aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/typecheck/subr.go
blob: 8554805fa63ed26b0feae63a08aece30e8491adc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package typecheck

import (
	"fmt"
	"sort"
	"strings"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"cmd/internal/src"
)

func AssignConv(n ir.Node, t *types.Type, context string) ir.Node {
	return assignconvfn(n, t, func() string { return context })
}

// LookupNum returns types.LocalPkg.LookupNum(prefix, n).
func LookupNum(prefix string, n int) *types.Sym {
	return types.LocalPkg.LookupNum(prefix, n)
}

// Given funarg struct list, return list of fn args.
func NewFuncParams(tl *types.Type, mustname bool) []*ir.Field {
	var args []*ir.Field
	gen := 0
	for _, t := range tl.Fields().Slice() {
		s := t.Sym
		if mustname && (s == nil || s.Name == "_") {
			// invent a name so that we can refer to it in the trampoline
			s = LookupNum(".anon", gen)
			gen++
		} else if s != nil && s.Pkg != types.LocalPkg {
			// TODO(mdempsky): Preserve original position, name, and package.
			s = Lookup(s.Name)
		}
		a := ir.NewField(base.Pos, s, t.Type)
		a.Pos = t.Pos
		a.IsDDD = t.IsDDD()
		args = append(args, a)
	}

	return args
}

// NewName returns a new ONAME Node associated with symbol s.
func NewName(s *types.Sym) *ir.Name {
	n := ir.NewNameAt(base.Pos, s)
	n.Curfn = ir.CurFunc
	return n
}

// NodAddr returns a node representing &n at base.Pos.
func NodAddr(n ir.Node) *ir.AddrExpr {
	return NodAddrAt(base.Pos, n)
}

// NodAddrAt returns a node representing &n at position pos.
func NodAddrAt(pos src.XPos, n ir.Node) *ir.AddrExpr {
	n = markAddrOf(n)
	return ir.NewAddrExpr(pos, n)
}

func markAddrOf(n ir.Node) ir.Node {
	if IncrementalAddrtaken {
		// We can only do incremental addrtaken computation when it is ok
		// to typecheck the argument of the OADDR. That's only safe after the
		// main typecheck has completed, and not loading the inlined body.
		// The argument to OADDR needs to be typechecked because &x[i] takes
		// the address of x if x is an array, but not if x is a slice.
		// Note: OuterValue doesn't work correctly until n is typechecked.
		n = typecheck(n, ctxExpr)
		if x := ir.OuterValue(n); x.Op() == ir.ONAME {
			x.Name().SetAddrtaken(true)
		}
	} else {
		// Remember that we built an OADDR without computing the Addrtaken bit for
		// its argument. We'll do that later in bulk using computeAddrtaken.
		DirtyAddrtaken = true
	}
	return n
}

// If IncrementalAddrtaken is false, we do not compute Addrtaken for an OADDR Node
// when it is built. The Addrtaken bits are set in bulk by computeAddrtaken.
// If IncrementalAddrtaken is true, then when an OADDR Node is built the Addrtaken
// field of its argument is updated immediately.
var IncrementalAddrtaken = false

// If DirtyAddrtaken is true, then there are OADDR whose corresponding arguments
// have not yet been marked as Addrtaken.
var DirtyAddrtaken = false

func ComputeAddrtaken(top []ir.Node) {
	for _, n := range top {
		var doVisit func(n ir.Node)
		doVisit = func(n ir.Node) {
			if n.Op() == ir.OADDR {
				if x := ir.OuterValue(n.(*ir.AddrExpr).X); x.Op() == ir.ONAME {
					x.Name().SetAddrtaken(true)
					if x.Name().IsClosureVar() {
						// Mark the original variable as Addrtaken so that capturevars
						// knows not to pass it by value.
						x.Name().Defn.Name().SetAddrtaken(true)
					}
				}
			}
			if n.Op() == ir.OCLOSURE {
				ir.VisitList(n.(*ir.ClosureExpr).Func.Body, doVisit)
			}
		}
		ir.Visit(n, doVisit)
	}
}

// LinksymAddr returns a new expression that evaluates to the address
// of lsym. typ specifies the type of the addressed memory.
func LinksymAddr(pos src.XPos, lsym *obj.LSym, typ *types.Type) *ir.AddrExpr {
	n := ir.NewLinksymExpr(pos, lsym, typ)
	return Expr(NodAddrAt(pos, n)).(*ir.AddrExpr)
}

func NodNil() ir.Node {
	n := ir.NewNilExpr(base.Pos)
	n.SetType(types.Types[types.TNIL])
	return n
}

// AddImplicitDots finds missing fields in obj.field that
// will give the shortest unique addressing and
// modifies the tree with missing field names.
func AddImplicitDots(n *ir.SelectorExpr) *ir.SelectorExpr {
	n.X = typecheck(n.X, ctxType|ctxExpr)
	t := n.X.Type()
	if t == nil {
		return n
	}

	if n.X.Op() == ir.OTYPE {
		return n
	}

	s := n.Sel
	if s == nil {
		return n
	}

	switch path, ambig := dotpath(s, t, nil, false); {
	case path != nil:
		// rebuild elided dots
		for c := len(path) - 1; c >= 0; c-- {
			dot := ir.NewSelectorExpr(n.Pos(), ir.ODOT, n.X, path[c].field.Sym)
			dot.SetImplicit(true)
			dot.SetType(path[c].field.Type)
			n.X = dot
		}
	case ambig:
		base.Errorf("ambiguous selector %v", n)
		n.X = nil
	}

	return n
}

// CalcMethods calculates all the methods (including embedding) of a non-interface
// type t.
func CalcMethods(t *types.Type) {
	if t == nil || t.AllMethods().Len() != 0 {
		return
	}

	// mark top-level method symbols
	// so that expand1 doesn't consider them.
	for _, f := range t.Methods().Slice() {
		f.Sym.SetUniq(true)
	}

	// generate all reachable methods
	slist = slist[:0]
	expand1(t, true)

	// check each method to be uniquely reachable
	var ms []*types.Field
	for i, sl := range slist {
		slist[i].field = nil
		sl.field.Sym.SetUniq(false)

		var f *types.Field
		path, _ := dotpath(sl.field.Sym, t, &f, false)
		if path == nil {
			continue
		}

		// dotpath may have dug out arbitrary fields, we only want methods.
		if !f.IsMethod() {
			continue
		}

		// add it to the base type method list
		f = f.Copy()
		f.Embedded = 1 // needs a trampoline
		for _, d := range path {
			if d.field.Type.IsPtr() {
				f.Embedded = 2
				break
			}
		}
		ms = append(ms, f)
	}

	for _, f := range t.Methods().Slice() {
		f.Sym.SetUniq(false)
	}

	ms = append(ms, t.Methods().Slice()...)
	sort.Sort(types.MethodsByName(ms))
	t.SetAllMethods(ms)
}

// adddot1 returns the number of fields or methods named s at depth d in Type t.
// If exactly one exists, it will be returned in *save (if save is not nil),
// and dotlist will contain the path of embedded fields traversed to find it,
// in reverse order. If none exist, more will indicate whether t contains any
// embedded fields at depth d, so callers can decide whether to retry at
// a greater depth.
func adddot1(s *types.Sym, t *types.Type, d int, save **types.Field, ignorecase bool) (c int, more bool) {
	if t.Recur() {
		return
	}
	t.SetRecur(true)
	defer t.SetRecur(false)

	var u *types.Type
	d--
	if d < 0 {
		// We've reached our target depth. If t has any fields/methods
		// named s, then we're done. Otherwise, we still need to check
		// below for embedded fields.
		c = lookdot0(s, t, save, ignorecase)
		if c != 0 {
			return c, false
		}
	}

	u = t
	if u.IsPtr() {
		u = u.Elem()
	}
	if !u.IsStruct() && !u.IsInterface() {
		return c, false
	}

	var fields *types.Fields
	if u.IsStruct() {
		fields = u.Fields()
	} else {
		fields = u.AllMethods()
	}
	for _, f := range fields.Slice() {
		if f.Embedded == 0 || f.Sym == nil {
			continue
		}
		if d < 0 {
			// Found an embedded field at target depth.
			return c, true
		}
		a, more1 := adddot1(s, f.Type, d, save, ignorecase)
		if a != 0 && c == 0 {
			dotlist[d].field = f
		}
		c += a
		if more1 {
			more = true
		}
	}

	return c, more
}

// dotlist is used by adddot1 to record the path of embedded fields
// used to access a target field or method.
// Must be non-nil so that dotpath returns a non-nil slice even if d is zero.
var dotlist = make([]dlist, 10)

// Convert node n for assignment to type t.
func assignconvfn(n ir.Node, t *types.Type, context func() string) ir.Node {
	if n == nil || n.Type() == nil {
		return n
	}

	if t.Kind() == types.TBLANK && n.Type().Kind() == types.TNIL {
		base.Errorf("use of untyped nil")
	}

	n = convlit1(n, t, false, context)
	if n.Type() == nil {
		base.Fatalf("cannot assign %v to %v", n, t)
	}
	if n.Type().IsUntyped() {
		base.Fatalf("%L has untyped type", n)
	}
	if t.Kind() == types.TBLANK {
		return n
	}
	if types.Identical(n.Type(), t) {
		return n
	}

	op, why := Assignop(n.Type(), t)
	if op == ir.OXXX {
		base.Errorf("cannot use %L as type %v in %s%s", n, t, context(), why)
		op = ir.OCONV
	}

	r := ir.NewConvExpr(base.Pos, op, t, n)
	r.SetTypecheck(1)
	r.SetImplicit(true)
	return r
}

// Is type src assignment compatible to type dst?
// If so, return op code to use in conversion.
// If not, return OXXX. In this case, the string return parameter may
// hold a reason why. In all other cases, it'll be the empty string.
func Assignop(src, dst *types.Type) (ir.Op, string) {
	if src == dst {
		return ir.OCONVNOP, ""
	}
	if src == nil || dst == nil || src.Kind() == types.TFORW || dst.Kind() == types.TFORW || src.Underlying() == nil || dst.Underlying() == nil {
		return ir.OXXX, ""
	}

	// 1. src type is identical to dst.
	if types.Identical(src, dst) {
		return ir.OCONVNOP, ""
	}
	return Assignop1(src, dst)
}

func Assignop1(src, dst *types.Type) (ir.Op, string) {
	// 2. src and dst have identical underlying types and
	//   a. either src or dst is not a named type, or
	//   b. both are empty interface types, or
	//   c. at least one is a gcshape type.
	// For assignable but different non-empty interface types,
	// we want to recompute the itab. Recomputing the itab ensures
	// that itabs are unique (thus an interface with a compile-time
	// type I has an itab with interface type I).
	if types.Identical(src.Underlying(), dst.Underlying()) {
		if src.IsEmptyInterface() {
			// Conversion between two empty interfaces
			// requires no code.
			return ir.OCONVNOP, ""
		}
		if (src.Sym() == nil || dst.Sym() == nil) && !src.IsInterface() {
			// Conversion between two types, at least one unnamed,
			// needs no conversion. The exception is nonempty interfaces
			// which need to have their itab updated.
			return ir.OCONVNOP, ""
		}
		if src.IsShape() || dst.IsShape() {
			// Conversion between a shape type and one of the types
			// it represents also needs no conversion.
			return ir.OCONVNOP, ""
		}
	}

	// 3. dst is an interface type and src implements dst.
	if dst.IsInterface() && src.Kind() != types.TNIL {
		if src.IsShape() {
			// Shape types implement things they have already
			// been typechecked to implement, even if they
			// don't have the methods for them.
			return ir.OCONVIFACE, ""
		}
		if src.HasShape() {
			// Unified IR uses OCONVIFACE for converting all derived types
			// to interface type, not just type arguments themselves.
			return ir.OCONVIFACE, ""
		}

		why := ImplementsExplain(src, dst)
		if why == "" {
			return ir.OCONVIFACE, ""
		}
		return ir.OXXX, ":\n\t" + why
	}

	if isptrto(dst, types.TINTER) {
		why := fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst)
		return ir.OXXX, why
	}

	if src.IsInterface() && dst.Kind() != types.TBLANK {
		var why string
		if Implements(dst, src) {
			why = ": need type assertion"
		}
		return ir.OXXX, why
	}

	// 4. src is a bidirectional channel value, dst is a channel type,
	// src and dst have identical element types, and
	// either src or dst is not a named type.
	if src.IsChan() && src.ChanDir() == types.Cboth && dst.IsChan() {
		if types.Identical(src.Elem(), dst.Elem()) && (src.Sym() == nil || dst.Sym() == nil) {
			return ir.OCONVNOP, ""
		}
	}

	// 5. src is the predeclared identifier nil and dst is a nillable type.
	if src.Kind() == types.TNIL {
		switch dst.Kind() {
		case types.TPTR,
			types.TFUNC,
			types.TMAP,
			types.TCHAN,
			types.TINTER,
			types.TSLICE:
			return ir.OCONVNOP, ""
		}
	}

	// 6. rule about untyped constants - already converted by DefaultLit.

	// 7. Any typed value can be assigned to the blank identifier.
	if dst.Kind() == types.TBLANK {
		return ir.OCONVNOP, ""
	}

	return ir.OXXX, ""
}

// Can we convert a value of type src to a value of type dst?
// If so, return op code to use in conversion (maybe OCONVNOP).
// If not, return OXXX. In this case, the string return parameter may
// hold a reason why. In all other cases, it'll be the empty string.
// srcConstant indicates whether the value of type src is a constant.
func Convertop(srcConstant bool, src, dst *types.Type) (ir.Op, string) {
	if src == dst {
		return ir.OCONVNOP, ""
	}
	if src == nil || dst == nil {
		return ir.OXXX, ""
	}

	// Conversions from regular to not-in-heap are not allowed
	// (unless it's unsafe.Pointer). These are runtime-specific
	// rules.
	// (a) Disallow (*T) to (*U) where T is not-in-heap but U isn't.
	if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap() && !src.Elem().NotInHeap() {
		why := fmt.Sprintf(":\n\t%v is incomplete (or unallocatable), but %v is not", dst.Elem(), src.Elem())
		return ir.OXXX, why
	}
	// (b) Disallow string to []T where T is not-in-heap.
	if src.IsString() && dst.IsSlice() && dst.Elem().NotInHeap() && (dst.Elem().Kind() == types.ByteType.Kind() || dst.Elem().Kind() == types.RuneType.Kind()) {
		why := fmt.Sprintf(":\n\t%v is incomplete (or unallocatable)", dst.Elem())
		return ir.OXXX, why
	}

	// 1. src can be assigned to dst.
	op, why := Assignop(src, dst)
	if op != ir.OXXX {
		return op, why
	}

	// The rules for interfaces are no different in conversions
	// than assignments. If interfaces are involved, stop now
	// with the good message from assignop.
	// Otherwise clear the error.
	if src.IsInterface() || dst.IsInterface() {
		return ir.OXXX, why
	}

	// 2. Ignoring struct tags, src and dst have identical underlying types.
	if types.IdenticalIgnoreTags(src.Underlying(), dst.Underlying()) {
		return ir.OCONVNOP, ""
	}

	// 3. src and dst are unnamed pointer types and, ignoring struct tags,
	// their base types have identical underlying types.
	if src.IsPtr() && dst.IsPtr() && src.Sym() == nil && dst.Sym() == nil {
		if types.IdenticalIgnoreTags(src.Elem().Underlying(), dst.Elem().Underlying()) {
			return ir.OCONVNOP, ""
		}
	}

	// 4. src and dst are both integer or floating point types.
	if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) {
		if types.SimType[src.Kind()] == types.SimType[dst.Kind()] {
			return ir.OCONVNOP, ""
		}
		return ir.OCONV, ""
	}

	// 5. src and dst are both complex types.
	if src.IsComplex() && dst.IsComplex() {
		if types.SimType[src.Kind()] == types.SimType[dst.Kind()] {
			return ir.OCONVNOP, ""
		}
		return ir.OCONV, ""
	}

	// Special case for constant conversions: any numeric
	// conversion is potentially okay. We'll validate further
	// within evconst. See #38117.
	if srcConstant && (src.IsInteger() || src.IsFloat() || src.IsComplex()) && (dst.IsInteger() || dst.IsFloat() || dst.IsComplex()) {
		return ir.OCONV, ""
	}

	// 6. src is an integer or has type []byte or []rune
	// and dst is a string type.
	if src.IsInteger() && dst.IsString() {
		return ir.ORUNESTR, ""
	}

	if src.IsSlice() && dst.IsString() {
		if src.Elem().Kind() == types.ByteType.Kind() {
			return ir.OBYTES2STR, ""
		}
		if src.Elem().Kind() == types.RuneType.Kind() {
			return ir.ORUNES2STR, ""
		}
	}

	// 7. src is a string and dst is []byte or []rune.
	// String to slice.
	if src.IsString() && dst.IsSlice() {
		if dst.Elem().Kind() == types.ByteType.Kind() {
			return ir.OSTR2BYTES, ""
		}
		if dst.Elem().Kind() == types.RuneType.Kind() {
			return ir.OSTR2RUNES, ""
		}
	}

	// 8. src is a pointer or uintptr and dst is unsafe.Pointer.
	if (src.IsPtr() || src.IsUintptr()) && dst.IsUnsafePtr() {
		return ir.OCONVNOP, ""
	}

	// 9. src is unsafe.Pointer and dst is a pointer or uintptr.
	if src.IsUnsafePtr() && (dst.IsPtr() || dst.IsUintptr()) {
		return ir.OCONVNOP, ""
	}

	// 10. src is map and dst is a pointer to corresponding hmap.
	// This rule is needed for the implementation detail that
	// go gc maps are implemented as a pointer to a hmap struct.
	if src.Kind() == types.TMAP && dst.IsPtr() &&
		src.MapType().Hmap == dst.Elem() {
		return ir.OCONVNOP, ""
	}

	// 11. src is a slice and dst is an array or pointer-to-array.
	// They must have same element type.
	if src.IsSlice() {
		if dst.IsArray() && types.Identical(src.Elem(), dst.Elem()) {
			return ir.OSLICE2ARR, ""
		}
		if dst.IsPtr() && dst.Elem().IsArray() &&
			types.Identical(src.Elem(), dst.Elem().Elem()) {
			return ir.OSLICE2ARRPTR, ""
		}
	}

	return ir.OXXX, ""
}

// Code to resolve elided DOTs in embedded types.

// A dlist stores a pointer to a TFIELD Type embedded within
// a TSTRUCT or TINTER Type.
type dlist struct {
	field *types.Field
}

// dotpath computes the unique shortest explicit selector path to fully qualify
// a selection expression x.f, where x is of type t and f is the symbol s.
// If no such path exists, dotpath returns nil.
// If there are multiple shortest paths to the same depth, ambig is true.
func dotpath(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) (path []dlist, ambig bool) {
	// The embedding of types within structs imposes a tree structure onto
	// types: structs parent the types they embed, and types parent their
	// fields or methods. Our goal here is to find the shortest path to
	// a field or method named s in the subtree rooted at t. To accomplish
	// that, we iteratively perform depth-first searches of increasing depth
	// until we either find the named field/method or exhaust the tree.
	for d := 0; ; d++ {
		if d > len(dotlist) {
			dotlist = append(dotlist, dlist{})
		}
		if c, more := adddot1(s, t, d, save, ignorecase); c == 1 {
			return dotlist[:d], false
		} else if c > 1 {
			return nil, true
		} else if !more {
			return nil, false
		}
	}
}

func expand0(t *types.Type) {
	u := t
	if u.IsPtr() {
		u = u.Elem()
	}

	if u.IsInterface() {
		for _, f := range u.AllMethods().Slice() {
			if f.Sym.Uniq() {
				continue
			}
			f.Sym.SetUniq(true)
			slist = append(slist, symlink{field: f})
		}

		return
	}

	u = types.ReceiverBaseType(t)
	if u != nil {
		for _, f := range u.Methods().Slice() {
			if f.Sym.Uniq() {
				continue
			}
			f.Sym.SetUniq(true)
			slist = append(slist, symlink{field: f})
		}
	}
}

func expand1(t *types.Type, top bool) {
	if t.Recur() {
		return
	}
	t.SetRecur(true)

	if !top {
		expand0(t)
	}

	u := t
	if u.IsPtr() {
		u = u.Elem()
	}

	if u.IsStruct() || u.IsInterface() {
		var fields *types.Fields
		if u.IsStruct() {
			fields = u.Fields()
		} else {
			fields = u.AllMethods()
		}
		for _, f := range fields.Slice() {
			if f.Embedded == 0 {
				continue
			}
			if f.Sym == nil {
				continue
			}
			expand1(f.Type, false)
		}
	}

	t.SetRecur(false)
}

func ifacelookdot(s *types.Sym, t *types.Type, ignorecase bool) *types.Field {
	if t == nil {
		return nil
	}

	var m *types.Field
	path, _ := dotpath(s, t, &m, ignorecase)
	if path == nil {
		return nil
	}

	if !m.IsMethod() {
		return nil
	}

	return m
}

// Implements reports whether t implements the interface iface. t can be
// an interface, a type parameter, or a concrete type.
func Implements(t, iface *types.Type) bool {
	var missing, have *types.Field
	var ptr int
	return implements(t, iface, &missing, &have, &ptr)
}

// ImplementsExplain reports whether t implements the interface iface. t can be
// an interface, a type parameter, or a concrete type. If t does not implement
// iface, a non-empty string is returned explaining why.
func ImplementsExplain(t, iface *types.Type) string {
	var missing, have *types.Field
	var ptr int
	if implements(t, iface, &missing, &have, &ptr) {
		return ""
	}

	if isptrto(t, types.TINTER) {
		return fmt.Sprintf("%v is pointer to interface, not interface", t)
	} else if have != nil && have.Sym == missing.Sym && have.Nointerface() {
		return fmt.Sprintf("%v does not implement %v (%v method is marked 'nointerface')", t, iface, missing.Sym)
	} else if have != nil && have.Sym == missing.Sym {
		return fmt.Sprintf("%v does not implement %v (wrong type for %v method)\n"+
		"\t\thave %v%S\n\t\twant %v%S", t, iface, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
	} else if ptr != 0 {
		return fmt.Sprintf("%v does not implement %v (%v method has pointer receiver)", t, iface, missing.Sym)
	} else if have != nil {
		return fmt.Sprintf("%v does not implement %v (missing %v method)\n"+
		"\t\thave %v%S\n\t\twant %v%S", t, iface, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
	}
	return fmt.Sprintf("%v does not implement %v (missing %v method)", t, iface, missing.Sym)
}

// implements reports whether t implements the interface iface. t can be
// an interface, a type parameter, or a concrete type. If implements returns
// false, it stores a method of iface that is not implemented in *m. If the
// method name matches but the type is wrong, it additionally stores the type
// of the method (on t) in *samename.
func implements(t, iface *types.Type, m, samename **types.Field, ptr *int) bool {
	t0 := t
	if t == nil {
		return false
	}

	if t.IsInterface() {
		i := 0
		tms := t.AllMethods().Slice()
		for _, im := range iface.AllMethods().Slice() {
			for i < len(tms) && tms[i].Sym != im.Sym {
				i++
			}
			if i == len(tms) {
				*m = im
				*samename = nil
				*ptr = 0
				return false
			}
			tm := tms[i]
			if !types.Identical(tm.Type, im.Type) {
				*m = im
				*samename = tm
				*ptr = 0
				return false
			}
		}

		return true
	}

	t = types.ReceiverBaseType(t)
	var tms []*types.Field
	if t != nil {
		CalcMethods(t)
		tms = t.AllMethods().Slice()
	}
	i := 0
	for _, im := range iface.AllMethods().Slice() {
		for i < len(tms) && tms[i].Sym != im.Sym {
			i++
		}
		if i == len(tms) {
			*m = im
			*samename = ifacelookdot(im.Sym, t, true)
			*ptr = 0
			return false
		}
		tm := tms[i]
		if tm.Nointerface() || !types.Identical(tm.Type, im.Type) {
			*m = im
			*samename = tm
			*ptr = 0
			return false
		}
		followptr := tm.Embedded == 2

		// if pointer receiver in method,
		// the method does not exist for value types.
		rcvr := tm.Type.Recv().Type
		if rcvr.IsPtr() && !t0.IsPtr() && !followptr && !types.IsInterfaceMethod(tm.Type) {
			if false && base.Flag.LowerR != 0 {
				base.Errorf("interface pointer mismatch")
			}

			*m = im
			*samename = nil
			*ptr = 1
			return false
		}
	}

	return true
}

func isptrto(t *types.Type, et types.Kind) bool {
	if t == nil {
		return false
	}
	if !t.IsPtr() {
		return false
	}
	t = t.Elem()
	if t == nil {
		return false
	}
	if t.Kind() != et {
		return false
	}
	return true
}

// lookdot0 returns the number of fields or methods named s associated
// with Type t. If exactly one exists, it will be returned in *save
// (if save is not nil).
func lookdot0(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) int {
	u := t
	if u.IsPtr() {
		u = u.Elem()
	}

	c := 0
	if u.IsStruct() || u.IsInterface() {
		var fields *types.Fields
		if u.IsStruct() {
			fields = u.Fields()
		} else {
			fields = u.AllMethods()
		}
		for _, f := range fields.Slice() {
			if f.Sym == s || (ignorecase && f.IsMethod() && strings.EqualFold(f.Sym.Name, s.Name)) {
				if save != nil {
					*save = f
				}
				c++
			}
		}
	}

	u = t
	if t.Sym() != nil && t.IsPtr() && !t.Elem().IsPtr() {
		// If t is a defined pointer type, then x.m is shorthand for (*x).m.
		u = t.Elem()
	}
	u = types.ReceiverBaseType(u)
	if u != nil {
		for _, f := range u.Methods().Slice() {
			if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) {
				if save != nil {
					*save = f
				}
				c++
			}
		}
	}

	return c
}

var slist []symlink

// Code to help generate trampoline functions for methods on embedded
// types. These are approx the same as the corresponding AddImplicitDots
// routines except that they expect to be called with unique tasks and
// they return the actual methods.

type symlink struct {
	field *types.Field
}

func assert(p bool) {
	base.Assert(p)
}