aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ssa/fuse.go
blob: fec2ba877372eedc8be7a2b6262a187567f3b9c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"cmd/internal/src"
)

// fuseEarly runs fuse(f, fuseTypePlain|fuseTypeIntInRange).
func fuseEarly(f *Func) { fuse(f, fuseTypePlain|fuseTypeIntInRange) }

// fuseLate runs fuse(f, fuseTypePlain|fuseTypeIf|fuseTypeBranchRedirect).
func fuseLate(f *Func) { fuse(f, fuseTypePlain|fuseTypeIf|fuseTypeBranchRedirect) }

type fuseType uint8

const (
	fuseTypePlain fuseType = 1 << iota
	fuseTypeIf
	fuseTypeIntInRange
	fuseTypeBranchRedirect
	fuseTypeShortCircuit
)

// fuse simplifies control flow by joining basic blocks.
func fuse(f *Func, typ fuseType) {
	for changed := true; changed; {
		changed = false
		// Fuse from end to beginning, to avoid quadratic behavior in fuseBlockPlain. See issue 13554.
		for i := len(f.Blocks) - 1; i >= 0; i-- {
			b := f.Blocks[i]
			if typ&fuseTypeIf != 0 {
				changed = fuseBlockIf(b) || changed
			}
			if typ&fuseTypeIntInRange != 0 {
				changed = fuseIntegerComparisons(b) || changed
			}
			if typ&fuseTypePlain != 0 {
				changed = fuseBlockPlain(b) || changed
			}
			if typ&fuseTypeShortCircuit != 0 {
				changed = shortcircuitBlock(b) || changed
			}
		}
		if typ&fuseTypeBranchRedirect != 0 {
			changed = fuseBranchRedirect(f) || changed
		}
		if changed {
			f.invalidateCFG()
		}
	}
}

// fuseBlockIf handles the following cases where s0 and s1 are empty blocks.
//
//       b        b           b       b
//    \ / \ /    | \  /    \ / |     | |
//     s0  s1    |  s1      s0 |     | |
//      \ /      | /         \ |     | |
//       ss      ss           ss      ss
//
// If all Phi ops in ss have identical variables for slots corresponding to
// s0, s1 and b then the branch can be dropped.
// This optimization often comes up in switch statements with multiple
// expressions in a case clause:
//   switch n {
//     case 1,2,3: return 4
//   }
// TODO: If ss doesn't contain any OpPhis, are s0 and s1 dead code anyway.
func fuseBlockIf(b *Block) bool {
	if b.Kind != BlockIf {
		return false
	}
	// It doesn't matter how much Preds does s0 or s1 have.
	var ss0, ss1 *Block
	s0 := b.Succs[0].b
	i0 := b.Succs[0].i
	if s0.Kind != BlockPlain || !isEmpty(s0) {
		s0, ss0 = b, s0
	} else {
		ss0 = s0.Succs[0].b
		i0 = s0.Succs[0].i
	}
	s1 := b.Succs[1].b
	i1 := b.Succs[1].i
	if s1.Kind != BlockPlain || !isEmpty(s1) {
		s1, ss1 = b, s1
	} else {
		ss1 = s1.Succs[0].b
		i1 = s1.Succs[0].i
	}
	if ss0 != ss1 {
		if s0.Kind == BlockPlain && isEmpty(s0) && s1.Kind == BlockPlain && isEmpty(s1) {
			// Two special cases where both s0, s1 and ss are empty blocks.
			if s0 == ss1 {
				s0, ss0 = b, ss1
			} else if ss0 == s1 {
				s1, ss1 = b, ss0
			} else {
				return false
			}
		} else {
			return false
		}
	}
	ss := ss0

	// s0 and s1 are equal with b if the corresponding block is missing
	// (2nd, 3rd and 4th case in the figure).

	for _, v := range ss.Values {
		if v.Op == OpPhi && v.Uses > 0 && v.Args[i0] != v.Args[i1] {
			return false
		}
	}

	// We do not need to redirect the Preds of s0 and s1 to ss,
	// the following optimization will do this.
	b.removeEdge(0)
	if s0 != b && len(s0.Preds) == 0 {
		s0.removeEdge(0)
		// Move any (dead) values in s0 to b,
		// where they will be eliminated by the next deadcode pass.
		for _, v := range s0.Values {
			v.Block = b
		}
		b.Values = append(b.Values, s0.Values...)
		// Clear s0.
		s0.Kind = BlockInvalid
		s0.Values = nil
		s0.Succs = nil
		s0.Preds = nil
	}

	b.Kind = BlockPlain
	b.Likely = BranchUnknown
	b.ResetControls()
	// The values in b may be dead codes, and clearing them in time may
	// obtain new optimization opportunities.
	// First put dead values that can be deleted into a slice walkValues.
	// Then put their arguments in walkValues before resetting the dead values
	// in walkValues, because the arguments may also become dead values.
	walkValues := []*Value{}
	for _, v := range b.Values {
		if v.Uses == 0 && v.removeable() {
			walkValues = append(walkValues, v)
		}
	}
	for len(walkValues) != 0 {
		v := walkValues[len(walkValues)-1]
		walkValues = walkValues[:len(walkValues)-1]
		if v.Uses == 0 && v.removeable() {
			walkValues = append(walkValues, v.Args...)
			v.reset(OpInvalid)
		}
	}
	return true
}

// isEmpty reports whether b contains any live values.
// There may be false positives.
func isEmpty(b *Block) bool {
	for _, v := range b.Values {
		if v.Uses > 0 || v.Op.IsCall() || v.Op.HasSideEffects() || v.Type.IsVoid() {
			return false
		}
	}
	return true
}

func fuseBlockPlain(b *Block) bool {
	if b.Kind != BlockPlain {
		return false
	}

	c := b.Succs[0].b
	if len(c.Preds) != 1 {
		return false
	}

	// If a block happened to end in a statement marker,
	// try to preserve it.
	if b.Pos.IsStmt() == src.PosIsStmt {
		l := b.Pos.Line()
		for _, v := range c.Values {
			if v.Pos.IsStmt() == src.PosNotStmt {
				continue
			}
			if l == v.Pos.Line() {
				v.Pos = v.Pos.WithIsStmt()
				l = 0
				break
			}
		}
		if l != 0 && c.Pos.Line() == l {
			c.Pos = c.Pos.WithIsStmt()
		}
	}

	// move all of b's values to c.
	for _, v := range b.Values {
		v.Block = c
	}
	// Use whichever value slice is larger, in the hopes of avoiding growth.
	// However, take care to avoid c.Values pointing to b.valstorage.
	// See golang.org/issue/18602.
	// It's important to keep the elements in the same order; maintenance of
	// debugging information depends on the order of *Values in Blocks.
	// This can also cause changes in the order (which may affect other
	// optimizations and possibly compiler output) for 32-vs-64 bit compilation
	// platforms (word size affects allocation bucket size affects slice capacity).
	if cap(c.Values) >= cap(b.Values) || len(b.Values) <= len(b.valstorage) {
		bl := len(b.Values)
		cl := len(c.Values)
		var t []*Value // construct t = b.Values followed-by c.Values, but with attention to allocation.
		if cap(c.Values) < bl+cl {
			// reallocate
			t = make([]*Value, bl+cl)
		} else {
			// in place.
			t = c.Values[0 : bl+cl]
		}
		copy(t[bl:], c.Values) // possibly in-place
		c.Values = t
		copy(c.Values, b.Values)
	} else {
		c.Values = append(b.Values, c.Values...)
	}

	// replace b->c edge with preds(b) -> c
	c.predstorage[0] = Edge{}
	if len(b.Preds) > len(b.predstorage) {
		c.Preds = b.Preds
	} else {
		c.Preds = append(c.predstorage[:0], b.Preds...)
	}
	for i, e := range c.Preds {
		p := e.b
		p.Succs[e.i] = Edge{c, i}
	}
	f := b.Func
	if f.Entry == b {
		f.Entry = c
	}

	// trash b, just in case
	b.Kind = BlockInvalid
	b.Values = nil
	b.Preds = nil
	b.Succs = nil
	return true
}