only collects methods with non-blank names;
	// Checker.resolveBaseTypeName ensures that obj is not an alias name
	// if it has attached methods.)
	methods := check.methods[obj]
	if methods == nil {
		return
	}
	delete(check.methods, obj)
	assert(!check.objMap[obj].tdecl.Alias) // don't use TypeName.IsAlias (requires fully set up object)

	// use an objset to check for name conflicts
	var mset objset

	// spec: "If the base type is a struct type, the non-blank method
	// and field names must be distinct."
	base := asNamed(obj.typ) // shouldn't fail but be conservative
	if base != nil {
		u := safeUnderlying(base) // base should be expanded, but use safeUnderlying to be conservative
		if t, _ := u.(*Struct); t != nil {
			for _, fld := range t.fields {
				if fld.name != "_" {
					assert(mset.insert(fld) == nil)
				}
			}
		}

		// Checker.Files may be called multiple times; additional package files
		// may add methods to already type-checked types. Add pre-existing methods
		// so that we can detect redeclarations.
		for _, m := range base.methods {
			assert(m.name != "_")
			assert(mset.insert(m) == nil)
		}
	}

	// add valid methods
	for _, m := range methods {
		// spec: "For a base type, the non-blank names of methods bound
		// to it must be unique."
		assert(m.name != "_")
		if alt := mset.insert(m); alt != nil {
			var err error_
			switch alt.(type) {
			case *Var:
				err.errorf(m.pos, "field and method with the same name %s", m.name)
			case *Func:
				if check.conf.CompilerErrorMessages {
					err.errorf(m.pos, "%s.%s redeclared in this block", obj.Name(), m.name)
				} else {
					err.errorf(m.pos, "method %s already declared for %s", m.name, obj)
				}
			default:
				unreachable()
			}
			err.recordAltDecl(alt)
			check.report(&err)
			continue
		}

		if base != nil {
			base.load() // TODO(mdempsky): Probably unnecessary.
			base.methods = append(base.methods, m)
		}
	}
}

func (check *Checker) funcDecl(obj *Func, decl *declInfo) {
	assert(obj.typ == nil)

	// func declarations cannot use iota
	assert(check.iota == nil)

	sig := new(Signature)
	obj.typ = sig // guard against cycles

	// Avoid cycle error when referring to method while type-checking the signature.
	// This avoids a nuisance in the best case (non-parameterized receiver type) and
	// since the method is not a type, we get an error. If we have a parameterized
	// receiver type, instantiating the receiver type leads to the instantiation of
	// its methods, and we don't want a cycle error in that case.
	// TODO(gri) review if this is correct and/or whether we still need this?
	saved := obj.color_
	obj.color_ = black
	fdecl := decl.fdecl
	check.funcType(sig, fdecl.Recv, fdecl.TParamList, fdecl.Type)
	obj.color_ = saved

	if len(fdecl.TParamList) > 0 && fdecl.Body == nil {
		check.softErrorf(fdecl, "parameterized function is missing function body")
	}

	// function body must be type-checked after global declarations
	// (functions implemented elsewhere have no body)
	if !check.conf.IgnoreFuncBodies && fdecl.Body != nil {
		check.later(func() {
			check.funcBody(decl, obj.name, sig, fdecl.Body, nil)
		})
	}
}

func (check *Checker) declStmt(list []syntax.Decl) {
	pkg := check.pkg

	first := -1                // index of first ConstDecl in the current group, or -1
	var last *syntax.ConstDecl // last ConstDecl with init expressions, or nil
	for index, decl := range list {
		if _, ok := decl.(*syntax.ConstDecl); !ok {
			first = -1 // we're not in a constant declaration
		}

		switch s := decl.(type) {
		case *syntax.ConstDecl:
			top := len(check.delayed)

			// iota is the index of the current constDecl within the group
			if first < 0 || list[index-1].(*syntax.ConstDecl).Group != s.Group {
				first = index
				last = nil
			}
			iota := constant.MakeInt64(int64(index - first))

			// determine which initialization expressions to use
			inherited := true
			switch {
			case s.Type != nil || s.Values != nil:
				last = s
				inherited = false
			case last == nil:
				last = new(syntax.ConstDecl) // make sure last exists
				inherited = false
			}

			// declare all constants
			lhs := make([]*Const, len(s.NameList))
			values := unpackExpr(last.Values)
			for i, name := range s.NameList {
				obj := NewConst(name.Pos(), pkg, name.Value, nil, iota)
				lhs[i] = obj

				var init syntax.Expr
				if i < len(values) {
					init = values[i]
				}

				check.constDecl(obj, last.Type, init, inherited)
			}

			// Constants must always have init values.
			check.arity(s.Pos(), s.NameList, values, true, inherited)

			// process function literals in init expressions before scope changes
			check.processDelayed(top)

			// spec: "The scope of a constant or variable identifier declared
			// inside a function begins at the end of the ConstSpec or VarSpec
			// (ShortVarDecl for short variable declarations) and ends at the
			// end of the innermost containing block."
			scopePos := syntax.EndPos(s)
			for i, name := range s.NameList {
				check.declare(check.scope, name, lhs[i], scopePos)
			}

		case *syntax.VarDecl:
			top := len(check.delayed)

			lhs0 := make([]*Var, len(s.NameList))
			for i, name := range s.NameList {
				lhs0[i] = NewVar(name.Pos(), pkg, name.Value, nil)
			}

			// initialize all variables
			values := unpackExpr(s.Values)
			for i, obj := range lhs0 {
				var lhs []*Var
				var init syntax.Expr
				switch len(values) {
				case len(s.NameList):
					// lhs and rhs match
					init = values[i]
				case 1:
					// rhs is expected to be a multi-valued expression
					lhs = lhs0
					init = values[0]
				default:
					if i < len(values) {
						init = values[i]
					}
				}
				check.varDecl(obj, lhs, s.Type, init)
				if len(values) == 1 {
					// If we have a single lhs variable we are done either way.
					// If we have a single rhs expression, it must be a multi-
					// valued expression, in which case handling the first lhs
					// variable will cause all lhs variables to have a type
					// assigned, and we are done as well.
					if debug {
						for _, obj := range lhs0 {
							assert(obj.typ != nil)
						}
					}
					break
				}
			}

			// If we have no type, we must have values.
			if s.Type == nil || values != nil {
				check.arity(s.Pos(), s.NameList, values, false, false)
			}

			// process function literals in init expressions before scope changes
			check.processDelayed(top)

			// declare all variables
			// (only at this point are the variable scopes (parents) set)
			scopePos := syntax.EndPos(s) // see constant declarations
			for i, name := range s.NameList {
				// see constant declarations
				check.declare(check.scope, name, lhs0[i], scopePos)
			}

		case *syntax.TypeDecl:
			obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Value, nil)
			// spec: "The scope of a type identifier declared inside a function
			// begins at the identifier in the TypeSpec and ends at the end of
			// the innermost containing block."
			scopePos := s.Name.Pos()
			check.declare(check.scope, s.Name, obj, scopePos)
			// mark and unmark type before calling typeDecl; its type is still nil (see Checker.objDecl)
			obj.setColor(grey + color(check.push(obj)))
			check.typeDecl(obj, s, nil)
			check.pop().setColor(black)

		default:
			check.errorf(s, invalidAST+"unknown syntax.Decl node %T", s)
		}
	}
}