aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ssa/gen/386.rules
blob: 199b73c42f436fcfc88e422d196ffd8904780787 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Lowering arithmetic
(Add(Ptr|32|16|8) ...) => (ADDL ...)
(Add(32|64)F ...) => (ADDS(S|D) ...)
(Add32carry ...) => (ADDLcarry ...)
(Add32withcarry ...) => (ADCL ...)

(Sub(Ptr|32|16|8) ...) => (SUBL ...)
(Sub(32|64)F ...) => (SUBS(S|D) ...)
(Sub32carry ...) => (SUBLcarry ...)
(Sub32withcarry ...) => (SBBL ...)

(Mul(32|16|8) ...) => (MULL ...)
(Mul(32|64)F ...) => (MULS(S|D) ...)
(Mul32uhilo ...) => (MULLQU ...)

(Select0 (Mul32uover x y)) => (Select0 <typ.UInt32> (MULLU x y))
(Select1 (Mul32uover x y)) => (SETO (Select1 <types.TypeFlags> (MULLU x y)))

(Avg32u ...) => (AVGLU ...)

(Div(32|64)F ...) => (DIVS(S|D) ...)
(Div(32|32u|16|16u) ...) => (DIV(L|LU|W|WU) ...)
(Div8   x y) => (DIVW  (SignExt8to16 x) (SignExt8to16 y))
(Div8u  x y) => (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y))

(Hmul(32|32u) ...) => (HMUL(L|LU) ...)

(Mod(32|32u|16|16u) ...) => (MOD(L|LU|W|WU) ...)
(Mod8   x y) => (MODW  (SignExt8to16 x) (SignExt8to16 y))
(Mod8u  x y) => (MODWU (ZeroExt8to16 x) (ZeroExt8to16 y))

(And(32|16|8) ...) => (ANDL ...)
(Or(32|16|8) ...) => (ORL ...)
(Xor(32|16|8) ...) => (XORL ...)

(Neg(32|16|8) ...) => (NEGL ...)
(Neg32F x) => (PXOR x (MOVSSconst <typ.Float32> [float32(math.Copysign(0, -1))]))
(Neg64F x) => (PXOR x (MOVSDconst <typ.Float64> [math.Copysign(0, -1)]))

(Com(32|16|8) ...) => (NOTL ...)

// Lowering boolean ops
(AndB ...) => (ANDL ...)
(OrB ...) => (ORL ...)
(Not x) => (XORLconst [1] x)

// Lowering pointer arithmetic
(OffPtr [off] ptr) => (ADDLconst [int32(off)] ptr)

(Bswap32 ...) => (BSWAPL ...)

(Sqrt ...) => (SQRTSD ...)
(Sqrt32 ...) => (SQRTSS ...)

(Ctz16 x) => (BSFL (ORLconst <typ.UInt32> [0x10000] x))
(Ctz16NonZero ...) => (BSFL ...)

// Lowering extension
(SignExt8to16  ...) => (MOVBLSX ...)
(SignExt8to32  ...) => (MOVBLSX ...)
(SignExt16to32 ...) => (MOVWLSX ...)

(ZeroExt8to16  ...) => (MOVBLZX ...)
(ZeroExt8to32  ...) => (MOVBLZX ...)
(ZeroExt16to32 ...) => (MOVWLZX ...)

(Signmask x) => (SARLconst x [31])
(Zeromask <t> x) => (XORLconst [-1] (SBBLcarrymask <t> (CMPLconst x [1])))
(Slicemask <t> x) => (SARLconst (NEGL <t> x) [31])

// Lowering truncation
// Because we ignore high parts of registers, truncates are just copies.
(Trunc16to8  ...) => (Copy ...)
(Trunc32to8  ...) => (Copy ...)
(Trunc32to16 ...) => (Copy ...)

// Lowering float-int conversions
(Cvt32to32F ...) => (CVTSL2SS ...)
(Cvt32to64F ...) => (CVTSL2SD ...)

(Cvt32Fto32 ...) => (CVTTSS2SL ...)
(Cvt64Fto32 ...) => (CVTTSD2SL ...)

(Cvt32Fto64F ...) => (CVTSS2SD ...)
(Cvt64Fto32F ...) => (CVTSD2SS ...)

(Round32F ...) => (Copy ...)
(Round64F ...) => (Copy ...)

(CvtBoolToUint8 ...) => (Copy ...)

// Lowering shifts
// Unsigned shifts need to return 0 if shift amount is >= width of shifted value.
//   result = (arg << shift) & (shift >= argbits ? 0 : 0xffffffffffffffff)
(Lsh32x(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))
(Lsh16x(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))
(Lsh8x(32|16|8)  <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))

(Lsh32x(32|16|8) <t> x y) && shiftIsBounded(v) => (SHLL <t> x y)
(Lsh16x(32|16|8) <t> x y) && shiftIsBounded(v) => (SHLL <t> x y)
(Lsh8x(32|16|8)  <t> x y) && shiftIsBounded(v) => (SHLL <t> x y)

(Rsh32Ux(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))
(Rsh16Ux(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [16])))
(Rsh8Ux(32|16|8)  <t> x y) && !shiftIsBounded(v) => (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [8])))

(Rsh32Ux(32|16|8) <t> x y) && shiftIsBounded(v) => (SHRL <t> x y)
(Rsh16Ux(32|16|8) <t> x y) && shiftIsBounded(v) => (SHRW <t> x y)
(Rsh8Ux(32|16|8)  <t> x y) && shiftIsBounded(v) => (SHRB <t> x y)

// Signed right shift needs to return 0/-1 if shift amount is >= width of shifted value.
// We implement this by setting the shift value to -1 (all ones) if the shift value is >= width.

(Rsh32x(32|16|8) <t> x y) && !shiftIsBounded(v) => (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [32])))))
(Rsh16x(32|16|8) <t> x y) && !shiftIsBounded(v) => (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [16])))))
(Rsh8x(32|16|8) <t> x y)  && !shiftIsBounded(v) => (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [8])))))

(Rsh32x(32|16|8) <t> x y) && shiftIsBounded(v) => (SARL x y)
(Rsh16x(32|16|8) <t> x y) && shiftIsBounded(v) => (SARW x y)
(Rsh8x(32|16|8) <t> x y)  && shiftIsBounded(v) => (SARB x y)

// constant shifts
// generic opt rewrites all constant shifts to shift by Const64
(Lsh32x64 x (Const64 [c])) && uint64(c) < 32 => (SHLLconst x [int32(c)])
(Rsh32x64 x (Const64 [c])) && uint64(c) < 32 => (SARLconst x [int32(c)])
(Rsh32Ux64 x (Const64 [c])) && uint64(c) < 32 => (SHRLconst x [int32(c)])
(Lsh16x64 x (Const64 [c])) && uint64(c) < 16 => (SHLLconst x [int32(c)])
(Rsh16x64 x (Const64 [c])) && uint64(c) < 16 => (SARWconst x [int16(c)])
(Rsh16Ux64 x (Const64 [c])) && uint64(c) < 16 => (SHRWconst x [int16(c)])
(Lsh8x64 x (Const64 [c])) && uint64(c) < 8 => (SHLLconst x [int32(c)])
(Rsh8x64 x (Const64 [c])) && uint64(c) < 8 => (SARBconst x [int8(c)])
(Rsh8Ux64 x (Const64 [c])) && uint64(c) < 8 => (SHRBconst x [int8(c)])

// large constant shifts
(Lsh32x64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
(Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
(Lsh16x64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
(Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
(Lsh8x64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0])
(Rsh8Ux64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0])

// large constant signed right shift, we leave the sign bit
(Rsh32x64 x (Const64 [c])) && uint64(c) >= 32 => (SARLconst x [31])
(Rsh16x64 x (Const64 [c])) && uint64(c) >= 16 => (SARWconst x [15])
(Rsh8x64 x (Const64 [c])) && uint64(c) >= 8 => (SARBconst x [7])

// constant rotates
(RotateLeft32 x (MOVLconst [c])) => (ROLLconst [c&31] x)
(RotateLeft16 x (MOVLconst [c])) => (ROLWconst [int16(c&15)] x)
(RotateLeft8 x (MOVLconst [c]))  => (ROLBconst [int8(c&7)] x)

// Lowering comparisons
(Less32  x y) => (SETL (CMPL x y))
(Less16  x y) => (SETL (CMPW x y))
(Less8   x y) => (SETL (CMPB x y))
(Less32U x y) => (SETB (CMPL x y))
(Less16U x y) => (SETB (CMPW x y))
(Less8U  x y) => (SETB (CMPB x y))
// Use SETGF with reversed operands to dodge NaN case
(Less64F x y) => (SETGF (UCOMISD y x))
(Less32F x y) => (SETGF (UCOMISS y x))

(Leq32  x y) => (SETLE (CMPL x y))
(Leq16  x y) => (SETLE (CMPW x y))
(Leq8   x y) => (SETLE (CMPB x y))
(Leq32U x y) => (SETBE (CMPL x y))
(Leq16U x y) => (SETBE (CMPW x y))
(Leq8U  x y) => (SETBE (CMPB x y))
// Use SETGEF with reversed operands to dodge NaN case
(Leq64F x y) => (SETGEF (UCOMISD y x))
(Leq32F x y) => (SETGEF (UCOMISS y x))

(Eq32  x y) => (SETEQ (CMPL x y))
(Eq16  x y) => (SETEQ (CMPW x y))
(Eq8   x y) => (SETEQ (CMPB x y))
(EqB   x y) => (SETEQ (CMPB x y))
(EqPtr x y) => (SETEQ (CMPL x y))
(Eq64F x y) => (SETEQF (UCOMISD x y))
(Eq32F x y) => (SETEQF (UCOMISS x y))

(Neq32  x y) => (SETNE (CMPL x y))
(Neq16  x y) => (SETNE (CMPW x y))
(Neq8   x y) => (SETNE (CMPB x y))
(NeqB   x y) => (SETNE (CMPB x y))
(NeqPtr x y) => (SETNE (CMPL x y))
(Neq64F x y) => (SETNEF (UCOMISD x y))
(Neq32F x y) => (SETNEF (UCOMISS x y))

// Lowering loads
(Load <t> ptr mem) && (is32BitInt(t) || isPtr(t)) => (MOVLload ptr mem)
(Load <t> ptr mem) && is16BitInt(t) => (MOVWload ptr mem)
(Load <t> ptr mem) && (t.IsBoolean() || is8BitInt(t)) => (MOVBload ptr mem)
(Load <t> ptr mem) && is32BitFloat(t) => (MOVSSload ptr mem)
(Load <t> ptr mem) && is64BitFloat(t) => (MOVSDload ptr mem)

// Lowering stores
// These more-specific FP versions of Store pattern should come first.
(Store {t} ptr val mem) && t.Size() == 8 && is64BitFloat(val.Type) => (MOVSDstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 4 && is32BitFloat(val.Type) => (MOVSSstore ptr val mem)

(Store {t} ptr val mem) && t.Size() == 4 => (MOVLstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 2 => (MOVWstore ptr val mem)
(Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem)

// Lowering moves
(Move [0] _ _ mem) => mem
(Move [1] dst src mem) => (MOVBstore dst (MOVBload src mem) mem)
(Move [2] dst src mem) => (MOVWstore dst (MOVWload src mem) mem)
(Move [4] dst src mem) => (MOVLstore dst (MOVLload src mem) mem)
(Move [3] dst src mem) =>
	(MOVBstore [2] dst (MOVBload [2] src mem)
		(MOVWstore dst (MOVWload src mem) mem))
(Move [5] dst src mem) =>
	(MOVBstore [4] dst (MOVBload [4] src mem)
		(MOVLstore dst (MOVLload src mem) mem))
(Move [6] dst src mem) =>
	(MOVWstore [4] dst (MOVWload [4] src mem)
		(MOVLstore dst (MOVLload src mem) mem))
(Move [7] dst src mem) =>
	(MOVLstore [3] dst (MOVLload [3] src mem)
		(MOVLstore dst (MOVLload src mem) mem))
(Move [8] dst src mem) =>
	(MOVLstore [4] dst (MOVLload [4] src mem)
		(MOVLstore dst (MOVLload src mem) mem))

// Adjust moves to be a multiple of 4 bytes.
(Move [s] dst src mem)
	&& s > 8 && s%4 != 0 =>
	(Move [s-s%4]
		(ADDLconst <dst.Type> dst [int32(s%4)])
		(ADDLconst <src.Type> src [int32(s%4)])
		(MOVLstore dst (MOVLload src mem) mem))

// Medium copying uses a duff device.
(Move [s] dst src mem)
	&& s > 8 && s <= 4*128 && s%4 == 0
	&& !config.noDuffDevice && logLargeCopy(v, s) =>
	(DUFFCOPY [10*(128-s/4)] dst src mem)
// 10 and 128 are magic constants.  10 is the number of bytes to encode:
//	MOVL	(SI), CX
//	ADDL	$4, SI
//	MOVL	CX, (DI)
//	ADDL	$4, DI
// and 128 is the number of such blocks. See src/runtime/duff_386.s:duffcopy.

// Large copying uses REP MOVSL.
(Move [s] dst src mem) && (s > 4*128 || config.noDuffDevice) && s%4 == 0 && logLargeCopy(v, s) =>
	(REPMOVSL dst src (MOVLconst [int32(s/4)]) mem)

// Lowering Zero instructions
(Zero [0] _ mem) => mem
(Zero [1] destptr mem) => (MOVBstoreconst [0] destptr mem)
(Zero [2] destptr mem) => (MOVWstoreconst [0] destptr mem)
(Zero [4] destptr mem) => (MOVLstoreconst [0] destptr mem)

(Zero [3] destptr mem) =>
	(MOVBstoreconst [makeValAndOff(0,2)] destptr
		(MOVWstoreconst [makeValAndOff(0,0)] destptr mem))
(Zero [5] destptr mem) =>
	(MOVBstoreconst [makeValAndOff(0,4)] destptr
		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
(Zero [6] destptr mem) =>
	(MOVWstoreconst [makeValAndOff(0,4)] destptr
		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
(Zero [7] destptr mem) =>
	(MOVLstoreconst [makeValAndOff(0,3)] destptr
		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))

// Strip off any fractional word zeroing.
(Zero [s] destptr mem) && s%4 != 0 && s > 4 =>
	(Zero [s-s%4] (ADDLconst destptr [int32(s%4)])
		(MOVLstoreconst [0] destptr mem))

// Zero small numbers of words directly.
(Zero [8] destptr mem) =>
	(MOVLstoreconst [makeValAndOff(0,4)] destptr
		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
(Zero [12] destptr mem) =>
	(MOVLstoreconst [makeValAndOff(0,8)] destptr
		(MOVLstoreconst [makeValAndOff(0,4)] destptr
			(MOVLstoreconst [makeValAndOff(0,0)] destptr mem)))
(Zero [16] destptr mem) =>
	(MOVLstoreconst [makeValAndOff(0,12)] destptr
		(MOVLstoreconst [makeValAndOff(0,8)] destptr
			(MOVLstoreconst [makeValAndOff(0,4)] destptr
				(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))))

// Medium zeroing uses a duff device.
(Zero [s] destptr mem)
  && s > 16 && s <= 4*128 && s%4 == 0
  && !config.noDuffDevice =>
	(DUFFZERO [1*(128-s/4)] destptr (MOVLconst [0]) mem)
// 1 and 128 are magic constants.  1 is the number of bytes to encode STOSL.
// 128 is the number of STOSL instructions in duffzero.
// See src/runtime/duff_386.s:duffzero.

// Large zeroing uses REP STOSQ.
(Zero [s] destptr mem)
  && (s > 4*128 || (config.noDuffDevice && s > 16))
  && s%4 == 0 =>
	(REPSTOSL destptr (MOVLconst [int32(s/4)]) (MOVLconst [0]) mem)


// Lowering constants
(Const8   [c]) => (MOVLconst [int32(c)])
(Const16  [c]) => (MOVLconst [int32(c)])
(Const32  ...) => (MOVLconst ...)
(Const(32|64)F ...) => (MOVS(S|D)const ...)
(ConstNil) => (MOVLconst [0])
(ConstBool [c]) => (MOVLconst [b2i32(c)])

// Lowering calls
(StaticCall ...) => (CALLstatic ...)
(ClosureCall ...) => (CALLclosure ...)
(InterCall ...) => (CALLinter ...)

// Miscellaneous
(IsNonNil p) => (SETNE (TESTL p p))
(IsInBounds idx len) => (SETB (CMPL idx len))
(IsSliceInBounds idx len) => (SETBE (CMPL idx len))
(NilCheck ...) => (LoweredNilCheck ...)
(GetG ...) => (LoweredGetG ...)
(GetClosurePtr ...) => (LoweredGetClosurePtr ...)
(GetCallerPC ...) => (LoweredGetCallerPC ...)
(GetCallerSP ...) => (LoweredGetCallerSP ...)
(Addr {sym} base) => (LEAL {sym} base)
(LocalAddr {sym} base _) => (LEAL {sym} base)

// block rewrites
(If (SETL  cmp) yes no) => (LT  cmp yes no)
(If (SETLE cmp) yes no) => (LE  cmp yes no)
(If (SETG  cmp) yes no) => (GT  cmp yes no)
(If (SETGE cmp) yes no) => (GE  cmp yes no)
(If (SETEQ cmp) yes no) => (EQ  cmp yes no)
(If (SETNE cmp) yes no) => (NE  cmp yes no)
(If (SETB  cmp) yes no) => (ULT cmp yes no)
(If (SETBE cmp) yes no) => (ULE cmp yes no)
(If (SETA  cmp) yes no) => (UGT cmp yes no)
(If (SETAE cmp) yes no) => (UGE cmp yes no)
(If (SETO  cmp) yes no) => (OS cmp yes no)

// Special case for floating point - LF/LEF not generated
(If (SETGF  cmp) yes no) => (UGT  cmp yes no)
(If (SETGEF cmp) yes no) => (UGE  cmp yes no)
(If (SETEQF cmp) yes no) => (EQF  cmp yes no)
(If (SETNEF cmp) yes no) => (NEF  cmp yes no)

(If cond yes no) => (NE (TESTB cond cond) yes no)

// Write barrier.
(WB ...) => (LoweredWB ...)

(PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem)
(PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem)

(PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 0 => (LoweredPanicExtendA [kind] hi lo y mem)
(PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 1 => (LoweredPanicExtendB [kind] hi lo y mem)
(PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 2 => (LoweredPanicExtendC [kind] hi lo y mem)

// ***************************
// Above: lowering rules
// Below: optimizations
// ***************************
// TODO: Should the optimizations be a separate pass?

// Fold boolean tests into blocks
(NE (TESTB (SETL  cmp) (SETL  cmp)) yes no) => (LT  cmp yes no)
(NE (TESTB (SETLE cmp) (SETLE cmp)) yes no) => (LE  cmp yes no)
(NE (TESTB (SETG  cmp) (SETG  cmp)) yes no) => (GT  cmp yes no)
(NE (TESTB (SETGE cmp) (SETGE cmp)) yes no) => (GE  cmp yes no)
(NE (TESTB (SETEQ cmp) (SETEQ cmp)) yes no) => (EQ  cmp yes no)
(NE (TESTB (SETNE cmp) (SETNE cmp)) yes no) => (NE  cmp yes no)
(NE (TESTB (SETB  cmp) (SETB  cmp)) yes no) => (ULT cmp yes no)
(NE (TESTB (SETBE cmp) (SETBE cmp)) yes no) => (ULE cmp yes no)
(NE (TESTB (SETA  cmp) (SETA  cmp)) yes no) => (UGT cmp yes no)
(NE (TESTB (SETAE cmp) (SETAE cmp)) yes no) => (UGE cmp yes no)
(NE (TESTB (SETO cmp) (SETO cmp)) yes no) => (OS cmp yes no)

// Special case for floating point - LF/LEF not generated
(NE (TESTB (SETGF  cmp) (SETGF  cmp)) yes no) => (UGT  cmp yes no)
(NE (TESTB (SETGEF cmp) (SETGEF cmp)) yes no) => (UGE  cmp yes no)
(NE (TESTB (SETEQF cmp) (SETEQF cmp)) yes no) => (EQF  cmp yes no)
(NE (TESTB (SETNEF cmp) (SETNEF cmp)) yes no) => (NEF  cmp yes no)

// fold constants into instructions
(ADDL x (MOVLconst [c])) => (ADDLconst [c] x)
(ADDLcarry x (MOVLconst [c])) => (ADDLconstcarry [c] x)
(ADCL x (MOVLconst [c]) f) => (ADCLconst [c] x f)

(SUBL x (MOVLconst [c])) => (SUBLconst x [c])
(SUBL (MOVLconst [c]) x) => (NEGL (SUBLconst <v.Type> x [c]))
(SUBLcarry x (MOVLconst [c])) => (SUBLconstcarry [c] x)
(SBBL x (MOVLconst [c]) f) => (SBBLconst [c] x f)

(MULL x (MOVLconst [c])) => (MULLconst [c] x)
(ANDL x (MOVLconst [c])) => (ANDLconst [c] x)

(ANDLconst [c] (ANDLconst [d] x)) => (ANDLconst [c & d] x)
(XORLconst [c] (XORLconst [d] x)) => (XORLconst [c ^ d] x)
(MULLconst [c] (MULLconst [d] x)) => (MULLconst [c * d] x)

(ORL x (MOVLconst [c])) => (ORLconst [c] x)
(XORL x (MOVLconst [c])) => (XORLconst [c] x)

(SHLL x (MOVLconst [c])) => (SHLLconst [c&31] x)
(SHRL x (MOVLconst [c])) => (SHRLconst [c&31] x)
(SHRW x (MOVLconst [c])) && c&31 < 16 => (SHRWconst [int16(c&31)] x)
(SHRW _ (MOVLconst [c])) && c&31 >= 16 => (MOVLconst [0])
(SHRB x (MOVLconst [c])) && c&31 < 8 => (SHRBconst [int8(c&31)] x)
(SHRB _ (MOVLconst [c])) && c&31 >= 8 => (MOVLconst [0])

(SARL x (MOVLconst [c])) => (SARLconst [c&31] x)
(SARW x (MOVLconst [c])) => (SARWconst [int16(min(int64(c&31),15))] x)
(SARB x (MOVLconst [c])) => (SARBconst [int8(min(int64(c&31),7))] x)

(SARL x (ANDLconst [31] y)) => (SARL x y)
(SHLL x (ANDLconst [31] y)) => (SHLL x y)
(SHRL x (ANDLconst [31] y)) => (SHRL x y)

// Rotate instructions

(ADDL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c => (ROLLconst [c] x)
( ORL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c => (ROLLconst [c] x)
(XORL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c => (ROLLconst [c] x)

(ADDL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == int16(16-c) && t.Size() == 2
  => (ROLWconst x [int16(c)])
( ORL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == int16(16-c) && t.Size() == 2
  => (ROLWconst x [int16(c)])
(XORL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == int16(16-c) && t.Size() == 2
  => (ROLWconst x [int16(c)])

(ADDL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == int8(8-c) && t.Size() == 1
  => (ROLBconst x [int8(c)])
( ORL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == int8(8-c) && t.Size() == 1
  => (ROLBconst x [int8(c)])
(XORL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == int8(8-c) && t.Size() == 1
  => (ROLBconst x [int8(c)])

(ROLLconst [c] (ROLLconst [d] x)) => (ROLLconst [(c+d)&31] x)
(ROLWconst [c] (ROLWconst [d] x)) => (ROLWconst [(c+d)&15] x)
(ROLBconst [c] (ROLBconst [d] x)) => (ROLBconst [(c+d)& 7] x)


// Constant shift simplifications

(SHLLconst x [0]) => x
(SHRLconst x [0]) => x
(SARLconst x [0]) => x

(SHRWconst x [0]) => x
(SARWconst x [0]) => x

(SHRBconst x [0]) => x
(SARBconst x [0]) => x

(ROLLconst [0] x) => x
(ROLWconst [0] x) => x
(ROLBconst [0] x) => x

// Note: the word and byte shifts keep the low 5 bits (not the low 4 or 3 bits)
// because the x86 instructions are defined to use all 5 bits of the shift even
// for the small shifts. I don't think we'll ever generate a weird shift (e.g.
// (SHRW x (MOVLconst [24])), but just in case.

(CMPL x (MOVLconst [c])) => (CMPLconst x [c])
(CMPL (MOVLconst [c]) x) => (InvertFlags (CMPLconst x [c]))
(CMPW x (MOVLconst [c])) => (CMPWconst x [int16(c)])
(CMPW (MOVLconst [c]) x) => (InvertFlags (CMPWconst x [int16(c)]))
(CMPB x (MOVLconst [c])) => (CMPBconst x [int8(c)])
(CMPB (MOVLconst [c]) x) => (InvertFlags (CMPBconst x [int8(c)]))

// Canonicalize the order of arguments to comparisons - helps with CSE.
(CMP(L|W|B) x y) && canonLessThan(x,y) => (InvertFlags (CMP(L|W|B) y x))

// strength reduction
// Assumes that the following costs from https://gmplib.org/~tege/x86-timing.pdf:
//    1 - addl, shll, leal, negl, subl
//    3 - imull
// This limits the rewrites to two instructions.
// Note that negl always operates in-place,
// which can require a register-register move
// to preserve the original value,
// so it must be used with care.
(MULLconst [-9] x) => (NEGL (LEAL8 <v.Type> x x))
(MULLconst [-5] x) => (NEGL (LEAL4 <v.Type> x x))
(MULLconst [-3] x) => (NEGL (LEAL2 <v.Type> x x))
(MULLconst [-1] x) => (NEGL x)
(MULLconst [0] _) => (MOVLconst [0])
(MULLconst [1] x) => x
(MULLconst [3] x) => (LEAL2 x x)
(MULLconst [5] x) => (LEAL4 x x)
(MULLconst [7] x) => (LEAL2 x (LEAL2 <v.Type> x x))
(MULLconst [9] x) => (LEAL8 x x)
(MULLconst [11] x) => (LEAL2 x (LEAL4 <v.Type> x x))
(MULLconst [13] x) => (LEAL4 x (LEAL2 <v.Type> x x))
(MULLconst [19] x) => (LEAL2 x (LEAL8 <v.Type> x x))
(MULLconst [21] x) => (LEAL4 x (LEAL4 <v.Type> x x))
(MULLconst [25] x) => (LEAL8 x (LEAL2 <v.Type> x x))
(MULLconst [27] x) => (LEAL8 (LEAL2 <v.Type> x x) (LEAL2 <v.Type> x x))
(MULLconst [37] x) => (LEAL4 x (LEAL8 <v.Type> x x))
(MULLconst [41] x) => (LEAL8 x (LEAL4 <v.Type> x x))
(MULLconst [45] x) => (LEAL8 (LEAL4 <v.Type> x x) (LEAL4 <v.Type> x x))
(MULLconst [73] x) => (LEAL8 x (LEAL8 <v.Type> x x))
(MULLconst [81] x) => (LEAL8 (LEAL8 <v.Type> x x) (LEAL8 <v.Type> x x))

(MULLconst [c] x) && isPowerOfTwo32(c+1) && c >= 15 => (SUBL (SHLLconst <v.Type> [int32(log32(c+1))] x) x)
(MULLconst [c] x) && isPowerOfTwo32(c-1) && c >= 17 => (LEAL1 (SHLLconst <v.Type> [int32(log32(c-1))] x) x)
(MULLconst [c] x) && isPowerOfTwo32(c-2) && c >= 34 => (LEAL2 (SHLLconst <v.Type> [int32(log32(c-2))] x) x)
(MULLconst [c] x) && isPowerOfTwo32(c-4) && c >= 68 => (LEAL4 (SHLLconst <v.Type> [int32(log32(c-4))] x) x)
(MULLconst [c] x) && isPowerOfTwo32(c-8) && c >= 136 => (LEAL8 (SHLLconst <v.Type> [int32(log32(c-8))] x) x)
(MULLconst [c] x) && c%3 == 0 && isPowerOfTwo32(c/3) => (SHLLconst [int32(log32(c/3))] (LEAL2 <v.Type> x x))
(MULLconst [c] x) && c%5 == 0 && isPowerOfTwo32(c/5) => (SHLLconst [int32(log32(c/5))] (LEAL4 <v.Type> x x))
(MULLconst [c] x) && c%9 == 0 && isPowerOfTwo32(c/9) => (SHLLconst [int32(log32(c/9))] (LEAL8 <v.Type> x x))

// combine add/shift into LEAL
(ADDL x (SHLLconst [3] y)) => (LEAL8 x y)
(ADDL x (SHLLconst [2] y)) => (LEAL4 x y)
(ADDL x (SHLLconst [1] y)) => (LEAL2 x y)
(ADDL x (ADDL y y)) => (LEAL2 x y)
(ADDL x (ADDL x y)) => (LEAL2 y x)

// combine ADDL/ADDLconst into LEAL1
(ADDLconst [c] (ADDL x y)) => (LEAL1 [c] x y)
(ADDL (ADDLconst [c] x) y) => (LEAL1 [c] x y)

// fold ADDL into LEAL
(ADDLconst [c] (LEAL [d] {s} x)) && is32Bit(int64(c)+int64(d)) => (LEAL [c+d] {s} x)
(LEAL [c] {s} (ADDLconst [d] x)) && is32Bit(int64(c)+int64(d)) => (LEAL [c+d] {s} x)
(ADDLconst [c] x:(SP)) => (LEAL [c] x) // so it is rematerializeable
(LEAL [c] {s} (ADDL x y)) && x.Op != OpSB && y.Op != OpSB => (LEAL1 [c] {s} x y)
(ADDL x (LEAL [c] {s} y)) && x.Op != OpSB && y.Op != OpSB => (LEAL1 [c] {s} x y)

// fold ADDLconst into LEALx
(ADDLconst [c] (LEAL1 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL1 [c+d] {s} x y)
(ADDLconst [c] (LEAL2 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL2 [c+d] {s} x y)
(ADDLconst [c] (LEAL4 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL4 [c+d] {s} x y)
(ADDLconst [c] (LEAL8 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL8 [c+d] {s} x y)
(LEAL1 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL1 [c+d] {s} x y)
(LEAL2 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL2 [c+d] {s} x y)
(LEAL2 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+2*int64(d)) && y.Op != OpSB => (LEAL2 [c+2*d] {s} x y)
(LEAL4 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL4 [c+d] {s} x y)
(LEAL4 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+4*int64(d)) && y.Op != OpSB => (LEAL4 [c+4*d] {s} x y)
(LEAL8 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL8 [c+d] {s} x y)
(LEAL8 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+8*int64(d)) && y.Op != OpSB => (LEAL8 [c+8*d] {s} x y)

// fold shifts into LEALx
(LEAL1 [c] {s} x (SHLLconst [1] y)) => (LEAL2 [c] {s} x y)
(LEAL1 [c] {s} x (SHLLconst [2] y)) => (LEAL4 [c] {s} x y)
(LEAL1 [c] {s} x (SHLLconst [3] y)) => (LEAL8 [c] {s} x y)
(LEAL2 [c] {s} x (SHLLconst [1] y)) => (LEAL4 [c] {s} x y)
(LEAL2 [c] {s} x (SHLLconst [2] y)) => (LEAL8 [c] {s} x y)
(LEAL4 [c] {s} x (SHLLconst [1] y)) => (LEAL8 [c] {s} x y)

// reverse ordering of compare instruction
(SETL (InvertFlags x)) => (SETG x)
(SETG (InvertFlags x)) => (SETL x)
(SETB (InvertFlags x)) => (SETA x)
(SETA (InvertFlags x)) => (SETB x)
(SETLE (InvertFlags x)) => (SETGE x)
(SETGE (InvertFlags x)) => (SETLE x)
(SETBE (InvertFlags x)) => (SETAE x)
(SETAE (InvertFlags x)) => (SETBE x)
(SETEQ (InvertFlags x)) => (SETEQ x)
(SETNE (InvertFlags x)) => (SETNE x)

// sign extended loads
// Note: The combined instruction must end up in the same block
// as the original load. If not, we end up making a value with
// memory type live in two different blocks, which can lead to
// multiple memory values alive simultaneously.
// Make sure we don't combine these ops if the load has another use.
// This prevents a single load from being split into multiple loads
// which then might return different values.  See test/atomicload.go.
(MOVBLSX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBLSXload <v.Type> [off] {sym} ptr mem)
(MOVBLZX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
(MOVWLSX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWLSXload <v.Type> [off] {sym} ptr mem)
(MOVWLZX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWload <v.Type> [off] {sym} ptr mem)

// replace load from same location as preceding store with zero/sign extension (or copy in case of full width)
(MOVBload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBLZX x)
(MOVWload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWLZX x)
(MOVLload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => x
(MOVBLSXload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBLSX x)
(MOVWLSXload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWLSX x)

// Fold extensions and ANDs together.
(MOVBLZX (ANDLconst [c] x)) => (ANDLconst [c & 0xff] x)
(MOVWLZX (ANDLconst [c] x)) => (ANDLconst [c & 0xffff] x)
(MOVBLSX (ANDLconst [c] x)) && c & 0x80 == 0 => (ANDLconst [c & 0x7f] x)
(MOVWLSX (ANDLconst [c] x)) && c & 0x8000 == 0 => (ANDLconst [c & 0x7fff] x)

// Don't extend before storing
(MOVWstore [off] {sym} ptr (MOVWL(S|Z)X x) mem) => (MOVWstore [off] {sym} ptr x mem)
(MOVBstore [off] {sym} ptr (MOVBL(S|Z)X x) mem) => (MOVBstore [off] {sym} ptr x mem)

// fold constants into memory operations
// Note that this is not always a good idea because if not all the uses of
// the ADDLconst get eliminated, we still have to compute the ADDLconst and we now
// have potentially two live values (ptr and (ADDLconst [off] ptr)) instead of one.
// Nevertheless, let's do it!
(MOV(L|W|B|SS|SD)load  [off1] {sym} (ADDLconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
    (MOV(L|W|B|SS|SD)load  [off1+off2] {sym} ptr mem)
(MOV(L|W|B|SS|SD)store  [off1] {sym} (ADDLconst [off2] ptr) val mem) && is32Bit(int64(off1)+int64(off2)) =>
    (MOV(L|W|B|SS|SD)store  [off1+off2] {sym} ptr val mem)

((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
	((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {sym} val base mem)
((ADD|SUB|MUL|DIV)SSload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
	((ADD|SUB|MUL|DIV)SSload [off1+off2] {sym} val base mem)
((ADD|SUB|MUL|DIV)SDload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
	((ADD|SUB|MUL|DIV)SDload [off1+off2] {sym} val base mem)
((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym} (ADDLconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) =>
	((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {sym} base val mem)
((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym} (ADDLconst [off2] base) mem) && valoff1.canAdd32(off2) =>
	((ADD|AND|OR|XOR)Lconstmodify [valoff1.addOffset32(off2)] {sym} base mem)

// Fold constants into stores.
(MOVLstore [off] {sym} ptr (MOVLconst [c]) mem) =>
	(MOVLstoreconst [makeValAndOff(c,off)] {sym} ptr mem)
(MOVWstore [off] {sym} ptr (MOVLconst [c]) mem) =>
	(MOVWstoreconst [makeValAndOff(c,off)] {sym} ptr mem)
(MOVBstore [off] {sym} ptr (MOVLconst [c]) mem) =>
	(MOVBstoreconst [makeValAndOff(c,off)] {sym} ptr mem)

// Fold address offsets into constant stores.
(MOV(L|W|B)storeconst [sc] {s} (ADDLconst [off] ptr) mem) && sc.canAdd32(off) =>
	(MOV(L|W|B)storeconst [sc.addOffset32(off)] {s} ptr mem)

// We need to fold LEAL into the MOVx ops so that the live variable analysis knows
// what variables are being read/written by the ops.
// Note: we turn off this merging for operations on globals when building
// position-independent code (when Flag_shared is set).
// PIC needs a spare register to load the PC into.  Having the LEAL be
// a separate instruction gives us that register.  Having the LEAL be
// a separate instruction also allows it to be CSEd (which is good because
// it compiles to a thunk call).
(MOV(L|W|B|SS|SD|BLSX|WLSX)load  [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)
  && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
        (MOV(L|W|B|SS|SD|BLSX|WLSX)load  [off1+off2] {mergeSym(sym1,sym2)} base mem)

(MOV(L|W|B|SS|SD)store  [off1] {sym1} (LEAL [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)
  && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
	(MOV(L|W|B|SS|SD)store  [off1+off2] {mergeSym(sym1,sym2)} base val mem)

(MOV(L|W|B)storeconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) && canMergeSym(sym1, sym2) && sc.canAdd32(off)
  && (ptr.Op != OpSB || !config.ctxt.Flag_shared) =>
	(MOV(L|W|B)storeconst [sc.addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem)

((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
	((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
((ADD|SUB|MUL|DIV)SSload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
	((ADD|SUB|MUL|DIV)SSload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
((ADD|SUB|MUL|DIV)SDload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
	((ADD|SUB|MUL|DIV)SDload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym1} (LEAL [off2] {sym2} base) val mem)
	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
	((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem)
((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym1} (LEAL [off2] {sym2} base) mem)
	&& valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
	((ADD|AND|OR|XOR)Lconstmodify [valoff1.addOffset32(off2)] {mergeSym(sym1,sym2)} base mem)

// Merge load/store to op
((ADD|AND|OR|XOR|SUB|MUL)L x l:(MOVLload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|AND|OR|XOR|SUB|MUL)Lload x [off] {sym} ptr mem)
((ADD|SUB|MUL|DIV)SD x l:(MOVSDload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SDload x [off] {sym} ptr mem)
((ADD|SUB|MUL|DIV)SS x l:(MOVSSload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SSload x [off] {sym} ptr mem)
(MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lload x [off] {sym} ptr mem) mem) && y.Uses==1 && clobber(y) => ((ADD|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
(MOVLstore {sym} [off] ptr y:((ADD|SUB|AND|OR|XOR)L l:(MOVLload [off] {sym} ptr mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y, l) =>
	((ADD|SUB|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
(MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lconst [c] l:(MOVLload [off] {sym} ptr mem)) mem)
	&& y.Uses==1 && l.Uses==1 && clobber(y, l) =>
	((ADD|AND|OR|XOR)Lconstmodify [makeValAndOff(c,off)] {sym} ptr mem)

// fold LEALs together
(LEAL [off1] {sym1} (LEAL [off2] {sym2} x)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
      (LEAL [off1+off2] {mergeSym(sym1,sym2)} x)

// LEAL into LEAL1
(LEAL1 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
       (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y)

// LEAL1 into LEAL
(LEAL [off1] {sym1} (LEAL1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
       (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y)

// LEAL into LEAL[248]
(LEAL2 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
       (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y)
(LEAL4 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
       (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y)
(LEAL8 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
       (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y)

// LEAL[248] into LEAL
(LEAL [off1] {sym1} (LEAL2 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
      (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y)
(LEAL [off1] {sym1} (LEAL4 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
      (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y)
(LEAL [off1] {sym1} (LEAL8 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
      (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y)

// LEAL[1248] into LEAL[1248]. Only some such merges are possible.
(LEAL1 [off1] {sym1} x (LEAL1 [off2] {sym2} y y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
      (LEAL2 [off1+off2] {mergeSym(sym1, sym2)} x y)
(LEAL1 [off1] {sym1} x (LEAL1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
      (LEAL2 [off1+off2] {mergeSym(sym1, sym2)} y x)
(LEAL2 [off1] {sym} x (LEAL1 [off2] {nil} y y)) && is32Bit(int64(off1)+2*int64(off2)) =>
      (LEAL4 [off1+2*off2] {sym} x y)
(LEAL4 [off1] {sym} x (LEAL1 [off2] {nil} y y)) && is32Bit(int64(off1)+4*int64(off2)) =>
      (LEAL8 [off1+4*off2] {sym} x y)

// Absorb InvertFlags into branches.
(LT (InvertFlags cmp) yes no) => (GT cmp yes no)
(GT (InvertFlags cmp) yes no) => (LT cmp yes no)
(LE (InvertFlags cmp) yes no) => (GE cmp yes no)
(GE (InvertFlags cmp) yes no) => (LE cmp yes no)
(ULT (InvertFlags cmp) yes no) => (UGT cmp yes no)
(UGT (InvertFlags cmp) yes no) => (ULT cmp yes no)
(ULE (InvertFlags cmp) yes no) => (UGE cmp yes no)
(UGE (InvertFlags cmp) yes no) => (ULE cmp yes no)
(EQ (InvertFlags cmp) yes no) => (EQ cmp yes no)
(NE (InvertFlags cmp) yes no) => (NE cmp yes no)

// Constant comparisons.
(CMPLconst (MOVLconst [x]) [y]) && x==y                       => (FlagEQ)
(CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)<uint32(y) => (FlagLT_ULT)
(CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)>uint32(y) => (FlagLT_UGT)
(CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)<uint32(y) => (FlagGT_ULT)
(CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)>uint32(y) => (FlagGT_UGT)

(CMPWconst (MOVLconst [x]) [y]) && int16(x)==y                       => (FlagEQ)
(CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)<uint16(y) => (FlagLT_ULT)
(CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)>uint16(y) => (FlagLT_UGT)
(CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)<uint16(y) => (FlagGT_ULT)
(CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)>uint16(y) => (FlagGT_UGT)

(CMPBconst (MOVLconst [x]) [y]) && int8(x)==y                      => (FlagEQ)
(CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)<uint8(y) => (FlagLT_ULT)
(CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)>uint8(y) => (FlagLT_UGT)
(CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)<uint8(y) => (FlagGT_ULT)
(CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)>uint8(y) => (FlagGT_UGT)

// Other known comparisons.
(CMPLconst (SHRLconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 32 && (1<<uint64(32-c)) <= uint64(n) => (FlagLT_ULT)
(CMPLconst (ANDLconst _ [m]) [n]) && 0 <= m && m < n => (FlagLT_ULT)
(CMPWconst (ANDLconst _ [m]) [n]) && 0 <= int16(m) && int16(m) < n => (FlagLT_ULT)
(CMPBconst (ANDLconst _ [m]) [n]) && 0 <= int8(m) && int8(m) < n => (FlagLT_ULT)
// TODO: DIVxU also.

// Absorb flag constants into SBB ops.
(SBBLcarrymask (FlagEQ)) => (MOVLconst [0])
(SBBLcarrymask (FlagLT_ULT)) => (MOVLconst [-1])
(SBBLcarrymask (FlagLT_UGT)) => (MOVLconst [0])
(SBBLcarrymask (FlagGT_ULT)) => (MOVLconst [-1])
(SBBLcarrymask (FlagGT_UGT)) => (MOVLconst [0])

// Absorb flag constants into branches.
(EQ (FlagEQ) yes no) => (First yes no)
(EQ (FlagLT_ULT) yes no) => (First no yes)
(EQ (FlagLT_UGT) yes no) => (First no yes)
(EQ (FlagGT_ULT) yes no) => (First no yes)
(EQ (FlagGT_UGT) yes no) => (First no yes)

(NE (FlagEQ) yes no) => (First no yes)
(NE (FlagLT_ULT) yes no) => (First yes no)
(NE (FlagLT_UGT) yes no) => (First yes no)
(NE (FlagGT_ULT) yes no) => (First yes no)
(NE (FlagGT_UGT) yes no) => (First yes no)

(LT (FlagEQ) yes no) => (First no yes)
(LT (FlagLT_ULT) yes no) => (First yes no)
(LT (FlagLT_UGT) yes no) => (First yes no)
(LT (FlagGT_ULT) yes no) => (First no yes)
(LT (FlagGT_UGT) yes no) => (First no yes)

(LE (FlagEQ) yes no) => (First yes no)
(LE (FlagLT_ULT) yes no) => (First yes no)
(LE (FlagLT_UGT) yes no) => (First yes no)
(LE (FlagGT_ULT) yes no) => (First no yes)
(LE (FlagGT_UGT) yes no) => (First no yes)

(GT (FlagEQ) yes no) => (First no yes)
(GT (FlagLT_ULT) yes no) => (First no yes)
(GT (FlagLT_UGT) yes no) => (First no yes)
(GT (FlagGT_ULT) yes no) => (First yes no)
(GT (FlagGT_UGT) yes no) => (First yes no)

(GE (FlagEQ) yes no) => (First yes no)
(GE (FlagLT_ULT) yes no) => (First no yes)
(GE (FlagLT_UGT) yes no) => (First no yes)
(GE (FlagGT_ULT) yes no) => (First yes no)
(GE (FlagGT_UGT) yes no) => (First yes no)

(ULT (FlagEQ) yes no) => (First no yes)
(ULT (FlagLT_ULT) yes no) => (First yes no)
(ULT (FlagLT_UGT) yes no) => (First no yes)
(ULT (FlagGT_ULT) yes no) => (First yes no)
(ULT (FlagGT_UGT) yes no) => (First no yes)

(ULE (FlagEQ) yes no) => (First yes no)
(ULE (FlagLT_ULT) yes no) => (First yes no)
(ULE (FlagLT_UGT) yes no) => (First no yes)
(ULE (FlagGT_ULT) yes no) => (First yes no)
(ULE (FlagGT_UGT) yes no) => (First no yes)

(UGT (FlagEQ) yes no) => (First no yes)
(UGT (FlagLT_ULT) yes no) => (First no yes)
(UGT (FlagLT_UGT) yes no) => (First yes no)
(UGT (FlagGT_ULT) yes no) => (First no yes)
(UGT (FlagGT_UGT) yes no) => (First yes no)

(UGE (FlagEQ) yes no) => (First yes no)
(UGE (FlagLT_ULT) yes no) => (First no yes)
(UGE (FlagLT_UGT) yes no) => (First yes no)
(UGE (FlagGT_ULT) yes no) => (First no yes)
(UGE (FlagGT_UGT) yes no) => (First yes no)

// Absorb flag constants into SETxx ops.
(SETEQ (FlagEQ)) => (MOVLconst [1])
(SETEQ (FlagLT_ULT)) => (MOVLconst [0])
(SETEQ (FlagLT_UGT)) => (MOVLconst [0])
(SETEQ (FlagGT_ULT)) => (MOVLconst [0])
(SETEQ (FlagGT_UGT)) => (MOVLconst [0])

(SETNE (FlagEQ)) => (MOVLconst [0])
(SETNE (FlagLT_ULT)) => (MOVLconst [1])
(SETNE (FlagLT_UGT)) => (MOVLconst [1])
(SETNE (FlagGT_ULT)) => (MOVLconst [1])
(SETNE (FlagGT_UGT)) => (MOVLconst [1])

(SETL (FlagEQ)) => (MOVLconst [0])
(SETL (FlagLT_ULT)) => (MOVLconst [1])
(SETL (FlagLT_UGT)) => (MOVLconst [1])
(SETL (FlagGT_ULT)) => (MOVLconst [0])
(SETL (FlagGT_UGT)) => (MOVLconst [0])

(SETLE (FlagEQ)) => (MOVLconst [1])
(SETLE (FlagLT_ULT)) => (MOVLconst [1])
(SETLE (FlagLT_UGT)) => (MOVLconst [1])
(SETLE (FlagGT_ULT)) => (MOVLconst [0])
(SETLE (FlagGT_UGT)) => (MOVLconst [0])

(SETG (FlagEQ)) => (MOVLconst [0])
(SETG (FlagLT_ULT)) => (MOVLconst [0])
(SETG (FlagLT_UGT)) => (MOVLconst [0])
(SETG (FlagGT_ULT)) => (MOVLconst [1])
(SETG (FlagGT_UGT)) => (MOVLconst [1])

(SETGE (FlagEQ)) => (MOVLconst [1])
(SETGE (FlagLT_ULT)) => (MOVLconst [0])
(SETGE (FlagLT_UGT)) => (MOVLconst [0])
(SETGE (FlagGT_ULT)) => (MOVLconst [1])
(SETGE (FlagGT_UGT)) => (MOVLconst [1])

(SETB (FlagEQ)) => (MOVLconst [0])
(SETB (FlagLT_ULT)) => (MOVLconst [1])
(SETB (FlagLT_UGT)) => (MOVLconst [0])
(SETB (FlagGT_ULT)) => (MOVLconst [1])
(SETB (FlagGT_UGT)) => (MOVLconst [0])

(SETBE (FlagEQ)) => (MOVLconst [1])
(SETBE (FlagLT_ULT)) => (MOVLconst [1])
(SETBE (FlagLT_UGT)) => (MOVLconst [0])
(SETBE (FlagGT_ULT)) => (MOVLconst [1])
(SETBE (FlagGT_UGT)) => (MOVLconst [0])

(SETA (FlagEQ)) => (MOVLconst [0])
(SETA (FlagLT_ULT)) => (MOVLconst [0])
(SETA (FlagLT_UGT)) => (MOVLconst [1])
(SETA (FlagGT_ULT)) => (MOVLconst [0])
(SETA (FlagGT_UGT)) => (MOVLconst [1])

(SETAE (FlagEQ)) => (MOVLconst [1])
(SETAE (FlagLT_ULT)) => (MOVLconst [0])
(SETAE (FlagLT_UGT)) => (MOVLconst [1])
(SETAE (FlagGT_ULT)) => (MOVLconst [0])
(SETAE (FlagGT_UGT)) => (MOVLconst [1])

// Remove redundant *const ops
(ADDLconst [c] x) && c==0  => x
(SUBLconst [c] x) && c==0  => x
(ANDLconst [c] _) && c==0  => (MOVLconst [0])
(ANDLconst [c] x) && c==-1 => x
(ORLconst [c] x)  && c==0  => x
(ORLconst [c] _)  && c==-1 => (MOVLconst [-1])
(XORLconst [c] x) && c==0  => x
// TODO: since we got rid of the W/B versions, we might miss
// things like (ANDLconst [0x100] x) which were formerly
// (ANDBconst [0] x).  Probably doesn't happen very often.
// If we cared, we might do:
//  (ANDLconst <t> [c] x) && t.Size()==1 && int8(x)==0 => (MOVLconst [0])

// Convert constant subtracts to constant adds
(SUBLconst [c] x) => (ADDLconst [-c] x)

// generic constant folding
// TODO: more of this
(ADDLconst [c] (MOVLconst [d])) => (MOVLconst [c+d])
(ADDLconst [c] (ADDLconst [d] x)) => (ADDLconst [c+d] x)
(SARLconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)])
(SARWconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)])
(SARBconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)])
(NEGL (MOVLconst [c])) => (MOVLconst [-c])
(MULLconst [c] (MOVLconst [d])) => (MOVLconst [c*d])
(ANDLconst [c] (MOVLconst [d])) => (MOVLconst [c&d])
(ORLconst [c] (MOVLconst [d])) => (MOVLconst [c|d])
(XORLconst [c] (MOVLconst [d])) => (MOVLconst [c^d])
(NOTL (MOVLconst [c])) => (MOVLconst [^c])

// generic simplifications
// TODO: more of this
(ADDL x (NEGL y)) => (SUBL x y)
(SUBL x x) => (MOVLconst [0])
(ANDL x x) => x
(ORL x x) => x
(XORL x x) => (MOVLconst [0])

// checking AND against 0.
(CMP(L|W|B)const l:(ANDL x y) [0]) && l.Uses==1 => (TEST(L|W|B) x y)
(CMPLconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTLconst [c] x)
(CMPWconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTWconst [int16(c)] x)
(CMPBconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTBconst [int8(c)] x)

// TEST %reg,%reg is shorter than CMP
(CMP(L|W|B)const x [0]) => (TEST(L|W|B) x x)

// Convert LEAL1 back to ADDL if we can
(LEAL1 [0] {nil} x y) => (ADDL x y)

// Combining byte loads into larger (unaligned) loads.
// There are many ways these combinations could occur.  This is
// designed to match the way encoding/binary.LittleEndian does it.
(ORL                  x0:(MOVBload [i0] {s} p mem)
    s0:(SHLLconst [8] x1:(MOVBload [i1] {s} p mem)))
  && i1 == i0+1
  && x0.Uses == 1
  && x1.Uses == 1
  && s0.Uses == 1
  && mergePoint(b,x0,x1) != nil
  && clobber(x0, x1, s0)
  => @mergePoint(b,x0,x1) (MOVWload [i0] {s} p mem)

(ORL                  x0:(MOVBload [i] {s} p0 mem)
    s0:(SHLLconst [8] x1:(MOVBload [i] {s} p1 mem)))
  && x0.Uses == 1
  && x1.Uses == 1
  && s0.Uses == 1
  && sequentialAddresses(p0, p1, 1)
  && mergePoint(b,x0,x1) != nil
  && clobber(x0, x1, s0)
  => @mergePoint(b,x0,x1) (MOVWload [i] {s} p0 mem)

(ORL o0:(ORL
                       x0:(MOVWload [i0] {s} p mem)
    s0:(SHLLconst [16] x1:(MOVBload [i2] {s} p mem)))
    s1:(SHLLconst [24] x2:(MOVBload [i3] {s} p mem)))
  && i2 == i0+2
  && i3 == i0+3
  && x0.Uses == 1
  && x1.Uses == 1
  && x2.Uses == 1
  && s0.Uses == 1
  && s1.Uses == 1
  && o0.Uses == 1
  && mergePoint(b,x0,x1,x2) != nil
  && clobber(x0, x1, x2, s0, s1, o0)
  => @mergePoint(b,x0,x1,x2) (MOVLload [i0] {s} p mem)

(ORL o0:(ORL
                       x0:(MOVWload [i] {s} p0 mem)
    s0:(SHLLconst [16] x1:(MOVBload [i] {s} p1 mem)))
    s1:(SHLLconst [24] x2:(MOVBload [i] {s} p2 mem)))
  && x0.Uses == 1
  && x1.Uses == 1
  && x2.Uses == 1
  && s0.Uses == 1
  && s1.Uses == 1
  && o0.Uses == 1
  && sequentialAddresses(p0, p1, 2)
  && sequentialAddresses(p1, p2, 1)
  && mergePoint(b,x0,x1,x2) != nil
  && clobber(x0, x1, x2, s0, s1, o0)
  => @mergePoint(b,x0,x1,x2) (MOVLload [i] {s} p0 mem)

// Combine constant stores into larger (unaligned) stores.
(MOVBstoreconst [c] {s} p x:(MOVBstoreconst [a] {s} p mem))
  && x.Uses == 1
  && a.Off() + 1 == c.Off()
  && clobber(x)
  => (MOVWstoreconst [makeValAndOff(a.Val()&0xff | c.Val()<<8, a.Off())] {s} p mem)
(MOVBstoreconst [a] {s} p x:(MOVBstoreconst [c] {s} p mem))
  && x.Uses == 1
  && a.Off() + 1 == c.Off()
  && clobber(x)
  => (MOVWstoreconst [makeValAndOff(a.Val()&0xff | c.Val()<<8, a.Off())] {s} p mem)

(MOVBstoreconst [c] {s} p1 x:(MOVBstoreconst [a] {s} p0 mem))
  && x.Uses == 1
  && a.Off() == c.Off()
  && sequentialAddresses(p0, p1, 1)
  && clobber(x)
  => (MOVWstoreconst [makeValAndOff(a.Val()&0xff | c.Val()<<8, a.Off())] {s} p0 mem)
(MOVBstoreconst [a] {s} p0 x:(MOVBstoreconst [c] {s} p1 mem))
  && x.Uses == 1
  && a.Off() == c.Off()
  && sequentialAddresses(p0, p1, 1)
  && clobber(x)
  => (MOVWstoreconst [makeValAndOff(a.Val()&0xff | c.Val()<<8, a.Off())] {s} p0 mem)

(MOVWstoreconst [c] {s} p x:(MOVWstoreconst [a] {s} p mem))
  && x.Uses == 1
  && a.Off() + 2 == c.Off()
  && clobber(x)
  => (MOVLstoreconst [makeValAndOff(a.Val()&0xffff | c.Val()<<16, a.Off())] {s} p mem)
(MOVWstoreconst [a] {s} p x:(MOVWstoreconst [c] {s} p mem))
  && x.Uses == 1
  && ValAndOff(a).Off() + 2 == ValAndOff(c).Off()
  && clobber(x)
  => (MOVLstoreconst [makeValAndOff(a.Val()&0xffff | c.Val()<<16, a.Off())] {s} p mem)

(MOVWstoreconst [c] {s} p1 x:(MOVWstoreconst [a] {s} p0 mem))
  && x.Uses == 1
  && a.Off() == c.Off()
  && sequentialAddresses(p0, p1, 2)
  && clobber(x)
  => (MOVLstoreconst [makeValAndOff(a.Val()&0xffff | c.Val()<<16, a.Off())] {s} p0 mem)
(MOVWstoreconst [a] {s} p0 x:(MOVWstoreconst [c] {s} p1 mem))
  && x.Uses == 1
  && a.Off() == c.Off()
  && sequentialAddresses(p0, p1, 2)
  && clobber(x)
  => (MOVLstoreconst [makeValAndOff(a.Val()&0xffff | c.Val()<<16, a.Off())] {s} p0 mem)

// Combine stores into larger (unaligned) stores.
(MOVBstore [i] {s} p (SHR(W|L)const [8] w) x:(MOVBstore [i-1] {s} p w mem))
  && x.Uses == 1
  && clobber(x)
  => (MOVWstore [i-1] {s} p w mem)
(MOVBstore [i] {s} p w x:(MOVBstore {s} [i+1] p (SHR(W|L)const [8] w) mem))
  && x.Uses == 1
  && clobber(x)
  => (MOVWstore [i] {s} p w mem)
(MOVBstore [i] {s} p (SHRLconst [j] w) x:(MOVBstore [i-1] {s} p w0:(SHRLconst [j-8] w) mem))
  && x.Uses == 1
  && clobber(x)
  => (MOVWstore [i-1] {s} p w0 mem)

(MOVBstore [i] {s} p1 (SHR(W|L)const [8] w) x:(MOVBstore [i] {s} p0 w mem))
  && x.Uses == 1
  && sequentialAddresses(p0, p1, 1)
  && clobber(x)
  => (MOVWstore [i] {s} p0 w mem)
(MOVBstore [i] {s} p0 w x:(MOVBstore {s} [i] p1 (SHR(W|L)const [8] w) mem))
  && x.Uses == 1
  && sequentialAddresses(p0, p1, 1)
  && clobber(x)
  => (MOVWstore [i] {s} p0 w mem)
(MOVBstore [i] {s} p1 (SHRLconst [j] w) x:(MOVBstore [i] {s} p0 w0:(SHRLconst [j-8] w) mem))
  && x.Uses == 1
  && sequentialAddresses(p0, p1, 1)
  && clobber(x)
  => (MOVWstore [i] {s} p0 w0 mem)

(MOVWstore [i] {s} p (SHRLconst [16] w) x:(MOVWstore [i-2] {s} p w mem))
  && x.Uses == 1
  && clobber(x)
  => (MOVLstore [i-2] {s} p w mem)
(MOVWstore [i] {s} p (SHRLconst [j] w) x:(MOVWstore [i-2] {s} p w0:(SHRLconst [j-16] w) mem))
  && x.Uses == 1
  && clobber(x)
  => (MOVLstore [i-2] {s} p w0 mem)

(MOVWstore [i] {s} p1 (SHRLconst [16] w) x:(MOVWstore [i] {s} p0 w mem))
  && x.Uses == 1
  && sequentialAddresses(p0, p1, 2)
  && clobber(x)
  => (MOVLstore [i] {s} p0 w mem)
(MOVWstore [i] {s} p1 (SHRLconst [j] w) x:(MOVWstore [i] {s} p0 w0:(SHRLconst [j-16] w) mem))
  && x.Uses == 1
  && sequentialAddresses(p0, p1, 2)
  && clobber(x)
  => (MOVLstore [i] {s} p0 w0 mem)

// For PIC, break floating-point constant loading into two instructions so we have
// a register to use for holding the address of the constant pool entry.
(MOVSSconst [c]) && config.ctxt.Flag_shared => (MOVSSconst2 (MOVSSconst1 [c]))
(MOVSDconst [c]) && config.ctxt.Flag_shared => (MOVSDconst2 (MOVSDconst1 [c]))

(CMP(L|W|B) l:(MOV(L|W|B)load {sym} [off] ptr mem) x) && canMergeLoad(v, l) && clobber(l) => (CMP(L|W|B)load {sym} [off] ptr x mem)
(CMP(L|W|B) x l:(MOV(L|W|B)load {sym} [off] ptr mem)) && canMergeLoad(v, l) && clobber(l) => (InvertFlags (CMP(L|W|B)load {sym} [off] ptr x mem))

(CMP(L|W|B)const l:(MOV(L|W|B)load {sym} [off] ptr mem) [c])
	&& l.Uses == 1
	&& clobber(l) =>
  @l.Block (CMP(L|W|B)constload {sym} [makeValAndOff(int32(c),off)] ptr mem)

(CMPLload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPLconstload {sym} [makeValAndOff(c,off)] ptr mem)
(CMPWload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPWconstload {sym} [makeValAndOff(int32(int16(c)),off)] ptr mem)
(CMPBload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPBconstload {sym} [makeValAndOff(int32(int8(c)),off)] ptr mem)

(MOVBload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read8(sym, int64(off)))])
(MOVWload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read16(sym, int64(off), config.ctxt.Arch.ByteOrder))])
(MOVLload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read32(sym, int64(off), config.ctxt.Arch.ByteOrder))])