aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/types/type.go
blob: 023ab9af88aee048f29fd88b5596e515360f0fd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package types

import (
	"cmd/internal/obj"
	"cmd/internal/src"
	"fmt"
)

// Dummy Node so we can refer to *Node without actually
// having a gc.Node. Necessary to break import cycles.
// TODO(gri) try to eliminate soon
type Node struct{ _ int }

//go:generate stringer -type EType -trimprefix T

// EType describes a kind of type.
type EType uint8

const (
	Txxx EType = iota

	TINT8
	TUINT8
	TINT16
	TUINT16
	TINT32
	TUINT32
	TINT64
	TUINT64
	TINT
	TUINT
	TUINTPTR

	TCOMPLEX64
	TCOMPLEX128

	TFLOAT32
	TFLOAT64

	TBOOL

	TPTR
	TFUNC
	TSLICE
	TARRAY
	TSTRUCT
	TCHAN
	TMAP
	TINTER
	TFORW
	TANY
	TSTRING
	TUNSAFEPTR

	// pseudo-types for literals
	TIDEAL // untyped numeric constants
	TNIL
	TBLANK

	// pseudo-types for frame layout
	TFUNCARGS
	TCHANARGS

	// SSA backend types
	TSSA     // internal types used by SSA backend (flags, memory, etc.)
	TTUPLE   // a pair of types, used by SSA backend
	TRESULTS // multiple types; the result of calling a function or method, with a memory at the end.

	NTYPE
)

// ChanDir is whether a channel can send, receive, or both.
type ChanDir uint8

func (c ChanDir) CanRecv() bool { return c&Crecv != 0 }
func (c ChanDir) CanSend() bool { return c&Csend != 0 }

const (
	// types of channel
	// must match ../../../../reflect/type.go:/ChanDir
	Crecv ChanDir = 1 << 0
	Csend ChanDir = 1 << 1
	Cboth ChanDir = Crecv | Csend
)

// Types stores pointers to predeclared named types.
//
// It also stores pointers to several special types:
//   - Types[TANY] is the placeholder "any" type recognized by substArgTypes.
//   - Types[TBLANK] represents the blank variable's type.
//   - Types[TNIL] represents the predeclared "nil" value's type.
//   - Types[TUNSAFEPTR] is package unsafe's Pointer type.
var Types [NTYPE]*Type

var (
	// Predeclared alias types. Kept separate for better error messages.
	Bytetype *Type
	Runetype *Type

	// Predeclared error interface type.
	Errortype *Type

	// Types to represent untyped string and boolean constants.
	UntypedString *Type
	UntypedBool   *Type

	// Types to represent untyped numeric constants.
	UntypedInt     = New(TIDEAL)
	UntypedRune    = New(TIDEAL)
	UntypedFloat   = New(TIDEAL)
	UntypedComplex = New(TIDEAL)
)

// A Type represents a Go type.
type Type struct {
	// Extra contains extra etype-specific fields.
	// As an optimization, those etype-specific structs which contain exactly
	// one pointer-shaped field are stored as values rather than pointers when possible.
	//
	// TMAP: *Map
	// TFORW: *Forward
	// TFUNC: *Func
	// TSTRUCT: *Struct
	// TINTER: *Interface
	// TFUNCARGS: FuncArgs
	// TCHANARGS: ChanArgs
	// TCHAN: *Chan
	// TPTR: Ptr
	// TARRAY: *Array
	// TSLICE: Slice
	// TSSA: string
	Extra interface{}

	// Width is the width of this Type in bytes.
	Width int64 // valid if Align > 0

	methods    Fields
	allMethods Fields

	Nod  *Node // canonical OTYPE node
	Orig *Type // original type (type literal or predefined type)

	// Cache of composite types, with this type being the element type.
	Cache struct {
		ptr   *Type // *T, or nil
		slice *Type // []T, or nil
	}

	Sym    *Sym  // symbol containing name, for named types
	Vargen int32 // unique name for OTYPE/ONAME

	Etype EType // kind of type
	Align uint8 // the required alignment of this type, in bytes (0 means Width and Align have not yet been computed)

	flags bitset8
}

const (
	typeNotInHeap  = 1 << iota // type cannot be heap allocated
	typeBroke                  // broken type definition
	typeNoalg                  // suppress hash and eq algorithm generation
	typeDeferwidth             // width computation has been deferred and type is on deferredTypeStack
	typeRecur
)

func (t *Type) NotInHeap() bool  { return t.flags&typeNotInHeap != 0 }
func (t *Type) Broke() bool      { return t.flags&typeBroke != 0 }
func (t *Type) Noalg() bool      { return t.flags&typeNoalg != 0 }
func (t *Type) Deferwidth() bool { return t.flags&typeDeferwidth != 0 }
func (t *Type) Recur() bool      { return t.flags&typeRecur != 0 }

func (t *Type) SetNotInHeap(b bool)  { t.flags.set(typeNotInHeap, b) }
func (t *Type) SetBroke(b bool)      { t.flags.set(typeBroke, b) }
func (t *Type) SetNoalg(b bool)      { t.flags.set(typeNoalg, b) }
func (t *Type) SetDeferwidth(b bool) { t.flags.set(typeDeferwidth, b) }
func (t *Type) SetRecur(b bool)      { t.flags.set(typeRecur, b) }

// Pkg returns the package that t appeared in.
//
// Pkg is only defined for function, struct, and interface types
// (i.e., types with named elements). This information isn't used by
// cmd/compile itself, but we need to track it because it's exposed by
// the go/types API.
func (t *Type) Pkg() *Pkg {
	switch t.Etype {
	case TFUNC:
		return t.Extra.(*Func).pkg
	case TSTRUCT:
		return t.Extra.(*Struct).pkg
	case TINTER:
		return t.Extra.(*Interface).pkg
	default:
		Fatalf("Pkg: unexpected kind: %v", t)
		return nil
	}
}

// SetPkg sets the package that t appeared in.
func (t *Type) SetPkg(pkg *Pkg) {
	switch t.Etype {
	case TFUNC:
		t.Extra.(*Func).pkg = pkg
	case TSTRUCT:
		t.Extra.(*Struct).pkg = pkg
	case TINTER:
		t.Extra.(*Interface).pkg = pkg
	default:
		Fatalf("Pkg: unexpected kind: %v", t)
	}
}

// Map contains Type fields specific to maps.
type Map struct {
	Key  *Type // Key type
	Elem *Type // Val (elem) type

	Bucket *Type // internal struct type representing a hash bucket
	Hmap   *Type // internal struct type representing the Hmap (map header object)
	Hiter  *Type // internal struct type representing hash iterator state
}

// MapType returns t's extra map-specific fields.
func (t *Type) MapType() *Map {
	t.wantEtype(TMAP)
	return t.Extra.(*Map)
}

// Forward contains Type fields specific to forward types.
type Forward struct {
	Copyto      []*Type  // where to copy the eventual value to
	Embedlineno src.XPos // first use of this type as an embedded type
}

// ForwardType returns t's extra forward-type-specific fields.
func (t *Type) ForwardType() *Forward {
	t.wantEtype(TFORW)
	return t.Extra.(*Forward)
}

// Func contains Type fields specific to func types.
type Func struct {
	Receiver *Type // function receiver
	Results  *Type // function results
	Params   *Type // function params

	Nname *Node
	pkg   *Pkg

	// Argwid is the total width of the function receiver, params, and results.
	// It gets calculated via a temporary TFUNCARGS type.
	// Note that TFUNC's Width is Widthptr.
	Argwid int64

	Outnamed bool
}

// FuncType returns t's extra func-specific fields.
func (t *Type) FuncType() *Func {
	t.wantEtype(TFUNC)
	return t.Extra.(*Func)
}

// StructType contains Type fields specific to struct types.
type Struct struct {
	fields Fields
	pkg    *Pkg

	// Maps have three associated internal structs (see struct MapType).
	// Map links such structs back to their map type.
	Map *Type

	Funarg Funarg // type of function arguments for arg struct
}

// Fnstruct records the kind of function argument
type Funarg uint8

const (
	FunargNone    Funarg = iota
	FunargRcvr           // receiver
	FunargParams         // input parameters
	FunargResults        // output results
)

// StructType returns t's extra struct-specific fields.
func (t *Type) StructType() *Struct {
	t.wantEtype(TSTRUCT)
	return t.Extra.(*Struct)
}

// Interface contains Type fields specific to interface types.
type Interface struct {
	Fields Fields
	pkg    *Pkg
}

// Ptr contains Type fields specific to pointer types.
type Ptr struct {
	Elem *Type // element type
}

// ChanArgs contains Type fields specific to TCHANARGS types.
type ChanArgs struct {
	T *Type // reference to a chan type whose elements need a width check
}

// // FuncArgs contains Type fields specific to TFUNCARGS types.
type FuncArgs struct {
	T *Type // reference to a func type whose elements need a width check
}

// Chan contains Type fields specific to channel types.
type Chan struct {
	Elem *Type   // element type
	Dir  ChanDir // channel direction
}

// ChanType returns t's extra channel-specific fields.
func (t *Type) ChanType() *Chan {
	t.wantEtype(TCHAN)
	return t.Extra.(*Chan)
}

type Tuple struct {
	first  *Type
	second *Type
	// Any tuple with a memory type must put that memory type second.
}

// Results are the output from calls that will be late-expanded.
type Results struct {
	Types []*Type // Last element is memory output from call.
}

// Array contains Type fields specific to array types.
type Array struct {
	Elem  *Type // element type
	Bound int64 // number of elements; <0 if unknown yet
}

// Slice contains Type fields specific to slice types.
type Slice struct {
	Elem *Type // element type
}

// A Field represents a field in a struct or a method in an interface or
// associated with a named type.
type Field struct {
	flags bitset8

	Embedded uint8 // embedded field

	Pos  src.XPos
	Sym  *Sym
	Type *Type  // field type
	Note string // literal string annotation

	// For fields that represent function parameters, Nname points
	// to the associated ONAME Node.
	Nname *Node

	// Offset in bytes of this field or method within its enclosing struct
	// or interface Type.
	Offset int64
}

const (
	fieldIsDDD = 1 << iota // field is ... argument
	fieldBroke             // broken field definition
	fieldNointerface
)

func (f *Field) IsDDD() bool       { return f.flags&fieldIsDDD != 0 }
func (f *Field) Broke() bool       { return f.flags&fieldBroke != 0 }
func (f *Field) Nointerface() bool { return f.flags&fieldNointerface != 0 }

func (f *Field) SetIsDDD(b bool)       { f.flags.set(fieldIsDDD, b) }
func (f *Field) SetBroke(b bool)       { f.flags.set(fieldBroke, b) }
func (f *Field) SetNointerface(b bool) { f.flags.set(fieldNointerface, b) }

// End returns the offset of the first byte immediately after this field.
func (f *Field) End() int64 {
	return f.Offset + f.Type.Width
}

// IsMethod reports whether f represents a method rather than a struct field.
func (f *Field) IsMethod() bool {
	return f.Type.Etype == TFUNC && f.Type.Recv() != nil
}

// Fields is a pointer to a slice of *Field.
// This saves space in Types that do not have fields or methods
// compared to a simple slice of *Field.
type Fields struct {
	s *[]*Field
}

// Len returns the number of entries in f.
func (f *Fields) Len() int {
	if f.s == nil {
		return 0
	}
	return len(*f.s)
}

// Slice returns the entries in f as a slice.
// Changes to the slice entries will be reflected in f.
func (f *Fields) Slice() []*Field {
	if f.s == nil {
		return nil
	}
	return *f.s
}

// Index returns the i'th element of Fields.
// It panics if f does not have at least i+1 elements.
func (f *Fields) Index(i int) *Field {
	return (*f.s)[i]
}

// Set sets f to a slice.
// This takes ownership of the slice.
func (f *Fields) Set(s []*Field) {
	if len(s) == 0 {
		f.s = nil
	} else {
		// Copy s and take address of t rather than s to avoid
		// allocation in the case where len(s) == 0.
		t := s
		f.s = &t
	}
}

// Append appends entries to f.
func (f *Fields) Append(s ...*Field) {
	if f.s == nil {
		f.s = new([]*Field)
	}
	*f.s = append(*f.s, s...)
}

// New returns a new Type of the specified kind.
func New(et EType) *Type {
	t := &Type{
		Etype: et,
		Width: BADWIDTH,
	}
	t.Orig = t
	// TODO(josharian): lazily initialize some of these?
	switch t.Etype {
	case TMAP:
		t.Extra = new(Map)
	case TFORW:
		t.Extra = new(Forward)
	case TFUNC:
		t.Extra = new(Func)
	case TSTRUCT:
		t.Extra = new(Struct)
	case TINTER:
		t.Extra = new(Interface)
	case TPTR:
		t.Extra = Ptr{}
	case TCHANARGS:
		t.Extra = ChanArgs{}
	case TFUNCARGS:
		t.Extra = FuncArgs{}
	case TCHAN:
		t.Extra = new(Chan)
	case TTUPLE:
		t.Extra = new(Tuple)
	case TRESULTS:
		t.Extra = new(Results)
	}
	return t
}

// NewArray returns a new fixed-length array Type.
func NewArray(elem *Type, bound int64) *Type {
	if bound < 0 {
		Fatalf("NewArray: invalid bound %v", bound)
	}
	t := New(TARRAY)
	t.Extra = &Array{Elem: elem, Bound: bound}
	t.SetNotInHeap(elem.NotInHeap())
	return t
}

// NewSlice returns the slice Type with element type elem.
func NewSlice(elem *Type) *Type {
	if t := elem.Cache.slice; t != nil {
		if t.Elem() != elem {
			Fatalf("elem mismatch")
		}
		return t
	}

	t := New(TSLICE)
	t.Extra = Slice{Elem: elem}
	elem.Cache.slice = t
	return t
}

// NewChan returns a new chan Type with direction dir.
func NewChan(elem *Type, dir ChanDir) *Type {
	t := New(TCHAN)
	ct := t.ChanType()
	ct.Elem = elem
	ct.Dir = dir
	return t
}

func NewTuple(t1, t2 *Type) *Type {
	t := New(TTUPLE)
	t.Extra.(*Tuple).first = t1
	t.Extra.(*Tuple).second = t2
	return t
}

func NewResults(types []*Type) *Type {
	t := New(TRESULTS)
	t.Extra.(*Results).Types = types
	return t
}

func newSSA(name string) *Type {
	t := New(TSSA)
	t.Extra = name
	return t
}

// NewMap returns a new map Type with key type k and element (aka value) type v.
func NewMap(k, v *Type) *Type {
	t := New(TMAP)
	mt := t.MapType()
	mt.Key = k
	mt.Elem = v
	return t
}

// NewPtrCacheEnabled controls whether *T Types are cached in T.
// Caching is disabled just before starting the backend.
// This allows the backend to run concurrently.
var NewPtrCacheEnabled = true

// NewPtr returns the pointer type pointing to t.
func NewPtr(elem *Type) *Type {
	if elem == nil {
		Fatalf("NewPtr: pointer to elem Type is nil")
	}

	if t := elem.Cache.ptr; t != nil {
		if t.Elem() != elem {
			Fatalf("NewPtr: elem mismatch")
		}
		return t
	}

	t := New(TPTR)
	t.Extra = Ptr{Elem: elem}
	t.Width = int64(Widthptr)
	t.Align = uint8(Widthptr)
	if NewPtrCacheEnabled {
		elem.Cache.ptr = t
	}
	return t
}

// NewChanArgs returns a new TCHANARGS type for channel type c.
func NewChanArgs(c *Type) *Type {
	t := New(TCHANARGS)
	t.Extra = ChanArgs{T: c}
	return t
}

// NewFuncArgs returns a new TFUNCARGS type for func type f.
func NewFuncArgs(f *Type) *Type {
	t := New(TFUNCARGS)
	t.Extra = FuncArgs{T: f}
	return t
}

func NewField() *Field {
	return &Field{
		Offset: BADWIDTH,
	}
}

// SubstAny walks t, replacing instances of "any" with successive
// elements removed from types.  It returns the substituted type.
func SubstAny(t *Type, types *[]*Type) *Type {
	if t == nil {
		return nil
	}

	switch t.Etype {
	default:
		// Leave the type unchanged.

	case TANY:
		if len(*types) == 0 {
			Fatalf("substArgTypes: not enough argument types")
		}
		t = (*types)[0]
		*types = (*types)[1:]

	case TPTR:
		elem := SubstAny(t.Elem(), types)
		if elem != t.Elem() {
			t = t.copy()
			t.Extra = Ptr{Elem: elem}
		}

	case TARRAY:
		elem := SubstAny(t.Elem(), types)
		if elem != t.Elem() {
			t = t.copy()
			t.Extra.(*Array).Elem = elem
		}

	case TSLICE:
		elem := SubstAny(t.Elem(), types)
		if elem != t.Elem() {
			t = t.copy()
			t.Extra = Slice{Elem: elem}
		}

	case TCHAN:
		elem := SubstAny(t.Elem(), types)
		if elem != t.Elem() {
			t = t.copy()
			t.Extra.(*Chan).Elem = elem
		}

	case TMAP:
		key := SubstAny(t.Key(), types)
		elem := SubstAny(t.Elem(), types)
		if key != t.Key() || elem != t.Elem() {
			t = t.copy()
			t.Extra.(*Map).Key = key
			t.Extra.(*Map).Elem = elem
		}

	case TFUNC:
		recvs := SubstAny(t.Recvs(), types)
		params := SubstAny(t.Params(), types)
		results := SubstAny(t.Results(), types)
		if recvs != t.Recvs() || params != t.Params() || results != t.Results() {
			t = t.copy()
			t.FuncType().Receiver = recvs
			t.FuncType().Results = results
			t.FuncType().Params = params
		}

	case TSTRUCT:
		// Make a copy of all fields, including ones whose type does not change.
		// This prevents aliasing across functions, which can lead to later
		// fields getting their Offset incorrectly overwritten.
		fields := t.FieldSlice()
		nfs := make([]*Field, len(fields))
		for i, f := range fields {
			nft := SubstAny(f.Type, types)
			nfs[i] = f.Copy()
			nfs[i].Type = nft
		}
		t = t.copy()
		t.SetFields(nfs)
	}

	return t
}

// copy returns a shallow copy of the Type.
func (t *Type) copy() *Type {
	if t == nil {
		return nil
	}
	nt := *t
	// copy any *T Extra fields, to avoid aliasing
	switch t.Etype {
	case TMAP:
		x := *t.Extra.(*Map)
		nt.Extra = &x
	case TFORW:
		x := *t.Extra.(*Forward)
		nt.Extra = &x
	case TFUNC:
		x := *t.Extra.(*Func)
		nt.Extra = &x
	case TSTRUCT:
		x := *t.Extra.(*Struct)
		nt.Extra = &x
	case TINTER:
		x := *t.Extra.(*Interface)
		nt.Extra = &x
	case TCHAN:
		x := *t.Extra.(*Chan)
		nt.Extra = &x
	case TARRAY:
		x := *t.Extra.(*Array)
		nt.Extra = &x
	case TTUPLE, TSSA, TRESULTS:
		Fatalf("ssa types cannot be copied")
	}
	// TODO(mdempsky): Find out why this is necessary and explain.
	if t.Orig == t {
		nt.Orig = &nt
	}
	return &nt
}

func (f *Field) Copy() *Field {
	nf := *f
	return &nf
}

func (t *Type) wantEtype(et EType) {
	if t.Etype != et {
		Fatalf("want %v, but have %v", et, t)
	}
}

func (t *Type) Recvs() *Type   { return t.FuncType().Receiver }
func (t *Type) Params() *Type  { return t.FuncType().Params }
func (t *Type) Results() *Type { return t.FuncType().Results }

func (t *Type) NumRecvs() int   { return t.FuncType().Receiver.NumFields() }
func (t *Type) NumParams() int  { return t.FuncType().Params.NumFields() }
func (t *Type) NumResults() int { return t.FuncType().Results.NumFields() }

// IsVariadic reports whether function type t is variadic.
func (t *Type) IsVariadic() bool {
	n := t.NumParams()
	return n > 0 && t.Params().Field(n-1).IsDDD()
}

// Recv returns the receiver of function type t, if any.
func (t *Type) Recv() *Field {
	s := t.Recvs()
	if s.NumFields() == 0 {
		return nil
	}
	return s.Field(0)
}

// RecvsParamsResults stores the accessor functions for a function Type's
// receiver, parameters, and result parameters, in that order.
// It can be used to iterate over all of a function's parameter lists.
var RecvsParamsResults = [3]func(*Type) *Type{
	(*Type).Recvs, (*Type).Params, (*Type).Results,
}

// RecvsParams is like RecvsParamsResults, but omits result parameters.
var RecvsParams = [2]func(*Type) *Type{
	(*Type).Recvs, (*Type).Params,
}

// ParamsResults is like RecvsParamsResults, but omits receiver parameters.
var ParamsResults = [2]func(*Type) *Type{
	(*Type).Params, (*Type).Results,
}

// Key returns the key type of map type t.
func (t *Type) Key() *Type {
	t.wantEtype(TMAP)
	return t.Extra.(*Map).Key
}

// Elem returns the type of elements of t.
// Usable with pointers, channels, arrays, slices, and maps.
func (t *Type) Elem() *Type {
	switch t.Etype {
	case TPTR:
		return t.Extra.(Ptr).Elem
	case TARRAY:
		return t.Extra.(*Array).Elem
	case TSLICE:
		return t.Extra.(Slice).Elem
	case TCHAN:
		return t.Extra.(*Chan).Elem
	case TMAP:
		return t.Extra.(*Map).Elem
	}
	Fatalf("Type.Elem %s", t.Etype)
	return nil
}

// ChanArgs returns the channel type for TCHANARGS type t.
func (t *Type) ChanArgs() *Type {
	t.wantEtype(TCHANARGS)
	return t.Extra.(ChanArgs).T
}

// FuncArgs returns the func type for TFUNCARGS type t.
func (t *Type) FuncArgs() *Type {
	t.wantEtype(TFUNCARGS)
	return t.Extra.(FuncArgs).T
}

// Nname returns the associated function's nname.
func (t *Type) Nname() *Node {
	switch t.Etype {
	case TFUNC:
		return t.Extra.(*Func).Nname
	}
	Fatalf("Type.Nname %v %v", t.Etype, t)
	return nil
}

// Nname sets the associated function's nname.
func (t *Type) SetNname(n *Node) {
	switch t.Etype {
	case TFUNC:
		t.Extra.(*Func).Nname = n
	default:
		Fatalf("Type.SetNname %v %v", t.Etype, t)
	}
}

// IsFuncArgStruct reports whether t is a struct representing function parameters.
func (t *Type) IsFuncArgStruct() bool {
	return t.Etype == TSTRUCT && t.Extra.(*Struct).Funarg != FunargNone
}

func (t *Type) Methods() *Fields {
	// TODO(mdempsky): Validate t?
	return &t.methods
}

func (t *Type) AllMethods() *Fields {
	// TODO(mdempsky): Validate t?
	return &t.allMethods
}

func (t *Type) Fields() *Fields {
	switch t.Etype {
	case TSTRUCT:
		return &t.Extra.(*Struct).fields
	case TINTER:
		Dowidth(t)
		return &t.Extra.(*Interface).Fields
	}
	Fatalf("Fields: type %v does not have fields", t)
	return nil
}

// Field returns the i'th field/method of struct/interface type t.
func (t *Type) Field(i int) *Field {
	return t.Fields().Slice()[i]
}

// FieldSlice returns a slice of containing all fields/methods of
// struct/interface type t.
func (t *Type) FieldSlice() []*Field {
	return t.Fields().Slice()
}

// SetFields sets struct/interface type t's fields/methods to fields.
func (t *Type) SetFields(fields []*Field) {
	// If we've calculated the width of t before,
	// then some other type such as a function signature
	// might now have the wrong type.
	// Rather than try to track and invalidate those,
	// enforce that SetFields cannot be called once
	// t's width has been calculated.
	if t.WidthCalculated() {
		Fatalf("SetFields of %v: width previously calculated", t)
	}
	t.wantEtype(TSTRUCT)
	for _, f := range fields {
		// If type T contains a field F with a go:notinheap
		// type, then T must also be go:notinheap. Otherwise,
		// you could heap allocate T and then get a pointer F,
		// which would be a heap pointer to a go:notinheap
		// type.
		if f.Type != nil && f.Type.NotInHeap() {
			t.SetNotInHeap(true)
			break
		}
	}
	t.Fields().Set(fields)
}

func (t *Type) SetInterface(methods []*Field) {
	t.wantEtype(TINTER)
	t.Methods().Set(methods)
}

func (t *Type) WidthCalculated() bool {
	return t.Align > 0
}

// ArgWidth returns the total aligned argument size for a function.
// It includes the receiver, parameters, and results.
func (t *Type) ArgWidth() int64 {
	t.wantEtype(TFUNC)
	return t.Extra.(*Func).Argwid
}

func (t *Type) Size() int64 {
	if t.Etype == TSSA {
		if t == TypeInt128 {
			return 16
		}
		return 0
	}
	Dowidth(t)
	return t.Width
}

func (t *Type) Alignment() int64 {
	Dowidth(t)
	return int64(t.Align)
}

func (t *Type) SimpleString() string {
	return t.Etype.String()
}

// Cmp is a comparison between values a and b.
// -1 if a < b
//  0 if a == b
//  1 if a > b
type Cmp int8

const (
	CMPlt = Cmp(-1)
	CMPeq = Cmp(0)
	CMPgt = Cmp(1)
)

// Compare compares types for purposes of the SSA back
// end, returning a Cmp (one of CMPlt, CMPeq, CMPgt).
// The answers are correct for an optimizer
// or code generator, but not necessarily typechecking.
// The order chosen is arbitrary, only consistency and division
// into equivalence classes (Types that compare CMPeq) matters.
func (t *Type) Compare(x *Type) Cmp {
	if x == t {
		return CMPeq
	}
	return t.cmp(x)
}

func cmpForNe(x bool) Cmp {
	if x {
		return CMPlt
	}
	return CMPgt
}

func (r *Sym) cmpsym(s *Sym) Cmp {
	if r == s {
		return CMPeq
	}
	if r == nil {
		return CMPlt
	}
	if s == nil {
		return CMPgt
	}
	// Fast sort, not pretty sort
	if len(r.Name) != len(s.Name) {
		return cmpForNe(len(r.Name) < len(s.Name))
	}
	if r.Pkg != s.Pkg {
		if len(r.Pkg.Prefix) != len(s.Pkg.Prefix) {
			return cmpForNe(len(r.Pkg.Prefix) < len(s.Pkg.Prefix))
		}
		if r.Pkg.Prefix != s.Pkg.Prefix {
			return cmpForNe(r.Pkg.Prefix < s.Pkg.Prefix)
		}
	}
	if r.Name != s.Name {
		return cmpForNe(r.Name < s.Name)
	}
	return CMPeq
}

// cmp compares two *Types t and x, returning CMPlt,
// CMPeq, CMPgt as t<x, t==x, t>x, for an arbitrary
// and optimizer-centric notion of comparison.
// TODO(josharian): make this safe for recursive interface types
// and use in signatlist sorting. See issue 19869.
func (t *Type) cmp(x *Type) Cmp {
	// This follows the structure of function identical in identity.go
	// with two exceptions.
	// 1. Symbols are compared more carefully because a <,=,> result is desired.
	// 2. Maps are treated specially to avoid endless recursion -- maps
	//    contain an internal data type not expressible in Go source code.
	if t == x {
		return CMPeq
	}
	if t == nil {
		return CMPlt
	}
	if x == nil {
		return CMPgt
	}

	if t.Etype != x.Etype {
		return cmpForNe(t.Etype < x.Etype)
	}

	if t.Sym != nil || x.Sym != nil {
		// Special case: we keep byte and uint8 separate
		// for error messages. Treat them as equal.
		switch t.Etype {
		case TUINT8:
			if (t == Types[TUINT8] || t == Bytetype) && (x == Types[TUINT8] || x == Bytetype) {
				return CMPeq
			}

		case TINT32:
			if (t == Types[Runetype.Etype] || t == Runetype) && (x == Types[Runetype.Etype] || x == Runetype) {
				return CMPeq
			}
		}
	}

	if c := t.Sym.cmpsym(x.Sym); c != CMPeq {
		return c
	}

	if x.Sym != nil {
		// Syms non-nil, if vargens match then equal.
		if t.Vargen != x.Vargen {
			return cmpForNe(t.Vargen < x.Vargen)
		}
		return CMPeq
	}
	// both syms nil, look at structure below.

	switch t.Etype {
	case TBOOL, TFLOAT32, TFLOAT64, TCOMPLEX64, TCOMPLEX128, TUNSAFEPTR, TUINTPTR,
		TINT8, TINT16, TINT32, TINT64, TINT, TUINT8, TUINT16, TUINT32, TUINT64, TUINT:
		return CMPeq

	case TSSA:
		tname := t.Extra.(string)
		xname := x.Extra.(string)
		// desire fast sorting, not pretty sorting.
		if len(tname) == len(xname) {
			if tname == xname {
				return CMPeq
			}
			if tname < xname {
				return CMPlt
			}
			return CMPgt
		}
		if len(tname) > len(xname) {
			return CMPgt
		}
		return CMPlt

	case TTUPLE:
		xtup := x.Extra.(*Tuple)
		ttup := t.Extra.(*Tuple)
		if c := ttup.first.Compare(xtup.first); c != CMPeq {
			return c
		}
		return ttup.second.Compare(xtup.second)

	case TRESULTS:
		xResults := x.Extra.(*Results)
		tResults := t.Extra.(*Results)
		xl, tl := len(xResults.Types), len(tResults.Types)
		if tl != xl {
			if tl < xl {
				return CMPlt
			}
			return CMPgt
		}
		for i := 0; i < tl; i++ {
			if c := tResults.Types[i].Compare(xResults.Types[i]); c != CMPeq {
				return c
			}
		}
		return CMPeq

	case TMAP:
		if c := t.Key().cmp(x.Key()); c != CMPeq {
			return c
		}
		return t.Elem().cmp(x.Elem())

	case TPTR, TSLICE:
		// No special cases for these, they are handled
		// by the general code after the switch.

	case TSTRUCT:
		if t.StructType().Map == nil {
			if x.StructType().Map != nil {
				return CMPlt // nil < non-nil
			}
			// to the fallthrough
		} else if x.StructType().Map == nil {
			return CMPgt // nil > non-nil
		} else if t.StructType().Map.MapType().Bucket == t {
			// Both have non-nil Map
			// Special case for Maps which include a recursive type where the recursion is not broken with a named type
			if x.StructType().Map.MapType().Bucket != x {
				return CMPlt // bucket maps are least
			}
			return t.StructType().Map.cmp(x.StructType().Map)
		} else if x.StructType().Map.MapType().Bucket == x {
			return CMPgt // bucket maps are least
		} // If t != t.Map.Bucket, fall through to general case

		tfs := t.FieldSlice()
		xfs := x.FieldSlice()
		for i := 0; i < len(tfs) && i < len(xfs); i++ {
			t1, x1 := tfs[i], xfs[i]
			if t1.Embedded != x1.Embedded {
				return cmpForNe(t1.Embedded < x1.Embedded)
			}
			if t1.Note != x1.Note {
				return cmpForNe(t1.Note < x1.Note)
			}
			if c := t1.Sym.cmpsym(x1.Sym); c != CMPeq {
				return c
			}
			if c := t1.Type.cmp(x1.Type); c != CMPeq {
				return c
			}
		}
		if len(tfs) != len(xfs) {
			return cmpForNe(len(tfs) < len(xfs))
		}
		return CMPeq

	case TINTER:
		tfs := t.FieldSlice()
		xfs := x.FieldSlice()
		for i := 0; i < len(tfs) && i < len(xfs); i++ {
			t1, x1 := tfs[i], xfs[i]
			if c := t1.Sym.cmpsym(x1.Sym); c != CMPeq {
				return c
			}
			if c := t1.Type.cmp(x1.Type); c != CMPeq {
				return c
			}
		}
		if len(tfs) != len(xfs) {
			return cmpForNe(len(tfs) < len(xfs))
		}
		return CMPeq

	case TFUNC:
		for _, f := range RecvsParamsResults {
			// Loop over fields in structs, ignoring argument names.
			tfs := f(t).FieldSlice()
			xfs := f(x).FieldSlice()
			for i := 0; i < len(tfs) && i < len(xfs); i++ {
				ta := tfs[i]
				tb := xfs[i]
				if ta.IsDDD() != tb.IsDDD() {
					return cmpForNe(!ta.IsDDD())
				}
				if c := ta.Type.cmp(tb.Type); c != CMPeq {
					return c
				}
			}
			if len(tfs) != len(xfs) {
				return cmpForNe(len(tfs) < len(xfs))
			}
		}
		return CMPeq

	case TARRAY:
		if t.NumElem() != x.NumElem() {
			return cmpForNe(t.NumElem() < x.NumElem())
		}

	case TCHAN:
		if t.ChanDir() != x.ChanDir() {
			return cmpForNe(t.ChanDir() < x.ChanDir())
		}

	default:
		e := fmt.Sprintf("Do not know how to compare %v with %v", t, x)
		panic(e)
	}

	// Common element type comparison for TARRAY, TCHAN, TPTR, and TSLICE.
	return t.Elem().cmp(x.Elem())
}

// IsKind reports whether t is a Type of the specified kind.
func (t *Type) IsKind(et EType) bool {
	return t != nil && t.Etype == et
}

func (t *Type) IsBoolean() bool {
	return t.Etype == TBOOL
}

var unsignedEType = [...]EType{
	TINT8:    TUINT8,
	TUINT8:   TUINT8,
	TINT16:   TUINT16,
	TUINT16:  TUINT16,
	TINT32:   TUINT32,
	TUINT32:  TUINT32,
	TINT64:   TUINT64,
	TUINT64:  TUINT64,
	TINT:     TUINT,
	TUINT:    TUINT,
	TUINTPTR: TUINTPTR,
}

// ToUnsigned returns the unsigned equivalent of integer type t.
func (t *Type) ToUnsigned() *Type {
	if !t.IsInteger() {
		Fatalf("unsignedType(%v)", t)
	}
	return Types[unsignedEType[t.Etype]]
}

func (t *Type) IsInteger() bool {
	switch t.Etype {
	case TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32, TINT64, TUINT64, TINT, TUINT, TUINTPTR:
		return true
	}
	return false
}

func (t *Type) IsSigned() bool {
	switch t.Etype {
	case TINT8, TINT16, TINT32, TINT64, TINT:
		return true
	}
	return false
}

func (t *Type) IsFloat() bool {
	return t.Etype == TFLOAT32 || t.Etype == TFLOAT64
}

func (t *Type) IsComplex() bool {
	return t.Etype == TCOMPLEX64 || t.Etype == TCOMPLEX128
}

// IsPtr reports whether t is a regular Go pointer type.
// This does not include unsafe.Pointer.
func (t *Type) IsPtr() bool {
	return t.Etype == TPTR
}

// IsPtrElem reports whether t is the element of a pointer (to t).
func (t *Type) IsPtrElem() bool {
	return t.Cache.ptr != nil
}

// IsUnsafePtr reports whether t is an unsafe pointer.
func (t *Type) IsUnsafePtr() bool {
	return t.Etype == TUNSAFEPTR
}

// IsUintptr reports whether t is an uintptr.
func (t *Type) IsUintptr() bool {
	return t.Etype == TUINTPTR
}

// IsPtrShaped reports whether t is represented by a single machine pointer.
// In addition to regular Go pointer types, this includes map, channel, and
// function types and unsafe.Pointer. It does not include array or struct types
// that consist of a single pointer shaped type.
// TODO(mdempsky): Should it? See golang.org/issue/15028.
func (t *Type) IsPtrShaped() bool {
	return t.Etype == TPTR || t.Etype == TUNSAFEPTR ||
		t.Etype == TMAP || t.Etype == TCHAN || t.Etype == TFUNC
}

// HasNil reports whether the set of values determined by t includes nil.
func (t *Type) HasNil() bool {
	switch t.Etype {
	case TCHAN, TFUNC, TINTER, TMAP, TPTR, TSLICE, TUNSAFEPTR:
		return true
	}
	return false
}

func (t *Type) IsString() bool {
	return t.Etype == TSTRING
}

func (t *Type) IsMap() bool {
	return t.Etype == TMAP
}

func (t *Type) IsChan() bool {
	return t.Etype == TCHAN
}

func (t *Type) IsSlice() bool {
	return t.Etype == TSLICE
}

func (t *Type) IsArray() bool {
	return t.Etype == TARRAY
}

func (t *Type) IsStruct() bool {
	return t.Etype == TSTRUCT
}

func (t *Type) IsInterface() bool {
	return t.Etype == TINTER
}

// IsEmptyInterface reports whether t is an empty interface type.
func (t *Type) IsEmptyInterface() bool {
	return t.IsInterface() && t.NumFields() == 0
}

func (t *Type) PtrTo() *Type {
	return NewPtr(t)
}

func (t *Type) NumFields() int {
	return t.Fields().Len()
}
func (t *Type) FieldType(i int) *Type {
	if t.Etype == TTUPLE {
		switch i {
		case 0:
			return t.Extra.(*Tuple).first
		case 1:
			return t.Extra.(*Tuple).second
		default:
			panic("bad tuple index")
		}
	}
	if t.Etype == TRESULTS {
		return t.Extra.(*Results).Types[i]
	}
	return t.Field(i).Type
}
func (t *Type) FieldOff(i int) int64 {
	return t.Field(i).Offset
}
func (t *Type) FieldName(i int) string {
	return t.Field(i).Sym.Name
}

func (t *Type) NumElem() int64 {
	t.wantEtype(TARRAY)
	return t.Extra.(*Array).Bound
}

type componentsIncludeBlankFields bool

const (
	IgnoreBlankFields componentsIncludeBlankFields = false
	CountBlankFields  componentsIncludeBlankFields = true
)

// NumComponents returns the number of primitive elements that compose t.
// Struct and array types are flattened for the purpose of counting.
// All other types (including string, slice, and interface types) count as one element.
// If countBlank is IgnoreBlankFields, then blank struct fields
// (and their comprised elements) are excluded from the count.
// struct { x, y [3]int } has six components; [10]struct{ x, y string } has twenty.
func (t *Type) NumComponents(countBlank componentsIncludeBlankFields) int64 {
	switch t.Etype {
	case TSTRUCT:
		if t.IsFuncArgStruct() {
			Fatalf("NumComponents func arg struct")
		}
		var n int64
		for _, f := range t.FieldSlice() {
			if countBlank == IgnoreBlankFields && f.Sym.IsBlank() {
				continue
			}
			n += f.Type.NumComponents(countBlank)
		}
		return n
	case TARRAY:
		return t.NumElem() * t.Elem().NumComponents(countBlank)
	}
	return 1
}

// SoleComponent returns the only primitive component in t,
// if there is exactly one. Otherwise, it returns nil.
// Components are counted as in NumComponents, including blank fields.
func (t *Type) SoleComponent() *Type {
	switch t.Etype {
	case TSTRUCT:
		if t.IsFuncArgStruct() {
			Fatalf("SoleComponent func arg struct")
		}
		if t.NumFields() != 1 {
			return nil
		}
		return t.Field(0).Type.SoleComponent()
	case TARRAY:
		if t.NumElem() != 1 {
			return nil
		}
		return t.Elem().SoleComponent()
	}
	return t
}

// ChanDir returns the direction of a channel type t.
// The direction will be one of Crecv, Csend, or Cboth.
func (t *Type) ChanDir() ChanDir {
	t.wantEtype(TCHAN)
	return t.Extra.(*Chan).Dir
}

func (t *Type) IsMemory() bool {
	if t == TypeMem || t.Etype == TTUPLE && t.Extra.(*Tuple).second == TypeMem {
		return true
	}
	if t.Etype == TRESULTS {
		if types := t.Extra.(*Results).Types; len(types) > 0 && types[len(types)-1] == TypeMem {
			return true
		}
	}
	return false
}
func (t *Type) IsFlags() bool   { return t == TypeFlags }
func (t *Type) IsVoid() bool    { return t == TypeVoid }
func (t *Type) IsTuple() bool   { return t.Etype == TTUPLE }
func (t *Type) IsResults() bool { return t.Etype == TRESULTS }

// IsUntyped reports whether t is an untyped type.
func (t *Type) IsUntyped() bool {
	if t == nil {
		return false
	}
	if t == UntypedString || t == UntypedBool {
		return true
	}
	switch t.Etype {
	case TNIL, TIDEAL:
		return true
	}
	return false
}

// HasPointers reports whether t contains a heap pointer.
// Note that this function ignores pointers to go:notinheap types.
func (t *Type) HasPointers() bool {
	switch t.Etype {
	case TINT, TUINT, TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32, TINT64,
		TUINT64, TUINTPTR, TFLOAT32, TFLOAT64, TCOMPLEX64, TCOMPLEX128, TBOOL, TSSA:
		return false

	case TARRAY:
		if t.NumElem() == 0 { // empty array has no pointers
			return false
		}
		return t.Elem().HasPointers()

	case TSTRUCT:
		for _, t1 := range t.Fields().Slice() {
			if t1.Type.HasPointers() {
				return true
			}
		}
		return false

	case TPTR, TSLICE:
		return !t.Elem().NotInHeap()

	case TTUPLE:
		ttup := t.Extra.(*Tuple)
		return ttup.first.HasPointers() || ttup.second.HasPointers()

	case TRESULTS:
		types := t.Extra.(*Results).Types
		for _, et := range types {
			if et.HasPointers() {
				return true
			}
		}
		return false
	}

	return true
}

func (t *Type) Symbol() *obj.LSym {
	return TypeLinkSym(t)
}

// Tie returns 'T' if t is a concrete type,
// 'I' if t is an interface type, and 'E' if t is an empty interface type.
// It is used to build calls to the conv* and assert* runtime routines.
func (t *Type) Tie() byte {
	if t.IsEmptyInterface() {
		return 'E'
	}
	if t.IsInterface() {
		return 'I'
	}
	return 'T'
}

var recvType *Type

// FakeRecvType returns the singleton type used for interface method receivers.
func FakeRecvType() *Type {
	if recvType == nil {
		recvType = NewPtr(New(TSTRUCT))
	}
	return recvType
}

var (
	// TSSA types. HasPointers assumes these are pointer-free.
	TypeInvalid = newSSA("invalid")
	TypeMem     = newSSA("mem")
	TypeFlags   = newSSA("flags")
	TypeVoid    = newSSA("void")
	TypeInt128  = newSSA("int128")
)