aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/typecheck/subr.go
blob: 8d053565436a2d256a37600510a94042e79034a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package typecheck

import (
	"bytes"
	"fmt"
	"sort"
	"strconv"
	"strings"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/types"
	"cmd/internal/src"
)

func AssignConv(n ir.Node, t *types.Type, context string) ir.Node {
	return assignconvfn(n, t, func() string { return context })
}

// DotImportRefs maps idents introduced by importDot back to the
// ir.PkgName they were dot-imported through.
var DotImportRefs map[*ir.Ident]*ir.PkgName

// LookupNum looks up the symbol starting with prefix and ending with
// the decimal n. If prefix is too long, LookupNum panics.
func LookupNum(prefix string, n int) *types.Sym {
	var buf [20]byte // plenty long enough for all current users
	copy(buf[:], prefix)
	b := strconv.AppendInt(buf[:len(prefix)], int64(n), 10)
	return types.LocalPkg.LookupBytes(b)
}

// Given funarg struct list, return list of fn args.
func NewFuncParams(tl *types.Type, mustname bool) []*ir.Field {
	var args []*ir.Field
	gen := 0
	for _, t := range tl.Fields().Slice() {
		s := t.Sym
		if mustname && (s == nil || s.Name == "_") {
			// invent a name so that we can refer to it in the trampoline
			s = LookupNum(".anon", gen)
			gen++
		} else if s != nil && s.Pkg != types.LocalPkg {
			// TODO(mdempsky): Preserve original position, name, and package.
			s = Lookup(s.Name)
		}
		a := ir.NewField(base.Pos, s, nil, t.Type)
		a.Pos = t.Pos
		a.IsDDD = t.IsDDD()
		args = append(args, a)
	}

	return args
}

// newname returns a new ONAME Node associated with symbol s.
func NewName(s *types.Sym) *ir.Name {
	n := ir.NewNameAt(base.Pos, s)
	n.Curfn = ir.CurFunc
	return n
}

// NodAddr returns a node representing &n at base.Pos.
func NodAddr(n ir.Node) *ir.AddrExpr {
	return NodAddrAt(base.Pos, n)
}

// nodAddrPos returns a node representing &n at position pos.
func NodAddrAt(pos src.XPos, n ir.Node) *ir.AddrExpr {
	n = markAddrOf(n)
	return ir.NewAddrExpr(pos, n)
}

func markAddrOf(n ir.Node) ir.Node {
	if IncrementalAddrtaken {
		// We can only do incremental addrtaken computation when it is ok
		// to typecheck the argument of the OADDR. That's only safe after the
		// main typecheck has completed.
		// The argument to OADDR needs to be typechecked because &x[i] takes
		// the address of x if x is an array, but not if x is a slice.
		// Note: OuterValue doesn't work correctly until n is typechecked.
		n = typecheck(n, ctxExpr)
		if x := ir.OuterValue(n); x.Op() == ir.ONAME {
			x.Name().SetAddrtaken(true)
		}
	} else {
		// Remember that we built an OADDR without computing the Addrtaken bit for
		// its argument. We'll do that later in bulk using computeAddrtaken.
		DirtyAddrtaken = true
	}
	return n
}

// If IncrementalAddrtaken is false, we do not compute Addrtaken for an OADDR Node
// when it is built. The Addrtaken bits are set in bulk by computeAddrtaken.
// If IncrementalAddrtaken is true, then when an OADDR Node is built the Addrtaken
// field of its argument is updated immediately.
var IncrementalAddrtaken = false

// If DirtyAddrtaken is true, then there are OADDR whose corresponding arguments
// have not yet been marked as Addrtaken.
var DirtyAddrtaken = false

func ComputeAddrtaken(top []ir.Node) {
	for _, n := range top {
		var doVisit func(n ir.Node)
		doVisit = func(n ir.Node) {
			if n.Op() == ir.OADDR {
				if x := ir.OuterValue(n.(*ir.AddrExpr).X); x.Op() == ir.ONAME {
					x.Name().SetAddrtaken(true)
					if x.Name().IsClosureVar() {
						// Mark the original variable as Addrtaken so that capturevars
						// knows not to pass it by value.
						x.Name().Defn.Name().SetAddrtaken(true)
					}
				}
			}
			if n.Op() == ir.OCLOSURE {
				ir.VisitList(n.(*ir.ClosureExpr).Func.Body, doVisit)
			}
		}
		ir.Visit(n, doVisit)
	}
}

func NodNil() ir.Node {
	n := ir.NewNilExpr(base.Pos)
	n.SetType(types.Types[types.TNIL])
	return n
}

// AddImplicitDots finds missing fields in obj.field that
// will give the shortest unique addressing and
// modifies the tree with missing field names.
func AddImplicitDots(n *ir.SelectorExpr) *ir.SelectorExpr {
	n.X = typecheck(n.X, ctxType|ctxExpr)
	if n.X.Diag() {
		n.SetDiag(true)
	}
	t := n.X.Type()
	if t == nil {
		return n
	}

	if n.X.Op() == ir.OTYPE {
		return n
	}

	s := n.Sel
	if s == nil {
		return n
	}

	switch path, ambig := dotpath(s, t, nil, false); {
	case path != nil:
		// rebuild elided dots
		for c := len(path) - 1; c >= 0; c-- {
			dot := ir.NewSelectorExpr(base.Pos, ir.ODOT, n.X, path[c].field.Sym)
			dot.SetImplicit(true)
			dot.SetType(path[c].field.Type)
			n.X = dot
		}
	case ambig:
		base.Errorf("ambiguous selector %v", n)
		n.X = nil
	}

	return n
}

func CalcMethods(t *types.Type) {
	if t == nil || t.AllMethods().Len() != 0 {
		return
	}

	// mark top-level method symbols
	// so that expand1 doesn't consider them.
	for _, f := range t.Methods().Slice() {
		f.Sym.SetUniq(true)
	}

	// generate all reachable methods
	slist = slist[:0]
	expand1(t, true)

	// check each method to be uniquely reachable
	var ms []*types.Field
	for i, sl := range slist {
		slist[i].field = nil
		sl.field.Sym.SetUniq(false)

		var f *types.Field
		path, _ := dotpath(sl.field.Sym, t, &f, false)
		if path == nil {
			continue
		}

		// dotpath may have dug out arbitrary fields, we only want methods.
		if !f.IsMethod() {
			continue
		}

		// add it to the base type method list
		f = f.Copy()
		f.Embedded = 1 // needs a trampoline
		for _, d := range path {
			if d.field.Type.IsPtr() {
				f.Embedded = 2
				break
			}
		}
		ms = append(ms, f)
	}

	for _, f := range t.Methods().Slice() {
		f.Sym.SetUniq(false)
	}

	ms = append(ms, t.Methods().Slice()...)
	sort.Sort(types.MethodsByName(ms))
	t.SetAllMethods(ms)
}

// adddot1 returns the number of fields or methods named s at depth d in Type t.
// If exactly one exists, it will be returned in *save (if save is not nil),
// and dotlist will contain the path of embedded fields traversed to find it,
// in reverse order. If none exist, more will indicate whether t contains any
// embedded fields at depth d, so callers can decide whether to retry at
// a greater depth.
func adddot1(s *types.Sym, t *types.Type, d int, save **types.Field, ignorecase bool) (c int, more bool) {
	if t.Recur() {
		return
	}
	t.SetRecur(true)
	defer t.SetRecur(false)

	var u *types.Type
	d--
	if d < 0 {
		// We've reached our target depth. If t has any fields/methods
		// named s, then we're done. Otherwise, we still need to check
		// below for embedded fields.
		c = lookdot0(s, t, save, ignorecase)
		if c != 0 {
			return c, false
		}
	}

	u = t
	if u.IsPtr() {
		u = u.Elem()
	}
	if !u.IsStruct() && !u.IsInterface() {
		return c, false
	}

	var fields *types.Fields
	if u.IsStruct() {
		fields = u.Fields()
	} else {
		fields = u.AllMethods()
	}
	for _, f := range fields.Slice() {
		if f.Embedded == 0 || f.Sym == nil {
			continue
		}
		if d < 0 {
			// Found an embedded field at target depth.
			return c, true
		}
		a, more1 := adddot1(s, f.Type, d, save, ignorecase)
		if a != 0 && c == 0 {
			dotlist[d].field = f
		}
		c += a
		if more1 {
			more = true
		}
	}

	return c, more
}

// dotlist is used by adddot1 to record the path of embedded fields
// used to access a target field or method.
// Must be non-nil so that dotpath returns a non-nil slice even if d is zero.
var dotlist = make([]dlist, 10)

// Convert node n for assignment to type t.
func assignconvfn(n ir.Node, t *types.Type, context func() string) ir.Node {
	if n == nil || n.Type() == nil || n.Type().Broke() {
		return n
	}

	if t.Kind() == types.TBLANK && n.Type().Kind() == types.TNIL {
		base.Errorf("use of untyped nil")
	}

	n = convlit1(n, t, false, context)
	if n.Type() == nil {
		return n
	}
	if t.Kind() == types.TBLANK {
		return n
	}

	// Convert ideal bool from comparison to plain bool
	// if the next step is non-bool (like interface{}).
	if n.Type() == types.UntypedBool && !t.IsBoolean() {
		if n.Op() == ir.ONAME || n.Op() == ir.OLITERAL {
			r := ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, n)
			r.SetType(types.Types[types.TBOOL])
			r.SetTypecheck(1)
			r.SetImplicit(true)
			n = r
		}
	}

	if types.Identical(n.Type(), t) {
		return n
	}

	op, why := Assignop(n.Type(), t)
	if op == ir.OXXX {
		base.Errorf("cannot use %L as type %v in %s%s", n, t, context(), why)
		op = ir.OCONV
	}

	r := ir.NewConvExpr(base.Pos, op, t, n)
	r.SetTypecheck(1)
	r.SetImplicit(true)
	return r
}

// Is type src assignment compatible to type dst?
// If so, return op code to use in conversion.
// If not, return OXXX. In this case, the string return parameter may
// hold a reason why. In all other cases, it'll be the empty string.
func Assignop(src, dst *types.Type) (ir.Op, string) {
	if src == dst {
		return ir.OCONVNOP, ""
	}
	if src == nil || dst == nil || src.Kind() == types.TFORW || dst.Kind() == types.TFORW || src.Underlying() == nil || dst.Underlying() == nil {
		return ir.OXXX, ""
	}

	// 1. src type is identical to dst.
	if types.Identical(src, dst) {
		return ir.OCONVNOP, ""
	}

	// 2. src and dst have identical underlying types and
	//   a. either src or dst is not a named type, or
	//   b. both are empty interface types, or
	//   c. at least one is a gcshape type.
	// For assignable but different non-empty interface types,
	// we want to recompute the itab. Recomputing the itab ensures
	// that itabs are unique (thus an interface with a compile-time
	// type I has an itab with interface type I).
	if types.Identical(src.Underlying(), dst.Underlying()) {
		if src.IsEmptyInterface() {
			// Conversion between two empty interfaces
			// requires no code.
			return ir.OCONVNOP, ""
		}
		if (src.Sym() == nil || dst.Sym() == nil) && !src.IsInterface() {
			// Conversion between two types, at least one unnamed,
			// needs no conversion. The exception is nonempty interfaces
			// which need to have their itab updated.
			return ir.OCONVNOP, ""
		}
		if src.IsShape() || dst.IsShape() {
			// Conversion between a shape type and one of the types
			// it represents also needs no conversion.
			return ir.OCONVNOP, ""
		}
	}

	// 3. dst is an interface type and src implements dst.
	if dst.IsInterface() && src.Kind() != types.TNIL {
		var missing, have *types.Field
		var ptr int
		if src.IsShape() {
			// Shape types implement things they have already
			// been typechecked to implement, even if they
			// don't have the methods for them.
			return ir.OCONVIFACE, ""
		}
		if implements(src, dst, &missing, &have, &ptr) {
			return ir.OCONVIFACE, ""
		}

		// we'll have complained about this method anyway, suppress spurious messages.
		if have != nil && have.Sym == missing.Sym && (have.Type.Broke() || missing.Type.Broke()) {
			return ir.OCONVIFACE, ""
		}

		var why string
		if isptrto(src, types.TINTER) {
			why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src)
		} else if have != nil && have.Sym == missing.Sym && have.Nointerface() {
			why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym)
		} else if have != nil && have.Sym == missing.Sym {
			why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+
				"\t\thave %v%S\n\t\twant %v%S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
		} else if ptr != 0 {
			why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym)
		} else if have != nil {
			why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+
				"\t\thave %v%S\n\t\twant %v%S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type)
		} else {
			why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym)
		}

		return ir.OXXX, why
	}

	if isptrto(dst, types.TINTER) {
		why := fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst)
		return ir.OXXX, why
	}

	if src.IsInterface() && dst.Kind() != types.TBLANK {
		var missing, have *types.Field
		var ptr int
		var why string
		if implements(dst, src, &missing, &have, &ptr) {
			why = ": need type assertion"
		}
		return ir.OXXX, why
	}

	// 4. src is a bidirectional channel value, dst is a channel type,
	// src and dst have identical element types, and
	// either src or dst is not a named type.
	if src.IsChan() && src.ChanDir() == types.Cboth && dst.IsChan() {
		if types.Identical(src.Elem(), dst.Elem()) && (src.Sym() == nil || dst.Sym() == nil) {
			return ir.OCONVNOP, ""
		}
	}

	// 5. src is the predeclared identifier nil and dst is a nillable type.
	if src.Kind() == types.TNIL {
		switch dst.Kind() {
		case types.TPTR,
			types.TFUNC,
			types.TMAP,
			types.TCHAN,
			types.TINTER,
			types.TSLICE:
			return ir.OCONVNOP, ""
		}
	}

	// 6. rule about untyped constants - already converted by DefaultLit.

	// 7. Any typed value can be assigned to the blank identifier.
	if dst.Kind() == types.TBLANK {
		return ir.OCONVNOP, ""
	}

	return ir.OXXX, ""
}

// Can we convert a value of type src to a value of type dst?
// If so, return op code to use in conversion (maybe OCONVNOP).
// If not, return OXXX. In this case, the string return parameter may
// hold a reason why. In all other cases, it'll be the empty string.
// srcConstant indicates whether the value of type src is a constant.
func Convertop(srcConstant bool, src, dst *types.Type) (ir.Op, string) {
	if src == dst {
		return ir.OCONVNOP, ""
	}
	if src == nil || dst == nil {
		return ir.OXXX, ""
	}

	// Conversions from regular to go:notinheap are not allowed
	// (unless it's unsafe.Pointer). These are runtime-specific
	// rules.
	// (a) Disallow (*T) to (*U) where T is go:notinheap but U isn't.
	if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap() && !src.Elem().NotInHeap() {
		why := fmt.Sprintf(":\n\t%v is incomplete (or unallocatable), but %v is not", dst.Elem(), src.Elem())
		return ir.OXXX, why
	}
	// (b) Disallow string to []T where T is go:notinheap.
	if src.IsString() && dst.IsSlice() && dst.Elem().NotInHeap() && (dst.Elem().Kind() == types.ByteType.Kind() || dst.Elem().Kind() == types.RuneType.Kind()) {
		why := fmt.Sprintf(":\n\t%v is incomplete (or unallocatable)", dst.Elem())
		return ir.OXXX, why
	}

	// 1. src can be assigned to dst.
	op, why := Assignop(src, dst)
	if op != ir.OXXX {
		return op, why
	}

	// The rules for interfaces are no different in conversions
	// than assignments. If interfaces are involved, stop now
	// with the good message from assignop.
	// Otherwise clear the error.
	if src.IsInterface() || dst.IsInterface() {
		return ir.OXXX, why
	}

	// 2. Ignoring struct tags, src and dst have identical underlying types.
	if types.IdenticalIgnoreTags(src.Underlying(), dst.Underlying()) {
		return ir.OCONVNOP, ""
	}

	// 3. src and dst are unnamed pointer types and, ignoring struct tags,
	// their base types have identical underlying types.
	if src.IsPtr() && dst.IsPtr() && src.Sym() == nil && dst.Sym() == nil {
		if types.IdenticalIgnoreTags(src.Elem().Underlying(), dst.Elem().Underlying()) {
			return ir.OCONVNOP, ""
		}
	}

	// 4. src and dst are both integer or floating point types.
	if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) {
		if types.SimType[src.Kind()] == types.SimType[dst.Kind()] {
			return ir.OCONVNOP, ""
		}
		return ir.OCONV, ""
	}

	// 5. src and dst are both complex types.
	if src.IsComplex() && dst.IsComplex() {
		if types.SimType[src.Kind()] == types.SimType[dst.Kind()] {
			return ir.OCONVNOP, ""
		}
		return ir.OCONV, ""
	}

	// Special case for constant conversions: any numeric
	// conversion is potentially okay. We'll validate further
	// within evconst. See #38117.
	if srcConstant && (src.IsInteger() || src.IsFloat() || src.IsComplex()) && (dst.IsInteger() || dst.IsFloat() || dst.IsComplex()) {
		return ir.OCONV, ""
	}

	// 6. src is an integer or has type []byte or []rune
	// and dst is a string type.
	if src.IsInteger() && dst.IsString() {
		return ir.ORUNESTR, ""
	}

	if src.IsSlice() && dst.IsString() {
		if src.Elem().Kind() == types.ByteType.Kind() {
			return ir.OBYTES2STR, ""
		}
		if src.Elem().Kind() == types.RuneType.Kind() {
			return ir.ORUNES2STR, ""
		}
	}

	// 7. src is a string and dst is []byte or []rune.
	// String to slice.
	if src.IsString() && dst.IsSlice() {
		if dst.Elem().Kind() == types.ByteType.Kind() {
			return ir.OSTR2BYTES, ""
		}
		if dst.Elem().Kind() == types.RuneType.Kind() {
			return ir.OSTR2RUNES, ""
		}
	}

	// 8. src is a pointer or uintptr and dst is unsafe.Pointer.
	if (src.IsPtr() || src.IsUintptr()) && dst.IsUnsafePtr() {
		return ir.OCONVNOP, ""
	}

	// 9. src is unsafe.Pointer and dst is a pointer or uintptr.
	if src.IsUnsafePtr() && (dst.IsPtr() || dst.IsUintptr()) {
		return ir.OCONVNOP, ""
	}

	// 10. src is map and dst is a pointer to corresponding hmap.
	// This rule is needed for the implementation detail that
	// go gc maps are implemented as a pointer to a hmap struct.
	if src.Kind() == types.TMAP && dst.IsPtr() &&
		src.MapType().Hmap == dst.Elem() {
		return ir.OCONVNOP, ""
	}

	// 11. src is a slice and dst is a pointer-to-array.
	// They must have same element type.
	if src.IsSlice() && dst.IsPtr() && dst.Elem().IsArray() &&
		types.Identical(src.Elem(), dst.Elem().Elem()) {
		if !types.AllowsGoVersion(curpkg(), 1, 17) {
			return ir.OXXX, ":\n\tconversion of slices to array pointers only supported as of -lang=go1.17"
		}
		return ir.OSLICE2ARRPTR, ""
	}

	return ir.OXXX, ""
}

// Code to resolve elided DOTs in embedded types.

// A dlist stores a pointer to a TFIELD Type embedded within
// a TSTRUCT or TINTER Type.
type dlist struct {
	field *types.Field
}

// dotpath computes the unique shortest explicit selector path to fully qualify
// a selection expression x.f, where x is of type t and f is the symbol s.
// If no such path exists, dotpath returns nil.
// If there are multiple shortest paths to the same depth, ambig is true.
func dotpath(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) (path []dlist, ambig bool) {
	// The embedding of types within structs imposes a tree structure onto
	// types: structs parent the types they embed, and types parent their
	// fields or methods. Our goal here is to find the shortest path to
	// a field or method named s in the subtree rooted at t. To accomplish
	// that, we iteratively perform depth-first searches of increasing depth
	// until we either find the named field/method or exhaust the tree.
	for d := 0; ; d++ {
		if d > len(dotlist) {
			dotlist = append(dotlist, dlist{})
		}
		if c, more := adddot1(s, t, d, save, ignorecase); c == 1 {
			return dotlist[:d], false
		} else if c > 1 {
			return nil, true
		} else if !more {
			return nil, false
		}
	}
}

func expand0(t *types.Type) {
	u := t
	if u.IsPtr() {
		u = u.Elem()
	}

	if u.IsInterface() {
		for _, f := range u.AllMethods().Slice() {
			if f.Sym.Uniq() {
				continue
			}
			f.Sym.SetUniq(true)
			slist = append(slist, symlink{field: f})
		}

		return
	}

	u = types.ReceiverBaseType(t)
	if u != nil {
		for _, f := range u.Methods().Slice() {
			if f.Sym.Uniq() {
				continue
			}
			f.Sym.SetUniq(true)
			slist = append(slist, symlink{field: f})
		}
	}
}

func expand1(t *types.Type, top bool) {
	if t.Recur() {
		return
	}
	t.SetRecur(true)

	if !top {
		expand0(t)
	}

	u := t
	if u.IsPtr() {
		u = u.Elem()
	}

	if u.IsStruct() || u.IsInterface() {
		var fields *types.Fields
		if u.IsStruct() {
			fields = u.Fields()
		} else {
			fields = u.AllMethods()
		}
		for _, f := range fields.Slice() {
			if f.Embedded == 0 {
				continue
			}
			if f.Sym == nil {
				continue
			}
			expand1(f.Type, false)
		}
	}

	t.SetRecur(false)
}

func ifacelookdot(s *types.Sym, t *types.Type, ignorecase bool) (m *types.Field, followptr bool) {
	if t == nil {
		return nil, false
	}

	path, ambig := dotpath(s, t, &m, ignorecase)
	if path == nil {
		if ambig {
			base.Errorf("%v.%v is ambiguous", t, s)
		}
		return nil, false
	}

	for _, d := range path {
		if d.field.Type.IsPtr() {
			followptr = true
			break
		}
	}

	if !m.IsMethod() {
		base.Errorf("%v.%v is a field, not a method", t, s)
		return nil, followptr
	}

	return m, followptr
}

// implements reports whether t implements the interface iface. t can be
// an interface, a type parameter, or a concrete type. If implements returns
// false, it stores a method of iface that is not implemented in *m. If the
// method name matches but the type is wrong, it additionally stores the type
// of the method (on t) in *samename.
func implements(t, iface *types.Type, m, samename **types.Field, ptr *int) bool {
	t0 := t
	if t == nil {
		return false
	}

	if t.IsInterface() || t.IsTypeParam() {
		if t.IsTypeParam() {
			// A typeparam satisfies an interface if its type bound
			// has all the methods of that interface.
			t = t.Bound()
		}
		i := 0
		tms := t.AllMethods().Slice()
		for _, im := range iface.AllMethods().Slice() {
			for i < len(tms) && tms[i].Sym != im.Sym {
				i++
			}
			if i == len(tms) {
				*m = im
				*samename = nil
				*ptr = 0
				return false
			}
			tm := tms[i]
			if !types.Identical(tm.Type, im.Type) {
				*m = im
				*samename = tm
				*ptr = 0
				return false
			}
		}

		return true
	}

	t = types.ReceiverBaseType(t)
	var tms []*types.Field
	if t != nil {
		CalcMethods(t)
		tms = t.AllMethods().Slice()
	}
	i := 0
	for _, im := range iface.AllMethods().Slice() {
		if im.Broke() {
			continue
		}
		for i < len(tms) && tms[i].Sym != im.Sym {
			i++
		}
		if i == len(tms) {
			*m = im
			*samename, _ = ifacelookdot(im.Sym, t, true)
			*ptr = 0
			return false
		}
		tm := tms[i]
		if tm.Nointerface() || !types.Identical(tm.Type, im.Type) {
			*m = im
			*samename = tm
			*ptr = 0
			return false
		}
		followptr := tm.Embedded == 2

		// if pointer receiver in method,
		// the method does not exist for value types.
		rcvr := tm.Type.Recv().Type
		if rcvr.IsPtr() && !t0.IsPtr() && !followptr && !types.IsInterfaceMethod(tm.Type) {
			if false && base.Flag.LowerR != 0 {
				base.Errorf("interface pointer mismatch")
			}

			*m = im
			*samename = nil
			*ptr = 1
			return false
		}
	}

	return true
}

func isptrto(t *types.Type, et types.Kind) bool {
	if t == nil {
		return false
	}
	if !t.IsPtr() {
		return false
	}
	t = t.Elem()
	if t == nil {
		return false
	}
	if t.Kind() != et {
		return false
	}
	return true
}

// lookdot0 returns the number of fields or methods named s associated
// with Type t. If exactly one exists, it will be returned in *save
// (if save is not nil).
func lookdot0(s *types.Sym, t *types.Type, save **types.Field, ignorecase bool) int {
	u := t
	if u.IsPtr() {
		u = u.Elem()
	}

	c := 0
	if u.IsStruct() || u.IsInterface() {
		var fields *types.Fields
		if u.IsStruct() {
			fields = u.Fields()
		} else {
			fields = u.AllMethods()
		}
		for _, f := range fields.Slice() {
			if f.Sym == s || (ignorecase && f.IsMethod() && strings.EqualFold(f.Sym.Name, s.Name)) {
				if save != nil {
					*save = f
				}
				c++
			}
		}
	}

	u = t
	if t.Sym() != nil && t.IsPtr() && !t.Elem().IsPtr() {
		// If t is a defined pointer type, then x.m is shorthand for (*x).m.
		u = t.Elem()
	}
	u = types.ReceiverBaseType(u)
	if u != nil {
		for _, f := range u.Methods().Slice() {
			if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) {
				if save != nil {
					*save = f
				}
				c++
			}
		}
	}

	return c
}

var slist []symlink

// Code to help generate trampoline functions for methods on embedded
// types. These are approx the same as the corresponding AddImplicitDots
// routines except that they expect to be called with unique tasks and
// they return the actual methods.

type symlink struct {
	field *types.Field
}

// TypesOf converts a list of nodes to a list
// of types of those nodes.
func TypesOf(x []ir.Node) []*types.Type {
	r := make([]*types.Type, len(x))
	for i, n := range x {
		r[i] = n.Type()
	}
	return r
}

// addTargs writes out the targs to buffer b as a comma-separated list enclosed by
// brackets.
func addTargs(b *bytes.Buffer, targs []*types.Type) {
	b.WriteByte('[')
	for i, targ := range targs {
		if i > 0 {
			b.WriteByte(',')
		}
		// Use NameString(), which includes the package name for the local
		// package, to make sure that type arguments (including type params),
		// are uniquely specified.
		tstring := targ.NameString()
		// types1 uses "interface {" and types2 uses "interface{" - convert
		// to consistent types2 format.  Same for "struct {"
		tstring = strings.Replace(tstring, "interface {", "interface{", -1)
		tstring = strings.Replace(tstring, "struct {", "struct{", -1)
		b.WriteString(tstring)
	}
	b.WriteString("]")
}

// InstTypeName creates a name for an instantiated type, based on the name of the
// generic type and the type args.
func InstTypeName(name string, targs []*types.Type) string {
	b := bytes.NewBufferString(name)
	addTargs(b, targs)
	return b.String()
}

// makeInstName1 returns the name of the generic function instantiated with the
// given types, which can have type params or shapes, or be concrete types. name is
// the name of the generic function or method.
func makeInstName1(name string, targs []*types.Type, hasBrackets bool) string {
	b := bytes.NewBufferString("")
	i := strings.Index(name, "[")
	assert(hasBrackets == (i >= 0))
	if i >= 0 {
		b.WriteString(name[0:i])
	} else {
		b.WriteString(name)
	}
	addTargs(b, targs)
	if i >= 0 {
		i2 := strings.LastIndex(name[i:], "]")
		assert(i2 >= 0)
		b.WriteString(name[i+i2+1:])
	}
	return b.String()
}

// MakeFuncInstSym makes the unique sym for a stenciled generic function or method,
// based on the name of the function fnsym and the targs. It replaces any
// existing bracket type list in the name. MakeInstName asserts that fnsym has
// brackets in its name if and only if hasBrackets is true.
//
// Names of declared generic functions have no brackets originally, so hasBrackets
// should be false. Names of generic methods already have brackets, since the new
// type parameter is specified in the generic type of the receiver (e.g. func
// (func (v *value[T]).set(...) { ... } has the original name (*value[T]).set.
//
// The standard naming is something like: 'genFn[int,bool]' for functions and
// '(*genType[int,bool]).methodName' for methods
func MakeFuncInstSym(gf *types.Sym, targs []*types.Type, hasBrackets bool) *types.Sym {
	return gf.Pkg.Lookup(makeInstName1(gf.Name, targs, hasBrackets))
}

func MakeDictSym(gf *types.Sym, targs []*types.Type, hasBrackets bool) *types.Sym {
	for _, targ := range targs {
		if targ.HasTParam() {
			fmt.Printf("FUNCTION %s\n", gf.Name)
			for _, targ := range targs {
				fmt.Printf("  PARAM %+v\n", targ)
			}
			panic("dictionary should always have concrete type args")
		}
	}
	name := makeInstName1(gf.Name, targs, hasBrackets)
	name = ".dict." + name
	return gf.Pkg.Lookup(name)
}

func assert(p bool) {
	base.Assert(p)
}

// General type substituter, for replacing typeparams with type args.
type Tsubster struct {
	Tparams []*types.Type
	Targs   []*types.Type
	// If non-nil, the substitution map from name nodes in the generic function to the
	// name nodes in the new stenciled function.
	Vars map[*ir.Name]*ir.Name
	// New fully-instantiated generic types whose methods should be instantiated.
	InstTypeList []*types.Type
	// If non-nil, function to substitute an incomplete (TFORW) type.
	SubstForwFunc func(*types.Type) *types.Type
}

// Typ computes the type obtained by substituting any type parameter in t with the
// corresponding type argument in subst. If t contains no type parameters, the
// result is t; otherwise the result is a new type. It deals with recursive types
// by using TFORW types and finding partially or fully created types via sym.Def.
func (ts *Tsubster) Typ(t *types.Type) *types.Type {
	// Defer the CheckSize calls until we have fully-defined
	// (possibly-recursive) top-level type.
	types.DeferCheckSize()
	r := ts.typ1(t)
	types.ResumeCheckSize()
	return r
}

func (ts *Tsubster) typ1(t *types.Type) *types.Type {
	if !t.HasTParam() && t.Kind() != types.TFUNC {
		// Note: function types need to be copied regardless, as the
		// types of closures may contain declarations that need
		// to be copied. See #45738.
		return t
	}

	if t.IsTypeParam() {
		for i, tp := range ts.Tparams {
			if tp == t {
				return ts.Targs[i]
			}
		}
		// If t is a simple typeparam T, then t has the name/symbol 'T'
		// and t.Underlying() == t.
		//
		// However, consider the type definition: 'type P[T any] T'. We
		// might use this definition so we can have a variant of type T
		// that we can add new methods to. Suppose t is a reference to
		// P[T]. t has the name 'P[T]', but its kind is TTYPEPARAM,
		// because P[T] is defined as T. If we look at t.Underlying(), it
		// is different, because the name of t.Underlying() is 'T' rather
		// than 'P[T]'. But the kind of t.Underlying() is also TTYPEPARAM.
		// In this case, we do the needed recursive substitution in the
		// case statement below.
		if t.Underlying() == t {
			// t is a simple typeparam that didn't match anything in tparam
			return t
		}
		// t is a more complex typeparam (e.g. P[T], as above, whose
		// definition is just T).
		assert(t.Sym() != nil)
	}

	var newsym *types.Sym
	var neededTargs []*types.Type
	var targsChanged bool
	var forw *types.Type

	if t.Sym() != nil && t.HasTParam() {
		// Need to test for t.HasTParam() again because of special TFUNC case above.
		// Translate the type params for this type according to
		// the tparam/targs mapping from subst.
		neededTargs = make([]*types.Type, len(t.RParams()))
		for i, rparam := range t.RParams() {
			neededTargs[i] = ts.typ1(rparam)
			if !types.Identical(neededTargs[i], rparam) {
				targsChanged = true
			}
		}
		// For a named (defined) type, we have to change the name of the
		// type as well. We do this first, so we can look up if we've
		// already seen this type during this substitution or other
		// definitions/substitutions.
		genName := genericTypeName(t.Sym())
		newsym = t.Sym().Pkg.Lookup(InstTypeName(genName, neededTargs))
		if newsym.Def != nil {
			// We've already created this instantiated defined type.
			return newsym.Def.Type()
		}

		// In order to deal with recursive generic types, create a TFORW
		// type initially and set the Def field of its sym, so it can be
		// found if this type appears recursively within the type.
		forw = NewIncompleteNamedType(t.Pos(), newsym)
		//println("Creating new type by sub", newsym.Name, forw.HasTParam())
		forw.SetRParams(neededTargs)
		// Copy the OrigSym from the re-instantiated type (which is the sym of
		// the base generic type).
		assert(t.OrigSym != nil)
		forw.OrigSym = t.OrigSym
	}

	var newt *types.Type

	switch t.Kind() {
	case types.TTYPEPARAM:
		if t.Sym() == newsym && !targsChanged {
			// The substitution did not change the type.
			return t
		}
		// Substitute the underlying typeparam (e.g. T in P[T], see
		// the example describing type P[T] above).
		newt = ts.typ1(t.Underlying())
		assert(newt != t)

	case types.TARRAY:
		elem := t.Elem()
		newelem := ts.typ1(elem)
		if newelem != elem || targsChanged {
			newt = types.NewArray(newelem, t.NumElem())
		}

	case types.TPTR:
		elem := t.Elem()
		newelem := ts.typ1(elem)
		if newelem != elem || targsChanged {
			newt = types.NewPtr(newelem)
		}

	case types.TSLICE:
		elem := t.Elem()
		newelem := ts.typ1(elem)
		if newelem != elem || targsChanged {
			newt = types.NewSlice(newelem)
		}

	case types.TSTRUCT:
		newt = ts.tstruct(t, targsChanged)
		if newt == t {
			newt = nil
		}

	case types.TFUNC:
		newrecvs := ts.tstruct(t.Recvs(), false)
		newparams := ts.tstruct(t.Params(), false)
		newresults := ts.tstruct(t.Results(), false)
		// Translate the tparams of a signature.
		newtparams := ts.tstruct(t.TParams(), false)
		if newrecvs != t.Recvs() || newparams != t.Params() ||
			newresults != t.Results() || newtparams != t.TParams() || targsChanged {
			// If any types have changed, then the all the fields of
			// of recv, params, and results must be copied, because they have
			// offset fields that are dependent, and so must have an
			// independent copy for each new signature.
			var newrecv *types.Field
			if newrecvs.NumFields() > 0 {
				if newrecvs == t.Recvs() {
					newrecvs = ts.tstruct(t.Recvs(), true)
				}
				newrecv = newrecvs.Field(0)
			}
			if newparams == t.Params() {
				newparams = ts.tstruct(t.Params(), true)
			}
			if newresults == t.Results() {
				newresults = ts.tstruct(t.Results(), true)
			}
			var tparamfields []*types.Field
			if newtparams.HasTParam() {
				tparamfields = newtparams.FieldSlice()
			} else {
				// Completely remove the tparams from the resulting
				// signature, if the tparams are now concrete types.
				tparamfields = nil
			}
			newt = types.NewSignature(t.Pkg(), newrecv, tparamfields,
				newparams.FieldSlice(), newresults.FieldSlice())
		}

	case types.TINTER:
		newt = ts.tinter(t)
		if newt == t && !targsChanged {
			newt = nil
		}

	case types.TMAP:
		newkey := ts.typ1(t.Key())
		newval := ts.typ1(t.Elem())
		if newkey != t.Key() || newval != t.Elem() || targsChanged {
			newt = types.NewMap(newkey, newval)
		}

	case types.TCHAN:
		elem := t.Elem()
		newelem := ts.typ1(elem)
		if newelem != elem || targsChanged {
			newt = types.NewChan(newelem, t.ChanDir())
		}
	case types.TFORW:
		if ts.SubstForwFunc != nil {
			newt = ts.SubstForwFunc(t)
		} else {
			assert(false)
		}
	case types.TINT, types.TINT8, types.TINT16, types.TINT32, types.TINT64,
		types.TUINT, types.TUINT8, types.TUINT16, types.TUINT32, types.TUINT64,
		types.TUINTPTR, types.TBOOL, types.TSTRING, types.TFLOAT32, types.TFLOAT64, types.TCOMPLEX64, types.TCOMPLEX128:
		newt = t.Underlying()
	case types.TUNION:
		nt := t.NumTerms()
		newterms := make([]*types.Type, nt)
		tildes := make([]bool, nt)
		changed := false
		for i := 0; i < nt; i++ {
			term, tilde := t.Term(i)
			tildes[i] = tilde
			newterms[i] = ts.typ1(term)
			if newterms[i] != term {
				changed = true
			}
		}
		if changed {
			newt = types.NewUnion(newterms, tildes)
		}
	default:
		panic(fmt.Sprintf("Bad type in (*TSubster).Typ: %v", t.Kind()))
	}
	if newt == nil {
		// Even though there were typeparams in the type, there may be no
		// change if this is a function type for a function call (which will
		// have its own tparams/targs in the function instantiation).
		return t
	}

	if forw != nil {
		forw.SetUnderlying(newt)
		newt = forw
	}

	if !newt.HasTParam() {
		// Calculate the size of any new types created. These will be
		// deferred until the top-level ts.Typ() or g.typ() (if this is
		// called from g.fillinMethods()).
		types.CheckSize(newt)
	}

	if t.Kind() != types.TINTER && t.Methods().Len() > 0 {
		// Fill in the method info for the new type.
		var newfields []*types.Field
		newfields = make([]*types.Field, t.Methods().Len())
		for i, f := range t.Methods().Slice() {
			t2 := ts.typ1(f.Type)
			oldsym := f.Nname.Sym()
			newsym := MakeFuncInstSym(oldsym, ts.Targs, true)
			var nname *ir.Name
			if newsym.Def != nil {
				nname = newsym.Def.(*ir.Name)
			} else {
				nname = ir.NewNameAt(f.Pos, newsym)
				nname.SetType(t2)
				newsym.Def = nname
			}
			newfields[i] = types.NewField(f.Pos, f.Sym, t2)
			newfields[i].Nname = nname
		}
		newt.Methods().Set(newfields)
		if !newt.HasTParam() && !newt.HasShape() {
			// Generate all the methods for a new fully-instantiated type.
			ts.InstTypeList = append(ts.InstTypeList, newt)
		}
	}
	return newt
}

// tstruct substitutes type params in types of the fields of a structure type. For
// each field, tstruct copies the Nname, and translates it if Nname is in
// ts.vars. To always force the creation of a new (top-level) struct,
// regardless of whether anything changed with the types or names of the struct's
// fields, set force to true.
func (ts *Tsubster) tstruct(t *types.Type, force bool) *types.Type {
	if t.NumFields() == 0 {
		if t.HasTParam() {
			// For an empty struct, we need to return a new type,
			// since it may now be fully instantiated (HasTParam
			// becomes false).
			return types.NewStruct(t.Pkg(), nil)
		}
		return t
	}
	var newfields []*types.Field
	if force {
		newfields = make([]*types.Field, t.NumFields())
	}
	for i, f := range t.Fields().Slice() {
		t2 := ts.typ1(f.Type)
		if (t2 != f.Type || f.Nname != nil) && newfields == nil {
			newfields = make([]*types.Field, t.NumFields())
			for j := 0; j < i; j++ {
				newfields[j] = t.Field(j)
			}
		}
		if newfields != nil {
			// TODO(danscales): make sure this works for the field
			// names of embedded types (which should keep the name of
			// the type param, not the instantiated type).
			newfields[i] = types.NewField(f.Pos, f.Sym, t2)
			newfields[i].Embedded = f.Embedded
			if f.IsDDD() {
				newfields[i].SetIsDDD(true)
			}
			if f.Nointerface() {
				newfields[i].SetNointerface(true)
			}
			if f.Nname != nil && ts.Vars != nil {
				v := ts.Vars[f.Nname.(*ir.Name)]
				if v != nil {
					// This is the case where we are
					// translating the type of the function we
					// are substituting, so its dcls are in
					// the subst.ts.vars table, and we want to
					// change to reference the new dcl.
					newfields[i].Nname = v
				} else {
					// This is the case where we are
					// translating the type of a function
					// reference inside the function we are
					// substituting, so we leave the Nname
					// value as is.
					newfields[i].Nname = f.Nname
				}
			}
		}
	}
	if newfields != nil {
		return types.NewStruct(t.Pkg(), newfields)
	}
	return t

}

// tinter substitutes type params in types of the methods of an interface type.
func (ts *Tsubster) tinter(t *types.Type) *types.Type {
	if t.Methods().Len() == 0 {
		return t
	}
	var newfields []*types.Field
	for i, f := range t.Methods().Slice() {
		t2 := ts.typ1(f.Type)
		if (t2 != f.Type || f.Nname != nil) && newfields == nil {
			newfields = make([]*types.Field, t.Methods().Len())
			for j := 0; j < i; j++ {
				newfields[j] = t.Methods().Index(j)
			}
		}
		if newfields != nil {
			newfields[i] = types.NewField(f.Pos, f.Sym, t2)
		}
	}
	if newfields != nil {
		return types.NewInterface(t.Pkg(), newfields)
	}
	return t
}

// genericSym returns the name of the base generic type for the type named by
// sym. It simply returns the name obtained by removing everything after the
// first bracket ("[").
func genericTypeName(sym *types.Sym) string {
	return sym.Name[0:strings.Index(sym.Name, "[")]
}

// Shapify takes a concrete type and returns a GCshape type that can
// be used in place of the input type and still generate identical code.
// No methods are added - all methods calls directly on a shape should
// be done by converting to an interface using the dictionary.
//
// TODO: this could take the generic function and base its decisions
// on how that generic function uses this type argument. For instance,
// if it doesn't use it as a function argument/return value, then
// we don't need to distinguish int64 and float64 (because they only
// differ in how they get passed as arguments). For now, we only
// unify two different types if they are identical in every possible way.
func Shapify(t *types.Type) *types.Type {
	assert(!t.HasShape())
	// Map all types with the same underlying type to the same shape.
	u := t.Underlying()

	// All pointers have the same shape.
	// TODO: Make unsafe.Pointer the same shape as normal pointers.
	if u.Kind() == types.TPTR {
		u = types.Types[types.TUINT8].PtrTo()
	}

	if s := shaped[u]; s != nil {
		return s
	}

	sym := shapePkg.Lookup(u.LinkString())
	name := ir.NewDeclNameAt(u.Pos(), ir.OTYPE, sym)
	s := types.NewNamed(name)
	s.SetUnderlying(u)
	s.SetIsShape(true)
	s.SetHasShape(true)
	name.SetType(s)
	name.SetTypecheck(1)
	shaped[u] = s
	return s
}

var shaped = map[*types.Type]*types.Type{}

var shapePkg = types.NewPkg(".shape", ".shape")