aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/types2/call.go
blob: 0b062b4c94d263d7b9597711faed53394c32a76d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements typechecking of call and selector expressions.

package types2

import (
	"cmd/compile/internal/syntax"
	"strings"
	"unicode"
)

// funcInst type-checks a function instantiation inst and returns the result in x.
// The operand x must be the evaluation of inst.X and its type must be a signature.
func (check *Checker) funcInst(x *operand, inst *syntax.IndexExpr) {
	if !check.allowVersion(check.pkg, 1, 18) {
		check.softErrorf(inst.Pos(), "function instantiation requires go1.18 or later")
	}

	xlist := unpackExpr(inst.Index)
	targs := check.typeList(xlist)
	if targs == nil {
		x.mode = invalid
		x.expr = inst
		return
	}
	assert(len(targs) == len(xlist))

	// check number of type arguments (got) vs number of type parameters (want)
	sig := x.typ.(*Signature)
	got, want := len(targs), sig.TParams().Len()
	if !useConstraintTypeInference && got != want || got > want {
		check.errorf(xlist[got-1], "got %d type arguments but want %d", got, want)
		x.mode = invalid
		x.expr = inst
		return
	}

	// if we don't have enough type arguments, try type inference
	inferred := false
	if got < want {
		targs = check.infer(inst.Pos(), sig.TParams().list(), targs, nil, nil, true)
		if targs == nil {
			// error was already reported
			x.mode = invalid
			x.expr = inst
			return
		}
		got = len(targs)
		inferred = true
	}
	assert(got == want)

	// determine argument positions (for error reporting)
	poslist := make([]syntax.Pos, len(xlist))
	for i, x := range xlist {
		poslist[i] = syntax.StartPos(x)
	}

	// instantiate function signature
	res := check.instantiate(x.Pos(), sig, targs, poslist).(*Signature)
	assert(res.TParams().Len() == 0) // signature is not generic anymore
	if inferred {
		check.recordInferred(inst, targs, res)
	}
	x.typ = res
	x.mode = value
	x.expr = inst
}

func (check *Checker) callExpr(x *operand, call *syntax.CallExpr) exprKind {
	var inst *syntax.IndexExpr // function instantiation, if any
	if iexpr, _ := call.Fun.(*syntax.IndexExpr); iexpr != nil {
		if check.indexExpr(x, iexpr) {
			// Delay function instantiation to argument checking,
			// where we combine type and value arguments for type
			// inference.
			assert(x.mode == value)
			inst = iexpr
		}
		x.expr = iexpr
		check.record(x)
	} else {
		check.exprOrType(x, call.Fun)
	}

	switch x.mode {
	case invalid:
		check.use(call.ArgList...)
		x.expr = call
		return statement

	case typexpr:
		// conversion
		T := x.typ
		x.mode = invalid
		switch n := len(call.ArgList); n {
		case 0:
			check.errorf(call, "missing argument in conversion to %s", T)
		case 1:
			check.expr(x, call.ArgList[0])
			if x.mode != invalid {
				if t := asInterface(T); t != nil {
					if t.IsConstraint() {
						check.errorf(call, "cannot use interface %s in conversion (contains type list or is comparable)", T)
						break
					}
				}
				if call.HasDots {
					check.errorf(call.ArgList[0], "invalid use of ... in type conversion to %s", T)
					break
				}
				check.conversion(x, T)
			}
		default:
			check.use(call.ArgList...)
			check.errorf(call.ArgList[n-1], "too many arguments in conversion to %s", T)
		}
		x.expr = call
		return conversion

	case builtin:
		id := x.id
		if !check.builtin(x, call, id) {
			x.mode = invalid
		}
		x.expr = call
		// a non-constant result implies a function call
		if x.mode != invalid && x.mode != constant_ {
			check.hasCallOrRecv = true
		}
		return predeclaredFuncs[id].kind
	}

	// ordinary function/method call
	cgocall := x.mode == cgofunc

	sig := asSignature(x.typ)
	if sig == nil {
		check.errorf(x, invalidOp+"cannot call non-function %s", x)
		x.mode = invalid
		x.expr = call
		return statement
	}

	// evaluate type arguments, if any
	var targs []Type
	if inst != nil {
		xlist := unpackExpr(inst.Index)
		targs = check.typeList(xlist)
		if targs == nil {
			check.use(call.ArgList...)
			x.mode = invalid
			x.expr = call
			return statement
		}
		assert(len(targs) == len(xlist))

		// check number of type arguments (got) vs number of type parameters (want)
		got, want := len(targs), sig.TParams().Len()
		if got > want {
			check.errorf(xlist[want], "got %d type arguments but want %d", got, want)
			check.use(call.ArgList...)
			x.mode = invalid
			x.expr = call
			return statement
		}
	}

	// evaluate arguments
	args, _ := check.exprList(call.ArgList, false)
	sig = check.arguments(call, sig, targs, args)

	// determine result
	switch sig.results.Len() {
	case 0:
		x.mode = novalue
	case 1:
		if cgocall {
			x.mode = commaerr
		} else {
			x.mode = value
		}
		x.typ = sig.results.vars[0].typ // unpack tuple
	default:
		x.mode = value
		x.typ = sig.results
	}
	x.expr = call
	check.hasCallOrRecv = true

	// if type inference failed, a parametrized result must be invalidated
	// (operands cannot have a parametrized type)
	if x.mode == value && sig.TParams().Len() > 0 && isParameterized(sig.TParams().list(), x.typ) {
		x.mode = invalid
	}

	return statement
}

func (check *Checker) exprList(elist []syntax.Expr, allowCommaOk bool) (xlist []*operand, commaOk bool) {
	switch len(elist) {
	case 0:
		// nothing to do

	case 1:
		// single (possibly comma-ok) value, or function returning multiple values
		e := elist[0]
		var x operand
		check.multiExpr(&x, e)
		if t, ok := x.typ.(*Tuple); ok && x.mode != invalid {
			// multiple values
			xlist = make([]*operand, t.Len())
			for i, v := range t.vars {
				xlist[i] = &operand{mode: value, expr: e, typ: v.typ}
			}
			break
		}

		// exactly one (possibly invalid or comma-ok) value
		xlist = []*operand{&x}
		if allowCommaOk && (x.mode == mapindex || x.mode == commaok || x.mode == commaerr) {
			x.mode = value
			xlist = append(xlist, &operand{mode: value, expr: e, typ: Typ[UntypedBool]})
			commaOk = true
		}

	default:
		// multiple (possibly invalid) values
		xlist = make([]*operand, len(elist))
		for i, e := range elist {
			var x operand
			check.expr(&x, e)
			xlist[i] = &x
		}
	}

	return
}

func (check *Checker) arguments(call *syntax.CallExpr, sig *Signature, targs []Type, args []*operand) (rsig *Signature) {
	rsig = sig

	// TODO(gri) try to eliminate this extra verification loop
	for _, a := range args {
		switch a.mode {
		case typexpr:
			check.errorf(a, "%s used as value", a)
			return
		case invalid:
			return
		}
	}

	// Function call argument/parameter count requirements
	//
	//               | standard call    | dotdotdot call |
	// --------------+------------------+----------------+
	// standard func | nargs == npars   | invalid        |
	// --------------+------------------+----------------+
	// variadic func | nargs >= npars-1 | nargs == npars |
	// --------------+------------------+----------------+

	nargs := len(args)
	npars := sig.params.Len()
	ddd := call.HasDots

	// set up parameters
	sigParams := sig.params // adjusted for variadic functions (may be nil for empty parameter lists!)
	adjusted := false       // indicates if sigParams is different from t.params
	if sig.variadic {
		if ddd {
			// variadic_func(a, b, c...)
			if len(call.ArgList) == 1 && nargs > 1 {
				// f()... is not permitted if f() is multi-valued
				//check.errorf(call.Ellipsis, "cannot use ... with %d-valued %s", nargs, call.ArgList[0])
				check.errorf(call, "cannot use ... with %d-valued %s", nargs, call.ArgList[0])
				return
			}
		} else {
			// variadic_func(a, b, c)
			if nargs >= npars-1 {
				// Create custom parameters for arguments: keep
				// the first npars-1 parameters and add one for
				// each argument mapping to the ... parameter.
				vars := make([]*Var, npars-1) // npars > 0 for variadic functions
				copy(vars, sig.params.vars)
				last := sig.params.vars[npars-1]
				typ := last.typ.(*Slice).elem
				for len(vars) < nargs {
					vars = append(vars, NewParam(last.pos, last.pkg, last.name, typ))
				}
				sigParams = NewTuple(vars...) // possibly nil!
				adjusted = true
				npars = nargs
			} else {
				// nargs < npars-1
				npars-- // for correct error message below
			}
		}
	} else {
		if ddd {
			// standard_func(a, b, c...)
			//check.errorf(call.Ellipsis, "cannot use ... in call to non-variadic %s", call.Fun)
			check.errorf(call, "cannot use ... in call to non-variadic %s", call.Fun)
			return
		}
		// standard_func(a, b, c)
	}

	// check argument count
	switch {
	case nargs < npars:
		check.errorf(call, "not enough arguments in call to %s", call.Fun)
		return
	case nargs > npars:
		check.errorf(args[npars], "too many arguments in call to %s", call.Fun) // report at first extra argument
		return
	}

	// infer type arguments and instantiate signature if necessary
	if sig.TParams().Len() > 0 {
		if !check.allowVersion(check.pkg, 1, 18) {
			if iexpr, _ := call.Fun.(*syntax.IndexExpr); iexpr != nil {
				check.softErrorf(iexpr.Pos(), "function instantiation requires go1.18 or later")
			} else {
				check.softErrorf(call.Pos(), "implicit function instantiation requires go1.18 or later")
			}
		}
		// TODO(gri) provide position information for targs so we can feed
		//           it to the instantiate call for better error reporting
		targs := check.infer(call.Pos(), sig.TParams().list(), targs, sigParams, args, true)
		if targs == nil {
			return // error already reported
		}

		// compute result signature
		rsig = check.instantiate(call.Pos(), sig, targs, nil).(*Signature)
		assert(rsig.TParams().Len() == 0) // signature is not generic anymore
		check.recordInferred(call, targs, rsig)

		// Optimization: Only if the parameter list was adjusted do we
		// need to compute it from the adjusted list; otherwise we can
		// simply use the result signature's parameter list.
		if adjusted {
			sigParams = check.subst(call.Pos(), sigParams, makeSubstMap(sig.TParams().list(), targs), nil).(*Tuple)
		} else {
			sigParams = rsig.params
		}
	}

	// check arguments
	if len(args) > 0 {
		context := check.sprintf("argument to %s", call.Fun)
		for i, a := range args {
			check.assignment(a, sigParams.vars[i].typ, context)
		}
	}

	return
}

var cgoPrefixes = [...]string{
	"_Ciconst_",
	"_Cfconst_",
	"_Csconst_",
	"_Ctype_",
	"_Cvar_", // actually a pointer to the var
	"_Cfpvar_fp_",
	"_Cfunc_",
	"_Cmacro_", // function to evaluate the expanded expression
}

func (check *Checker) selector(x *operand, e *syntax.SelectorExpr) {
	// these must be declared before the "goto Error" statements
	var (
		obj      Object
		index    []int
		indirect bool
	)

	sel := e.Sel.Value
	// If the identifier refers to a package, handle everything here
	// so we don't need a "package" mode for operands: package names
	// can only appear in qualified identifiers which are mapped to
	// selector expressions.
	if ident, ok := e.X.(*syntax.Name); ok {
		obj := check.lookup(ident.Value)
		if pname, _ := obj.(*PkgName); pname != nil {
			assert(pname.pkg == check.pkg)
			check.recordUse(ident, pname)
			pname.used = true
			pkg := pname.imported

			var exp Object
			funcMode := value
			if pkg.cgo {
				// cgo special cases C.malloc: it's
				// rewritten to _CMalloc and does not
				// support two-result calls.
				if sel == "malloc" {
					sel = "_CMalloc"
				} else {
					funcMode = cgofunc
				}
				for _, prefix := range cgoPrefixes {
					// cgo objects are part of the current package (in file
					// _cgo_gotypes.go). Use regular lookup.
					_, exp = check.scope.LookupParent(prefix+sel, check.pos)
					if exp != nil {
						break
					}
				}
				if exp == nil {
					check.errorf(e.Sel, "%s not declared by package C", sel)
					goto Error
				}
				check.objDecl(exp, nil)
			} else {
				exp = pkg.scope.Lookup(sel)
				if exp == nil {
					if !pkg.fake {
						if check.conf.CompilerErrorMessages {
							check.errorf(e.Sel, "undefined: %s.%s", pkg.name, sel)
						} else {
							check.errorf(e.Sel, "%s not declared by package %s", sel, pkg.name)
						}
					}
					goto Error
				}
				if !exp.Exported() {
					check.errorf(e.Sel, "%s not exported by package %s", sel, pkg.name)
					// ok to continue
				}
			}
			check.recordUse(e.Sel, exp)

			// Simplified version of the code for *syntax.Names:
			// - imported objects are always fully initialized
			switch exp := exp.(type) {
			case *Const:
				assert(exp.Val() != nil)
				x.mode = constant_
				x.typ = exp.typ
				x.val = exp.val
			case *TypeName:
				x.mode = typexpr
				x.typ = exp.typ
			case *Var:
				x.mode = variable
				x.typ = exp.typ
				if pkg.cgo && strings.HasPrefix(exp.name, "_Cvar_") {
					x.typ = x.typ.(*Pointer).base
				}
			case *Func:
				x.mode = funcMode
				x.typ = exp.typ
				if pkg.cgo && strings.HasPrefix(exp.name, "_Cmacro_") {
					x.mode = value
					x.typ = x.typ.(*Signature).results.vars[0].typ
				}
			case *Builtin:
				x.mode = builtin
				x.typ = exp.typ
				x.id = exp.id
			default:
				check.dump("%v: unexpected object %v", posFor(e.Sel), exp)
				unreachable()
			}
			x.expr = e
			return
		}
	}

	check.exprOrType(x, e.X)
	if x.mode == invalid {
		goto Error
	}

	check.instantiatedOperand(x)

	obj, index, indirect = LookupFieldOrMethod(x.typ, x.mode == variable, check.pkg, sel)
	if obj == nil {
		switch {
		case index != nil:
			// TODO(gri) should provide actual type where the conflict happens
			check.errorf(e.Sel, "ambiguous selector %s.%s", x.expr, sel)
		case indirect:
			check.errorf(e.Sel, "cannot call pointer method %s on %s", sel, x.typ)
		default:
			var why string
			if tpar := asTypeParam(x.typ); tpar != nil {
				// Type parameter bounds don't specify fields, so don't mention "field".
				if tname := tpar.iface().obj; tname != nil {
					why = check.sprintf("interface %s has no method %s", tname.name, sel)
				} else {
					why = check.sprintf("type bound for %s has no method %s", x.typ, sel)
				}
			} else {
				why = check.sprintf("type %s has no field or method %s", x.typ, sel)
			}

			// Check if capitalization of sel matters and provide better error message in that case.
			if len(sel) > 0 {
				var changeCase string
				if r := rune(sel[0]); unicode.IsUpper(r) {
					changeCase = string(unicode.ToLower(r)) + sel[1:]
				} else {
					changeCase = string(unicode.ToUpper(r)) + sel[1:]
				}
				if obj, _, _ = LookupFieldOrMethod(x.typ, x.mode == variable, check.pkg, changeCase); obj != nil {
					why += ", but does have " + changeCase
				}
			}

			check.errorf(e.Sel, "%s.%s undefined (%s)", x.expr, sel, why)

		}
		goto Error
	}

	// methods may not have a fully set up signature yet
	if m, _ := obj.(*Func); m != nil {
		// check.dump("### found method %s", m)
		check.objDecl(m, nil)
		// If m has a parameterized receiver type, infer the type arguments from
		// the actual receiver provided and then substitute the type parameters in
		// the signature accordingly.
		// TODO(gri) factor this code out
		sig := m.typ.(*Signature)
		if sig.RParams().Len() > 0 {
			// For inference to work, we must use the receiver type
			// matching the receiver in the actual method declaration.
			// If the method is embedded, the matching receiver is the
			// embedded struct or interface that declared the method.
			// Traverse the embedding to find that type (issue #44688).
			recv := x.typ
			for i := 0; i < len(index)-1; i++ {
				// The embedded type is either a struct or a pointer to
				// a struct except for the last one (which we don't need).
				recv = asStruct(derefStructPtr(recv)).Field(index[i]).typ
			}
			//check.dump("### recv = %s", recv)
			//check.dump("### method = %s rparams = %s tparams = %s", m, sig.rparams, sig.tparams)
			// The method may have a pointer receiver, but the actually provided receiver
			// may be a (hopefully addressable) non-pointer value, or vice versa. Here we
			// only care about inferring receiver type parameters; to make the inference
			// work, match up pointer-ness of receiver and argument.
			if ptrRecv := isPointer(sig.recv.typ); ptrRecv != isPointer(recv) {
				if ptrRecv {
					recv = NewPointer(recv)
				} else {
					recv = recv.(*Pointer).base
				}
			}
			// Disable reporting of errors during inference below. If we're unable to infer
			// the receiver type arguments here, the receiver must be be otherwise invalid
			// and an error has been reported elsewhere.
			arg := operand{mode: variable, expr: x.expr, typ: recv}
			targs := check.infer(m.pos, sig.RParams().list(), nil, NewTuple(sig.recv), []*operand{&arg}, false /* no error reporting */)
			//check.dump("### inferred targs = %s", targs)
			if targs == nil {
				// We may reach here if there were other errors (see issue #40056).
				goto Error
			}
			// Don't modify m. Instead - for now - make a copy of m and use that instead.
			// (If we modify m, some tests will fail; possibly because the m is in use.)
			// TODO(gri) investigate and provide a correct explanation here
			copy := *m
			copy.typ = check.subst(e.Pos(), m.typ, makeSubstMap(sig.RParams().list(), targs), nil)
			obj = &copy
		}
		// TODO(gri) we also need to do substitution for parameterized interface methods
		//           (this breaks code in testdata/linalg.go2 at the moment)
		//           12/20/2019: Is this TODO still correct?
	}

	if x.mode == typexpr {
		// method expression
		m, _ := obj.(*Func)
		if m == nil {
			// TODO(gri) should check if capitalization of sel matters and provide better error message in that case
			check.errorf(e.Sel, "%s.%s undefined (type %s has no method %s)", x.expr, sel, x.typ, sel)
			goto Error
		}

		check.recordSelection(e, MethodExpr, x.typ, m, index, indirect)

		sig := m.typ.(*Signature)
		if sig.recv == nil {
			check.error(e, "illegal cycle in method declaration")
			goto Error
		}

		// The receiver type becomes the type of the first function
		// argument of the method expression's function type.
		var params []*Var
		if sig.params != nil {
			params = sig.params.vars
		}
		// Be consistent about named/unnamed parameters. This is not needed
		// for type-checking, but the newly constructed signature may appear
		// in an error message and then have mixed named/unnamed parameters.
		// (An alternative would be to not print parameter names in errors,
		// but it's useful to see them; this is cheap and method expressions
		// are rare.)
		name := ""
		if len(params) > 0 && params[0].name != "" {
			// name needed
			name = sig.recv.name
			if name == "" {
				name = "_"
			}
		}
		params = append([]*Var{NewVar(sig.recv.pos, sig.recv.pkg, name, x.typ)}, params...)
		x.mode = value
		x.typ = &Signature{
			tparams:  sig.tparams,
			params:   NewTuple(params...),
			results:  sig.results,
			variadic: sig.variadic,
		}

		check.addDeclDep(m)

	} else {
		// regular selector
		switch obj := obj.(type) {
		case *Var:
			check.recordSelection(e, FieldVal, x.typ, obj, index, indirect)
			if x.mode == variable || indirect {
				x.mode = variable
			} else {
				x.mode = value
			}
			x.typ = obj.typ

		case *Func:
			// TODO(gri) If we needed to take into account the receiver's
			// addressability, should we report the type &(x.typ) instead?
			check.recordSelection(e, MethodVal, x.typ, obj, index, indirect)

			x.mode = value

			// remove receiver
			sig := *obj.typ.(*Signature)
			sig.recv = nil
			x.typ = &sig

			check.addDeclDep(obj)

		default:
			unreachable()
		}
	}

	// everything went well
	x.expr = e
	return

Error:
	x.mode = invalid
	x.expr = e
}

// use type-checks each argument.
// Useful to make sure expressions are evaluated
// (and variables are "used") in the presence of other errors.
// The arguments may be nil.
// TODO(gri) make this accept a []syntax.Expr and use an unpack function when we have a ListExpr?
func (check *Checker) use(arg ...syntax.Expr) {
	var x operand
	for _, e := range arg {
		// Certain AST fields may legally be nil (e.g., the ast.SliceExpr.High field).
		if e == nil {
			continue
		}
		if l, _ := e.(*syntax.ListExpr); l != nil {
			check.use(l.ElemList...)
			continue
		}
		check.rawExpr(&x, e, nil)
	}
}

// useLHS is like use, but doesn't "use" top-level identifiers.
// It should be called instead of use if the arguments are
// expressions on the lhs of an assignment.
// The arguments must not be nil.
func (check *Checker) useLHS(arg ...syntax.Expr) {
	var x operand
	for _, e := range arg {
		// If the lhs is an identifier denoting a variable v, this assignment
		// is not a 'use' of v. Remember current value of v.used and restore
		// after evaluating the lhs via check.rawExpr.
		var v *Var
		var v_used bool
		if ident, _ := unparen(e).(*syntax.Name); ident != nil {
			// never type-check the blank name on the lhs
			if ident.Value == "_" {
				continue
			}
			if _, obj := check.scope.LookupParent(ident.Value, nopos); obj != nil {
				// It's ok to mark non-local variables, but ignore variables
				// from other packages to avoid potential race conditions with
				// dot-imported variables.
				if w, _ := obj.(*Var); w != nil && w.pkg == check.pkg {
					v = w
					v_used = v.used
				}
			}
		}
		check.rawExpr(&x, e, nil)
		if v != nil {
			v.used = v_used // restore v.used
		}
	}
}

// instantiatedOperand reports an error of x is an uninstantiated (generic) type and sets x.typ to Typ[Invalid].
func (check *Checker) instantiatedOperand(x *operand) {
	if x.mode == typexpr && isGeneric(x.typ) {
		check.errorf(x, "cannot use generic type %s without instantiation", x.typ)
		x.typ = Typ[Invalid]
	}
}