aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ssa/gen/RISCV64.rules
blob: 4380a5efef719d52601d4858586b90cf57c86932 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Optimizations TODO:
// * Use SLTI and SLTIU for comparisons to constants, instead of SLT/SLTU with constants in registers
// * Use the zero register instead of moving 0 into a register.
// * Add rules to avoid generating a temp bool value for (If (SLT[U] ...) ...).
// * Optimize left and right shift by simplifying SLTIU, Neg, and ADD for constants.
// * Arrange for non-trivial Zero and Move lowerings to use aligned loads and stores.
// * Eliminate zero immediate shifts, adds, etc.
// * Avoid using Neq32 for writeBarrier.enabled checks.

// Lowering arithmetic
(Add64 ...) => (ADD ...)
(AddPtr ...) => (ADD ...)
(Add32 ...) => (ADD ...)
(Add16 ...) => (ADD ...)
(Add8 ...) => (ADD ...)
(Add32F ...) => (FADDS ...)
(Add64F ...) => (FADDD ...)

(Sub64 ...) => (SUB ...)
(SubPtr ...) => (SUB ...)
(Sub32 ...) => (SUB ...)
(Sub16 ...) => (SUB ...)
(Sub8 ...) => (SUB ...)
(Sub32F ...) => (FSUBS ...)
(Sub64F ...) => (FSUBD ...)

(Mul64 ...) => (MUL  ...)
(Mul32 ...) => (MULW ...)
(Mul16 x y) => (MULW (SignExt16to32 x) (SignExt16to32 y))
(Mul8 x y)  => (MULW (SignExt8to32 x)  (SignExt8to32 y))
(Mul32F ...) => (FMULS ...)
(Mul64F ...) => (FMULD ...)

(Div32F ...) => (FDIVS ...)
(Div64F ...) => (FDIVD ...)

(Div64 x y [false])  => (DIV x y)
(Div64u ...) => (DIVU ...)
(Div32 x y [false])  => (DIVW x y)
(Div32u ...) => (DIVUW ...)
(Div16 x y [false])  => (DIVW  (SignExt16to32 x) (SignExt16to32 y))
(Div16u x y) => (DIVUW (ZeroExt16to32 x) (ZeroExt16to32 y))
(Div8 x y)   => (DIVW  (SignExt8to32 x)  (SignExt8to32 y))
(Div8u x y)  => (DIVUW (ZeroExt8to32 x)  (ZeroExt8to32 y))

(Hmul64 ...)  => (MULH  ...)
(Hmul64u ...) => (MULHU ...)
(Hmul32 x y)  => (SRAI [32] (MUL  (SignExt32to64 x) (SignExt32to64 y)))
(Hmul32u x y) => (SRLI [32] (MUL  (ZeroExt32to64 x) (ZeroExt32to64 y)))

// (x + y) / 2 => (x / 2) + (y / 2) + (x & y & 1)
(Avg64u <t> x y) => (ADD (ADD <t> (SRLI <t> [1] x) (SRLI <t> [1] y)) (ANDI <t> [1] (AND <t> x y)))

(Mod64 x y [false])  => (REM x y)
(Mod64u ...) => (REMU  ...)
(Mod32 x y [false])  => (REMW x y)
(Mod32u ...) => (REMUW ...)
(Mod16 x y [false])  => (REMW  (SignExt16to32 x) (SignExt16to32 y))
(Mod16u x y) => (REMUW (ZeroExt16to32 x) (ZeroExt16to32 y))
(Mod8 x y)   => (REMW  (SignExt8to32  x) (SignExt8to32  y))
(Mod8u x y)  => (REMUW (ZeroExt8to32  x) (ZeroExt8to32  y))

(And64 ...) => (AND ...)
(And32 ...) => (AND ...)
(And16 ...) => (AND ...)
(And8  ...) => (AND ...)

(Or64 ...) => (OR ...)
(Or32 ...) => (OR ...)
(Or16 ...) => (OR ...)
(Or8  ...) => (OR ...)

(Xor64 ...) => (XOR ...)
(Xor32 ...) => (XOR ...)
(Xor16 ...) => (XOR ...)
(Xor8  ...) => (XOR ...)

(Neg64  ...) => (NEG ...)
(Neg32  ...) => (NEG ...)
(Neg16  ...) => (NEG ...)
(Neg8   ...) => (NEG ...)
(Neg32F ...) => (FNEGS ...)
(Neg64F ...) => (FNEGD ...)

(Com64 ...) => (NOT ...)
(Com32 ...) => (NOT ...)
(Com16 ...) => (NOT ...)
(Com8  ...) => (NOT ...)

(Sqrt ...) => (FSQRTD ...)

// Sign and zero extension.

(SignExt8to16  ...) => (MOVBreg ...)
(SignExt8to32  ...) => (MOVBreg ...)
(SignExt8to64  ...) => (MOVBreg ...)
(SignExt16to32 ...) => (MOVHreg ...)
(SignExt16to64 ...) => (MOVHreg ...)
(SignExt32to64 ...) => (MOVWreg ...)

(ZeroExt8to16  ...) => (MOVBUreg ...)
(ZeroExt8to32  ...) => (MOVBUreg ...)
(ZeroExt8to64  ...) => (MOVBUreg ...)
(ZeroExt16to32 ...) => (MOVHUreg ...)
(ZeroExt16to64 ...) => (MOVHUreg ...)
(ZeroExt32to64 ...) => (MOVWUreg ...)

(Cvt32to32F ...) => (FCVTSW ...)
(Cvt32to64F ...) => (FCVTDW ...)
(Cvt64to32F ...) => (FCVTSL ...)
(Cvt64to64F ...) => (FCVTDL ...)

(Cvt32Fto32 ...) => (FCVTWS ...)
(Cvt32Fto64 ...) => (FCVTLS ...)
(Cvt64Fto32 ...) => (FCVTWD ...)
(Cvt64Fto64 ...) => (FCVTLD ...)

(Cvt32Fto64F ...) => (FCVTDS ...)
(Cvt64Fto32F ...) => (FCVTSD ...)

(CvtBoolToUint8 ...) => (Copy ...)

(Round32F ...) => (Copy ...)
(Round64F ...) => (Copy ...)

// From genericOps.go:
// "0 if arg0 == 0, -1 if arg0 > 0, undef if arg0<0"
//
// Like other arches, we compute ~((x-1) >> 63), with arithmetic right shift.
// For positive x, bit 63 of x-1 is always 0, so the result is -1.
// For zero x, bit 63 of x-1 is 1, so the result is 0.
//
(Slicemask <t> x) => (NOT (SRAI <t> [63] (ADDI <t> [-1] x)))

// Truncations
// We ignore the unused high parts of registers, so truncates are just copies.
(Trunc16to8  ...) => (Copy ...)
(Trunc32to8  ...) => (Copy ...)
(Trunc32to16 ...) => (Copy ...)
(Trunc64to8  ...) => (Copy ...)
(Trunc64to16 ...) => (Copy ...)
(Trunc64to32 ...) => (Copy ...)

// Shifts

// SLL only considers the bottom 6 bits of y. If y > 64, the result should
// always be 0.
//
// Breaking down the operation:
//
// (SLL x y) generates x << (y & 63).
//
// If y < 64, this is the value we want. Otherwise, we want zero.
//
// So, we AND with -1 * uint64(y < 64), which is 0xfffff... if y < 64 and 0 otherwise.
(Lsh8x8   <t> x y) => (AND (SLL <t> x y) (Neg8  <t> (SLTIU <t> [64] (ZeroExt8to64  y))))
(Lsh8x16  <t> x y) => (AND (SLL <t> x y) (Neg8  <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Lsh8x32  <t> x y) => (AND (SLL <t> x y) (Neg8  <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Lsh8x64  <t> x y) => (AND (SLL <t> x y) (Neg8  <t> (SLTIU <t> [64] y)))
(Lsh16x8  <t> x y) => (AND (SLL <t> x y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt8to64  y))))
(Lsh16x16 <t> x y) => (AND (SLL <t> x y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Lsh16x32 <t> x y) => (AND (SLL <t> x y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Lsh16x64 <t> x y) => (AND (SLL <t> x y) (Neg16 <t> (SLTIU <t> [64] y)))
(Lsh32x8  <t> x y) => (AND (SLL <t> x y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt8to64  y))))
(Lsh32x16 <t> x y) => (AND (SLL <t> x y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Lsh32x32 <t> x y) => (AND (SLL <t> x y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Lsh32x64 <t> x y) => (AND (SLL <t> x y) (Neg32 <t> (SLTIU <t> [64] y)))
(Lsh64x8  <t> x y) => (AND (SLL <t> x y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt8to64  y))))
(Lsh64x16 <t> x y) => (AND (SLL <t> x y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Lsh64x32 <t> x y) => (AND (SLL <t> x y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Lsh64x64 <t> x y) => (AND (SLL <t> x y) (Neg64 <t> (SLTIU <t> [64] y)))

// SRL only considers the bottom 6 bits of y. If y > 64, the result should
// always be 0. See Lsh above for a detailed description.
(Rsh8Ux8   <t> x y) => (AND (SRL <t> (ZeroExt8to64  x) y) (Neg8  <t> (SLTIU <t> [64] (ZeroExt8to64  y))))
(Rsh8Ux16  <t> x y) => (AND (SRL <t> (ZeroExt8to64  x) y) (Neg8  <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Rsh8Ux32  <t> x y) => (AND (SRL <t> (ZeroExt8to64  x) y) (Neg8  <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Rsh8Ux64  <t> x y) => (AND (SRL <t> (ZeroExt8to64  x) y) (Neg8  <t> (SLTIU <t> [64] y)))
(Rsh16Ux8  <t> x y) => (AND (SRL <t> (ZeroExt16to64 x) y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt8to64  y))))
(Rsh16Ux16 <t> x y) => (AND (SRL <t> (ZeroExt16to64 x) y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Rsh16Ux32 <t> x y) => (AND (SRL <t> (ZeroExt16to64 x) y) (Neg16 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Rsh16Ux64 <t> x y) => (AND (SRL <t> (ZeroExt16to64 x) y) (Neg16 <t> (SLTIU <t> [64] y)))
(Rsh32Ux8  <t> x y) => (AND (SRL <t> (ZeroExt32to64 x) y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt8to64  y))))
(Rsh32Ux16 <t> x y) => (AND (SRL <t> (ZeroExt32to64 x) y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Rsh32Ux32 <t> x y) => (AND (SRL <t> (ZeroExt32to64 x) y) (Neg32 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Rsh32Ux64 <t> x y) => (AND (SRL <t> (ZeroExt32to64 x) y) (Neg32 <t> (SLTIU <t> [64] y)))
(Rsh64Ux8  <t> x y) => (AND (SRL <t> x                 y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt8to64  y))))
(Rsh64Ux16 <t> x y) => (AND (SRL <t> x                 y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt16to64 y))))
(Rsh64Ux32 <t> x y) => (AND (SRL <t> x                 y) (Neg64 <t> (SLTIU <t> [64] (ZeroExt32to64 y))))
(Rsh64Ux64 <t> x y) => (AND (SRL <t> x                 y) (Neg64 <t> (SLTIU <t> [64] y)))

// SRA only considers the bottom 6 bits of y. If y > 64, the result should
// be either 0 or -1 based on the sign bit.
//
// We implement this by performing the max shift (-1) if y >= 64.
//
// We OR (uint64(y < 64) - 1) into y before passing it to SRA. This leaves
// us with -1 (0xffff...) if y >= 64.
//
// We don't need to sign-extend the OR result, as it will be at minimum 8 bits,
// more than the 6 bits SRA cares about.
(Rsh8x8   <t> x y) => (SRA <t> (SignExt8to64  x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt8to64  y)))))
(Rsh8x16  <t> x y) => (SRA <t> (SignExt8to64  x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt16to64 y)))))
(Rsh8x32  <t> x y) => (SRA <t> (SignExt8to64  x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt32to64 y)))))
(Rsh8x64  <t> x y) => (SRA <t> (SignExt8to64  x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] y))))
(Rsh16x8  <t> x y) => (SRA <t> (SignExt16to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt8to64  y)))))
(Rsh16x16 <t> x y) => (SRA <t> (SignExt16to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt16to64 y)))))
(Rsh16x32 <t> x y) => (SRA <t> (SignExt16to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt32to64 y)))))
(Rsh16x64 <t> x y) => (SRA <t> (SignExt16to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] y))))
(Rsh32x8  <t> x y) => (SRA <t> (SignExt32to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt8to64  y)))))
(Rsh32x16 <t> x y) => (SRA <t> (SignExt32to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt16to64 y)))))
(Rsh32x32 <t> x y) => (SRA <t> (SignExt32to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt32to64 y)))))
(Rsh32x64 <t> x y) => (SRA <t> (SignExt32to64 x) (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] y))))
(Rsh64x8  <t> x y) => (SRA <t> x                 (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt8to64  y)))))
(Rsh64x16 <t> x y) => (SRA <t> x                 (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt16to64 y)))))
(Rsh64x32 <t> x y) => (SRA <t> x                 (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] (ZeroExt32to64 y)))))
(Rsh64x64 <t> x y) => (SRA <t> x                 (OR <y.Type> y (ADDI <y.Type> [-1] (SLTIU <y.Type> [64] y))))

// rotates
(RotateLeft8 <t> x (MOVBconst [c])) => (Or8 (Lsh8x64 <t> x (MOVBconst [c&7])) (Rsh8Ux64 <t> x (MOVBconst [-c&7])))
(RotateLeft16 <t> x (MOVHconst [c])) => (Or16 (Lsh16x64 <t> x (MOVHconst [c&15])) (Rsh16Ux64 <t> x (MOVHconst [-c&15])))
(RotateLeft32 <t> x (MOVWconst [c])) => (Or32 (Lsh32x64 <t> x (MOVWconst [c&31])) (Rsh32Ux64 <t> x (MOVWconst [-c&31])))
(RotateLeft64 <t> x (MOVDconst [c])) => (Or64 (Lsh64x64 <t> x (MOVDconst [c&63])) (Rsh64Ux64 <t> x (MOVDconst [-c&63])))

(Less64  ...) => (SLT  ...)
(Less32  x y) => (SLT  (SignExt32to64 x) (SignExt32to64 y))
(Less16  x y) => (SLT  (SignExt16to64 x) (SignExt16to64 y))
(Less8   x y) => (SLT  (SignExt8to64  x) (SignExt8to64  y))
(Less64U ...) => (SLTU ...)
(Less32U x y) => (SLTU (ZeroExt32to64 x) (ZeroExt32to64 y))
(Less16U x y) => (SLTU (ZeroExt16to64 x) (ZeroExt16to64 y))
(Less8U  x y) => (SLTU (ZeroExt8to64  x) (ZeroExt8to64  y))
(Less64F ...) => (FLTD ...)
(Less32F ...) => (FLTS ...)

// Convert x <= y to !(y > x).
(Leq64  x y) => (Not (Less64  y x))
(Leq32  x y) => (Not (Less32  y x))
(Leq16  x y) => (Not (Less16  y x))
(Leq8   x y) => (Not (Less8   y x))
(Leq64U x y) => (Not (Less64U y x))
(Leq32U x y) => (Not (Less32U y x))
(Leq16U x y) => (Not (Less16U y x))
(Leq8U  x y) => (Not (Less8U  y x))
(Leq64F ...) => (FLED ...)
(Leq32F ...) => (FLES ...)

(EqPtr x y) => (SEQZ (SUB <x.Type> x y))
(Eq64  x y) => (SEQZ (SUB <x.Type> x y))
(Eq32  x y) => (SEQZ (SUBW <x.Type> x y))
(Eq16  x y) => (SEQZ (SUB <x.Type> (ZeroExt16to64 x) (ZeroExt16to64 y)))
(Eq8   x y) => (SEQZ (SUB <x.Type> (ZeroExt8to64  x) (ZeroExt8to64  y)))
(Eq64F ...) => (FEQD ...)
(Eq32F ...) => (FEQS ...)

(NeqPtr x y) => (SNEZ (SUB <x.Type> x y))
(Neq64  x y) => (SNEZ (SUB <x.Type> x y))
(Neq32  x y) => (SNEZ (SUBW <x.Type> x y))
(Neq16  x y) => (SNEZ (SUB <x.Type> (ZeroExt16to64 x) (ZeroExt16to64 y)))
(Neq8   x y) => (SNEZ (SUB <x.Type> (ZeroExt8to64  x) (ZeroExt8to64  y)))
(Neq64F ...) => (FNED ...)
(Neq32F ...) => (FNES ...)

// Loads
(Load <t> ptr mem) &&  t.IsBoolean()                  => (MOVBUload ptr mem)
(Load <t> ptr mem) && ( is8BitInt(t) &&  isSigned(t)) => (MOVBload  ptr mem)
(Load <t> ptr mem) && ( is8BitInt(t) && !isSigned(t)) => (MOVBUload ptr mem)
(Load <t> ptr mem) && (is16BitInt(t) &&  isSigned(t)) => (MOVHload  ptr mem)
(Load <t> ptr mem) && (is16BitInt(t) && !isSigned(t)) => (MOVHUload ptr mem)
(Load <t> ptr mem) && (is32BitInt(t) &&  isSigned(t)) => (MOVWload  ptr mem)
(Load <t> ptr mem) && (is32BitInt(t) && !isSigned(t)) => (MOVWUload ptr mem)
(Load <t> ptr mem) && (is64BitInt(t) || isPtr(t))     => (MOVDload  ptr mem)
(Load <t> ptr mem) &&  is32BitFloat(t)                => (FMOVWload ptr mem)
(Load <t> ptr mem) &&  is64BitFloat(t)                => (FMOVDload ptr mem)

// Stores
(Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 2 => (MOVHstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 4 && !is32BitFloat(val.Type) => (MOVWstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 8 && !is64BitFloat(val.Type) => (MOVDstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 4 &&  is32BitFloat(val.Type) => (FMOVWstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 8 &&  is64BitFloat(val.Type) => (FMOVDstore ptr val mem)

// We need to fold MOVaddr into the LD/MOVDstore ops so that the live variable analysis
// knows what variables are being read/written by the ops.
(MOVBUload [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
	(MOVBUload [off1+off2] {mergeSym(sym1,sym2)} base mem)
(MOVBload  [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
	(MOVBload  [off1+off2] {mergeSym(sym1,sym2)} base mem)
(MOVHUload [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
	(MOVHUload [off1+off2] {mergeSym(sym1,sym2)} base mem)
(MOVHload  [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
	(MOVHload  [off1+off2] {mergeSym(sym1,sym2)} base mem)
(MOVWUload [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
	(MOVWUload [off1+off2] {mergeSym(sym1,sym2)} base mem)
(MOVWload  [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
	(MOVWload  [off1+off2] {mergeSym(sym1,sym2)} base mem)
(MOVDload  [off1] {sym1} (MOVaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
	(MOVDload  [off1+off2] {mergeSym(sym1,sym2)} base mem)

(MOVBstore [off1] {sym1} (MOVaddr [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
	(MOVBstore [off1+off2] {mergeSym(sym1,sym2)} base val mem)
(MOVHstore [off1] {sym1} (MOVaddr [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
	(MOVHstore [off1+off2] {mergeSym(sym1,sym2)} base val mem)
(MOVWstore [off1] {sym1} (MOVaddr [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
	(MOVWstore [off1+off2] {mergeSym(sym1,sym2)} base val mem)
(MOVDstore [off1] {sym1} (MOVaddr [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
	(MOVDstore [off1+off2] {mergeSym(sym1,sym2)} base val mem)
(MOVBstorezero [off1] {sym1} (MOVaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2) && is32Bit(int64(off1)+int64(off2)) =>
	(MOVBstorezero [off1+off2] {mergeSym(sym1,sym2)} ptr mem)
(MOVHstorezero [off1] {sym1} (MOVaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2) && is32Bit(int64(off1)+int64(off2)) =>
	(MOVHstorezero [off1+off2] {mergeSym(sym1,sym2)} ptr mem)
(MOVWstorezero [off1] {sym1} (MOVaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2) && is32Bit(int64(off1)+int64(off2)) =>
	(MOVWstorezero [off1+off2] {mergeSym(sym1,sym2)} ptr mem)
(MOVDstorezero [off1] {sym1} (MOVaddr [off2] {sym2} ptr) mem) && canMergeSym(sym1,sym2) && is32Bit(int64(off1)+int64(off2)) =>
	(MOVDstorezero [off1+off2] {mergeSym(sym1,sym2)} ptr mem)

(MOVBUload [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
	(MOVBUload [off1+int32(off2)] {sym} base mem)
(MOVBload  [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
	(MOVBload  [off1+int32(off2)] {sym} base mem)
(MOVHUload [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
	(MOVHUload [off1+int32(off2)] {sym} base mem)
(MOVHload  [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
	(MOVHload  [off1+int32(off2)] {sym} base mem)
(MOVWUload [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
	(MOVWUload [off1+int32(off2)] {sym} base mem)
(MOVWload  [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
	(MOVWload  [off1+int32(off2)] {sym} base mem)
(MOVDload  [off1] {sym} (ADDI [off2] base) mem) && is32Bit(int64(off1)+off2) =>
	(MOVDload  [off1+int32(off2)] {sym} base mem)

(MOVBstore [off1] {sym} (ADDI [off2] base) val mem) && is32Bit(int64(off1)+off2) =>
	(MOVBstore [off1+int32(off2)] {sym} base val mem)
(MOVHstore [off1] {sym} (ADDI [off2] base) val mem) && is32Bit(int64(off1)+off2) =>
	(MOVHstore [off1+int32(off2)] {sym} base val mem)
(MOVWstore [off1] {sym} (ADDI [off2] base) val mem) && is32Bit(int64(off1)+off2) =>
	(MOVWstore [off1+int32(off2)] {sym} base val mem)
(MOVDstore [off1] {sym} (ADDI [off2] base) val mem) && is32Bit(int64(off1)+off2) =>
	(MOVDstore [off1+int32(off2)] {sym} base val mem)
(MOVBstorezero [off1] {sym} (ADDI [off2] ptr) mem) && is32Bit(int64(off1)+off2) => (MOVBstorezero [off1+int32(off2)] {sym} ptr mem)
(MOVHstorezero [off1] {sym} (ADDI [off2] ptr) mem) && is32Bit(int64(off1)+off2) => (MOVHstorezero [off1+int32(off2)] {sym} ptr mem)
(MOVWstorezero [off1] {sym} (ADDI [off2] ptr) mem) && is32Bit(int64(off1)+off2) => (MOVWstorezero [off1+int32(off2)] {sym} ptr mem)
(MOVDstorezero [off1] {sym} (ADDI [off2] ptr) mem) && is32Bit(int64(off1)+off2) => (MOVDstorezero [off1+int32(off2)] {sym} ptr mem)

// Similarly, fold ADDI into MOVaddr to avoid confusing live variable analysis
// with OffPtr -> ADDI.
(ADDI [c] (MOVaddr [d] {s} x)) && is32Bit(c+int64(d)) => (MOVaddr [int32(c)+d] {s} x)

// Small zeroing
(Zero [0] _ mem) => mem
(Zero [1] ptr mem) => (MOVBstore ptr (MOVBconst [0]) mem)
(Zero [2] {t} ptr mem) && t.Alignment()%2 == 0 =>
	(MOVHstore ptr (MOVHconst [0]) mem)
(Zero [2] ptr mem) =>
	(MOVBstore [1] ptr (MOVBconst [0])
		(MOVBstore ptr (MOVBconst [0]) mem))
(Zero [4] {t} ptr mem) && t.Alignment()%4 == 0 =>
	(MOVWstore ptr (MOVWconst [0]) mem)
(Zero [4] {t} ptr mem) && t.Alignment()%2 == 0 =>
	(MOVHstore [2] ptr (MOVHconst [0])
		(MOVHstore ptr (MOVHconst [0]) mem))
(Zero [4] ptr mem) =>
	(MOVBstore [3] ptr (MOVBconst [0])
		(MOVBstore [2] ptr (MOVBconst [0])
			(MOVBstore [1] ptr (MOVBconst [0])
				(MOVBstore ptr (MOVBconst [0]) mem))))
(Zero [8] {t} ptr mem) && t.Alignment()%8 == 0 =>
	(MOVDstore ptr (MOVDconst [0]) mem)
(Zero [8] {t} ptr mem) && t.Alignment()%4 == 0 =>
	(MOVWstore [4] ptr (MOVWconst [0])
		(MOVWstore ptr (MOVWconst [0]) mem))
(Zero [8] {t} ptr mem) && t.Alignment()%2 == 0 =>
	(MOVHstore [6] ptr (MOVHconst [0])
		(MOVHstore [4] ptr (MOVHconst [0])
			(MOVHstore [2] ptr (MOVHconst [0])
				(MOVHstore ptr (MOVHconst [0]) mem))))

(Zero [3] ptr mem) =>
	(MOVBstore [2] ptr (MOVBconst [0])
		(MOVBstore [1] ptr (MOVBconst [0])
			(MOVBstore ptr (MOVBconst [0]) mem)))
(Zero [6] {t} ptr mem) && t.Alignment()%2 == 0 =>
	(MOVHstore [4] ptr (MOVHconst [0])
		(MOVHstore [2] ptr (MOVHconst [0])
			(MOVHstore ptr (MOVHconst [0]) mem)))
(Zero [12] {t} ptr mem) && t.Alignment()%4 == 0 =>
	(MOVWstore [8] ptr (MOVWconst [0])
		(MOVWstore [4] ptr (MOVWconst [0])
			(MOVWstore ptr (MOVWconst [0]) mem)))
(Zero [16] {t} ptr mem) && t.Alignment()%8 == 0 =>
	(MOVDstore [8] ptr (MOVDconst [0])
		(MOVDstore ptr (MOVDconst [0]) mem))
(Zero [24] {t} ptr mem) && t.Alignment()%8 == 0 =>
	(MOVDstore [16] ptr (MOVDconst [0])
		(MOVDstore [8] ptr (MOVDconst [0])
			(MOVDstore ptr (MOVDconst [0]) mem)))
(Zero [32] {t} ptr mem) && t.Alignment()%8 == 0 =>
	(MOVDstore [24] ptr (MOVDconst [0])
		(MOVDstore [16] ptr (MOVDconst [0])
			(MOVDstore [8] ptr (MOVDconst [0])
				(MOVDstore ptr (MOVDconst [0]) mem))))

// Medium 8-aligned zeroing uses a Duff's device
// 8 and 128 are magic constants, see runtime/mkduff.go
(Zero [s] {t} ptr mem)
	&& s%8 == 0 && s <= 8*128
	&& t.Alignment()%8 == 0 && !config.noDuffDevice =>
	(DUFFZERO [8 * (128 - s/8)] ptr mem)

// Generic zeroing uses a loop
(Zero [s] {t} ptr mem) =>
	(LoweredZero [t.Alignment()]
		ptr
		(ADD <ptr.Type> ptr (MOVDconst [s-moveSize(t.Alignment(), config)]))
		mem)

(Convert ...) => (MOVconvert ...)

// Checks
(IsNonNil p) => (NeqPtr (MOVDconst [0]) p)
(IsInBounds ...) => (Less64U ...)
(IsSliceInBounds ...) => (Leq64U ...)

// Trivial lowering
(NilCheck ...) => (LoweredNilCheck ...)
(GetClosurePtr ...) => (LoweredGetClosurePtr ...)
(GetCallerSP ...) => (LoweredGetCallerSP ...)
(GetCallerPC ...) => (LoweredGetCallerPC ...)

// Write barrier.
(WB ...) => (LoweredWB ...)

(PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem)

// Small moves
(Move [0] _ _ mem) => mem
(Move [1] dst src mem) => (MOVBstore dst (MOVBload src mem) mem)
(Move [2] {t} dst src mem) && t.Alignment()%2 == 0 =>
	(MOVHstore dst (MOVHload src mem) mem)
(Move [2] dst src mem) =>
	(MOVBstore [1] dst (MOVBload [1] src mem)
		(MOVBstore dst (MOVBload src mem) mem))
(Move [4] {t} dst src mem) && t.Alignment()%4 == 0 =>
	(MOVWstore dst (MOVWload src mem) mem)
(Move [4] {t} dst src mem) && t.Alignment()%2 == 0 =>
	(MOVHstore [2] dst (MOVHload [2] src mem)
		(MOVHstore dst (MOVHload src mem) mem))
(Move [4] dst src mem) =>
	(MOVBstore [3] dst (MOVBload [3] src mem)
		(MOVBstore [2] dst (MOVBload [2] src mem)
			(MOVBstore [1] dst (MOVBload [1] src mem)
				(MOVBstore dst (MOVBload src mem) mem))))
(Move [8] {t} dst src mem) && t.Alignment()%8 == 0 =>
	(MOVDstore dst (MOVDload src mem) mem)
(Move [8] {t} dst src mem) && t.Alignment()%4 == 0 =>
	(MOVWstore [4] dst (MOVWload [4] src mem)
		(MOVWstore dst (MOVWload src mem) mem))
(Move [8] {t} dst src mem) && t.Alignment()%2 == 0 =>
	(MOVHstore [6] dst (MOVHload [6] src mem)
		(MOVHstore [4] dst (MOVHload [4] src mem)
			(MOVHstore [2] dst (MOVHload [2] src mem)
				(MOVHstore dst (MOVHload src mem) mem))))

(Move [3] dst src mem) =>
	(MOVBstore [2] dst (MOVBload [2] src mem)
		(MOVBstore [1] dst (MOVBload [1] src mem)
			(MOVBstore dst (MOVBload src mem) mem)))
(Move [6] {t} dst src mem) && t.Alignment()%2 == 0 =>
	(MOVHstore [4] dst (MOVHload [4] src mem)
		(MOVHstore [2] dst (MOVHload [2] src mem)
			(MOVHstore dst (MOVHload src mem) mem)))
(Move [12] {t} dst src mem) && t.Alignment()%4 == 0 =>
	(MOVWstore [8] dst (MOVWload [8] src mem)
		(MOVWstore [4] dst (MOVWload [4] src mem)
			(MOVWstore dst (MOVWload src mem) mem)))
(Move [16] {t} dst src mem) && t.Alignment()%8 == 0 =>
	(MOVDstore [8] dst (MOVDload [8] src mem)
		(MOVDstore dst (MOVDload src mem) mem))
(Move [24] {t} dst src mem) && t.Alignment()%8 == 0 =>
	(MOVDstore [16] dst (MOVDload [16] src mem)
		(MOVDstore [8] dst (MOVDload [8] src mem)
			(MOVDstore dst (MOVDload src mem) mem)))
(Move [32] {t} dst src mem) && t.Alignment()%8 == 0 =>
	(MOVDstore [24] dst (MOVDload [24] src mem)
		(MOVDstore [16] dst (MOVDload [16] src mem)
			(MOVDstore [8] dst (MOVDload [8] src mem)
				(MOVDstore dst (MOVDload src mem) mem))))

// Medium 8-aligned move uses a Duff's device
// 16 and 128 are magic constants, see runtime/mkduff.go
(Move [s] {t} dst src mem)
	&& s%8 == 0 && s <= 8*128 && t.Alignment()%8 == 0
	&& !config.noDuffDevice && logLargeCopy(v, s) =>
	(DUFFCOPY [16 * (128 - s/8)] dst src mem)

// Generic move uses a loop
(Move [s] {t} dst src mem) && (s <= 16 || logLargeCopy(v, s)) =>
	(LoweredMove [t.Alignment()]
		dst
		src
		(ADDI <src.Type> [s-moveSize(t.Alignment(), config)] src)
		mem)

// Boolean ops; 0=false, 1=true
(AndB ...) => (AND ...)
(OrB  ...) => (OR  ...)
(EqB  x y) => (SEQZ (XOR <typ.Bool> x y))
(NeqB ...) => (XOR ...)
(Not  ...) => (SEQZ ...)

// Lowering pointer arithmetic
// TODO: Special handling for SP offsets, like ARM
(OffPtr [off] ptr:(SP)) && is32Bit(off) => (MOVaddr [int32(off)] ptr)
(OffPtr [off] ptr) && is32Bit(off) => (ADDI [off] ptr)
(OffPtr [off] ptr) => (ADD (MOVDconst [off]) ptr)

// TODO(jsing): Check if we actually need MOV{B,H,W}const as most platforms
// use a single MOVDconst op.
(Const8 ...) => (MOVBconst ...)
(Const16 ...) => (MOVHconst ...)
(Const32 ...) => (MOVWconst ...)
(Const64 ...) => (MOVDconst ...)
(Const32F [val]) => (FMVSX (MOVWconst [int32(math.Float32bits(val))]))
(Const64F [val]) => (FMVDX (MOVDconst [int64(math.Float64bits(val))]))
(ConstNil) => (MOVDconst [0])
(ConstBool [val]) => (MOVBconst [int8(b2i(val))])

// Convert 64 bit immediate to two 32 bit immediates, combine with add and shift.
// The lower 32 bit immediate will be treated as signed,
// so if it is negative, adjust for the borrow by incrementing the top half.
// We don't have to worry about overflow from the increment,
// because if the top half is all 1s, and int32(c) is negative,
// then the overall constant fits in an int32.
(MOVDconst <t> [c]) && !is32Bit(c) && int32(c) <  0 => (ADD (SLLI <t> [32] (MOVDconst [c>>32+1])) (MOVDconst [int64(int32(c))]))
(MOVDconst <t> [c]) && !is32Bit(c) && int32(c) >= 0 => (ADD (SLLI <t> [32] (MOVDconst [c>>32+0])) (MOVDconst [int64(int32(c))]))

(Addr {sym} base) => (MOVaddr {sym} [0] base)
(LocalAddr {sym} base _) => (MOVaddr {sym} base)

// Calls
(StaticCall  ...) => (CALLstatic  ...)
(ClosureCall ...) => (CALLclosure ...)
(InterCall   ...) => (CALLinter   ...)

// Atomic Intrinsics
(AtomicLoad8   ...) => (LoweredAtomicLoad8  ...)
(AtomicLoad32  ...) => (LoweredAtomicLoad32 ...)
(AtomicLoad64  ...) => (LoweredAtomicLoad64 ...)
(AtomicLoadPtr ...) => (LoweredAtomicLoad64 ...)

(AtomicStore8       ...) => (LoweredAtomicStore8  ...)
(AtomicStore32      ...) => (LoweredAtomicStore32 ...)
(AtomicStore64      ...) => (LoweredAtomicStore64 ...)
(AtomicStorePtrNoWB ...) => (LoweredAtomicStore64 ...)

(AtomicAdd32 ...) => (LoweredAtomicAdd32 ...)
(AtomicAdd64 ...) => (LoweredAtomicAdd64 ...)

(AtomicCompareAndSwap32 ...) => (LoweredAtomicCas32 ...)
(AtomicCompareAndSwap64 ...) => (LoweredAtomicCas64 ...)

(AtomicExchange32 ...) => (LoweredAtomicExchange32 ...)
(AtomicExchange64 ...) => (LoweredAtomicExchange64 ...)

// Conditional branches
(If cond yes no) => (BNEZ cond yes no)

// Optimizations

// Absorb SEQZ/SNEZ into branch.
(BEQZ (SEQZ x) yes no) => (BNEZ x yes no)
(BEQZ (SNEZ x) yes no) => (BEQZ x yes no)
(BNEZ (SEQZ x) yes no) => (BEQZ x yes no)
(BNEZ (SNEZ x) yes no) => (BNEZ x yes no)

// Convert BEQZ/BNEZ into more optimal branch conditions.
(BEQZ (SUB x y) yes no) => (BEQ x y yes no)
(BNEZ (SUB x y) yes no) => (BNE x y yes no)
(BEQZ (SLT x y) yes no) => (BGE x y yes no)
(BNEZ (SLT x y) yes no) => (BLT x y yes no)
(BEQZ (SLTU x y) yes no) => (BGEU x y yes no)
(BNEZ (SLTU x y) yes no) => (BLTU x y yes no)

// Convert branch with zero to BEQZ/BNEZ.
(BEQ (MOVDconst [0]) cond yes no) => (BEQZ cond yes no)
(BEQ cond (MOVDconst [0]) yes no) => (BEQZ cond yes no)
(BNE (MOVDconst [0]) cond yes no) => (BNEZ cond yes no)
(BNE cond (MOVDconst [0]) yes no) => (BNEZ cond yes no)

// Store zero
(MOVBstore [off] {sym} ptr (MOVBconst [0]) mem) => (MOVBstorezero [off] {sym} ptr mem)
(MOVHstore [off] {sym} ptr (MOVHconst [0]) mem) => (MOVHstorezero [off] {sym} ptr mem)
(MOVWstore [off] {sym} ptr (MOVWconst [0]) mem) => (MOVWstorezero [off] {sym} ptr mem)
(MOVDstore [off] {sym} ptr (MOVDconst [0]) mem) => (MOVDstorezero [off] {sym} ptr mem)

// Avoid sign/zero extension for consts.
(MOVBreg  (MOVBconst [c])) => (MOVDconst [int64(c)])
(MOVHreg  (MOVBconst [c])) => (MOVDconst [int64(c)])
(MOVHreg  (MOVHconst [c])) => (MOVDconst [int64(c)])
(MOVWreg  (MOVBconst [c])) => (MOVDconst [int64(c)])
(MOVWreg  (MOVHconst [c])) => (MOVDconst [int64(c)])
(MOVWreg  (MOVWconst [c])) => (MOVDconst [int64(c)])
(MOVBUreg (MOVBconst [c])) => (MOVDconst [int64(uint8(c))])
(MOVHUreg (MOVBconst [c])) => (MOVDconst [int64(uint16(c))])
(MOVHUreg (MOVHconst [c])) => (MOVDconst [int64(uint16(c))])
(MOVWUreg (MOVBconst [c])) => (MOVDconst [int64(uint32(c))])
(MOVWUreg (MOVHconst [c])) => (MOVDconst [int64(uint32(c))])
(MOVWUreg (MOVWconst [c])) => (MOVDconst [int64(uint32(c))])

// Avoid sign/zero extension after properly typed load.
(MOVBreg  x:(MOVBload  _ _)) => (MOVDreg x)
(MOVHreg  x:(MOVBload  _ _)) => (MOVDreg x)
(MOVHreg  x:(MOVBUload _ _)) => (MOVDreg x)
(MOVHreg  x:(MOVHload  _ _)) => (MOVDreg x)
(MOVWreg  x:(MOVBload  _ _)) => (MOVDreg x)
(MOVWreg  x:(MOVBUload _ _)) => (MOVDreg x)
(MOVWreg  x:(MOVHload  _ _)) => (MOVDreg x)
(MOVWreg  x:(MOVHUload _ _)) => (MOVDreg x)
(MOVWreg  x:(MOVWload  _ _)) => (MOVDreg x)
(MOVBUreg x:(MOVBUload _ _)) => (MOVDreg x)
(MOVHUreg x:(MOVBUload _ _)) => (MOVDreg x)
(MOVHUreg x:(MOVHUload _ _)) => (MOVDreg x)
(MOVWUreg x:(MOVBUload _ _)) => (MOVDreg x)
(MOVWUreg x:(MOVHUload _ _)) => (MOVDreg x)
(MOVWUreg x:(MOVWUload _ _)) => (MOVDreg x)

// Fold double extensions.
(MOVBreg  x:(MOVBreg  _)) => (MOVDreg x)
(MOVHreg  x:(MOVBreg  _)) => (MOVDreg x)
(MOVHreg  x:(MOVBUreg _)) => (MOVDreg x)
(MOVHreg  x:(MOVHreg  _)) => (MOVDreg x)
(MOVWreg  x:(MOVBreg  _)) => (MOVDreg x)
(MOVWreg  x:(MOVBUreg _)) => (MOVDreg x)
(MOVWreg  x:(MOVHreg  _)) => (MOVDreg x)
(MOVWreg  x:(MOVWreg  _)) => (MOVDreg x)
(MOVBUreg x:(MOVBUreg _)) => (MOVDreg x)
(MOVHUreg x:(MOVBUreg _)) => (MOVDreg x)
(MOVHUreg x:(MOVHUreg _)) => (MOVDreg x)
(MOVWUreg x:(MOVBUreg _)) => (MOVDreg x)
(MOVWUreg x:(MOVHUreg _)) => (MOVDreg x)
(MOVWUreg x:(MOVWUreg _)) => (MOVDreg x)

// Do not extend before store.
(MOVBstore [off] {sym} ptr (MOVBreg  x) mem) => (MOVBstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr (MOVHreg  x) mem) => (MOVBstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr (MOVWreg  x) mem) => (MOVBstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr (MOVBUreg x) mem) => (MOVBstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr (MOVHUreg x) mem) => (MOVBstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr (MOVWUreg x) mem) => (MOVBstore [off] {sym} ptr x mem)
(MOVHstore [off] {sym} ptr (MOVHreg  x) mem) => (MOVHstore [off] {sym} ptr x mem)
(MOVHstore [off] {sym} ptr (MOVWreg  x) mem) => (MOVHstore [off] {sym} ptr x mem)
(MOVHstore [off] {sym} ptr (MOVHUreg x) mem) => (MOVHstore [off] {sym} ptr x mem)
(MOVHstore [off] {sym} ptr (MOVWUreg x) mem) => (MOVHstore [off] {sym} ptr x mem)
(MOVWstore [off] {sym} ptr (MOVWreg  x) mem) => (MOVWstore [off] {sym} ptr x mem)
(MOVWstore [off] {sym} ptr (MOVWUreg x) mem) => (MOVWstore [off] {sym} ptr x mem)

// Replace extend after load with alternate load where possible.
(MOVBreg  <t> x:(MOVBUload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload  <t> [off] {sym} ptr mem)
(MOVHreg  <t> x:(MOVHUload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVHload  <t> [off] {sym} ptr mem)
(MOVWreg  <t> x:(MOVWUload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWload  <t> [off] {sym} ptr mem)
(MOVBUreg <t> x:(MOVBload  [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBUload <t> [off] {sym} ptr mem)
(MOVHUreg <t> x:(MOVHload  [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVHUload <t> [off] {sym} ptr mem)
(MOVWUreg <t> x:(MOVWload  [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWUload <t> [off] {sym} ptr mem)

// If a register move has only 1 use, just use the same register without emitting instruction
// MOVnop does not emit an instruction, only for ensuring the type.
(MOVDreg x) && x.Uses == 1 => (MOVDnop x)

// Fold constant into immediate instructions where possible.
(ADD (MOVBconst [val]) x) => (ADDI [int64(val)] x)
(ADD (MOVHconst [val]) x) => (ADDI [int64(val)] x)
(ADD (MOVWconst [val]) x) => (ADDI [int64(val)] x)
(ADD (MOVDconst [val]) x) && is32Bit(val) => (ADDI [val] x)

(AND (MOVBconst [val]) x) => (ANDI [int64(val)] x)
(AND (MOVHconst [val]) x) => (ANDI [int64(val)] x)
(AND (MOVWconst [val]) x) => (ANDI [int64(val)] x)
(AND (MOVDconst [val]) x) && is32Bit(val) => (ANDI [val] x)

(OR (MOVBconst [val]) x) => (ORI [int64(val)] x)
(OR (MOVHconst [val]) x) => (ORI [int64(val)] x)
(OR (MOVWconst [val]) x) => (ORI [int64(val)] x)
(OR (MOVDconst [val]) x) && is32Bit(val) => (ORI [val] x)

(XOR (MOVBconst [val]) x) => (XORI [int64(val)] x)
(XOR (MOVHconst [val]) x) => (XORI [int64(val)] x)
(XOR (MOVWconst [val]) x) => (XORI [int64(val)] x)
(XOR (MOVDconst [val]) x) && is32Bit(val) => (XORI [val] x)

(SLL x (MOVBconst [val])) => (SLLI [int64(val&63)] x)
(SLL x (MOVHconst [val])) => (SLLI [int64(val&63)] x)
(SLL x (MOVWconst [val])) => (SLLI [int64(val&63)] x)
(SLL x (MOVDconst [val])) => (SLLI [int64(val&63)] x)

(SRL x (MOVBconst [val])) => (SRLI [int64(val&63)] x)
(SRL x (MOVHconst [val])) => (SRLI [int64(val&63)] x)
(SRL x (MOVWconst [val])) => (SRLI [int64(val&63)] x)
(SRL x (MOVDconst [val])) => (SRLI [int64(val&63)] x)

(SRA x (MOVBconst [val])) => (SRAI [int64(val&63)] x)
(SRA x (MOVHconst [val])) => (SRAI [int64(val&63)] x)
(SRA x (MOVWconst [val])) => (SRAI [int64(val&63)] x)
(SRA x (MOVDconst [val])) => (SRAI [int64(val&63)] x)

// Convert subtraction of a const into ADDI with negative immediate, where possible.
(SUB x (MOVBconst [val])) => (ADDI [-int64(val)] x)
(SUB x (MOVHconst [val])) => (ADDI [-int64(val)] x)
(SUB x (MOVWconst [val])) && is32Bit(-int64(val)) => (ADDI [-int64(val)] x)
(SUB x (MOVDconst [val])) && is32Bit(-val) => (ADDI [-val] x)

// Subtraction of zero.
(SUB x (MOVBconst [0])) => x
(SUB x (MOVHconst [0])) => x
(SUB x (MOVWconst [0])) => x
(SUB x (MOVDconst [0])) => x

// Subtraction of zero with sign extension.
(SUBW x (MOVWconst [0])) => (ADDIW [0] x)

// Subtraction from zero.
(SUB (MOVBconst [0]) x) => (NEG x)
(SUB (MOVHconst [0]) x) => (NEG x)
(SUB (MOVWconst [0]) x) => (NEG x)
(SUB (MOVDconst [0]) x) => (NEG x)

// Subtraction from zero with sign extension.
(SUBW (MOVDconst [0]) x) => (NEGW x)

// Addition of zero.
(ADDI [0] x) => x