aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ssa/expand_calls.go
blob: e06ed882f0acbd3f30be05ec42b58cc17a1161f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"cmd/compile/internal/types"
	"cmd/internal/src"
	"fmt"
	"sort"
)

type selKey struct {
	from   *Value
	offset int64
	size   int64
	typ    *types.Type
}

type offsetKey struct {
	from   *Value
	offset int64
	pt     *types.Type
}

// expandCalls converts LE (Late Expansion) calls that act like they receive value args into a lower-level form
// that is more oriented to a platform's ABI.  The SelectN operations that extract results are rewritten into
// more appropriate forms, and any StructMake or ArrayMake inputs are decomposed until non-struct values are
// reached.  On the callee side, OpArg nodes are not decomposed until this phase is run.
// TODO results should not be lowered until this phase.
func expandCalls(f *Func) {
	// Calls that need lowering have some number of inputs, including a memory input,
	// and produce a tuple of (value1, value2, ..., mem) where valueK may or may not be SSA-able.

	// With the current ABI those inputs need to be converted into stores to memory,
	// rethreading the call's memory input to the first, and the new call now receiving the last.

	// With the current ABI, the outputs need to be converted to loads, which will all use the call's
	// memory output as their input.
	if !LateCallExpansionEnabledWithin(f) {
		return
	}
	debug := f.pass.debug > 0

	if debug {
		fmt.Printf("\nexpandsCalls(%s)\n", f.Name)
	}

	canSSAType := f.fe.CanSSA
	regSize := f.Config.RegSize
	sp, _ := f.spSb()
	typ := &f.Config.Types
	ptrSize := f.Config.PtrSize

	// For 32-bit, need to deal with decomposition of 64-bit integers, which depends on endianness.
	var hiOffset, lowOffset int64
	if f.Config.BigEndian {
		lowOffset = 4
	} else {
		hiOffset = 4
	}

	namedSelects := make(map[*Value][]namedVal)

	sdom := f.Sdom()

	common := make(map[selKey]*Value)

	// intPairTypes returns the pair of 32-bit int types needed to encode a 64-bit integer type on a target
	// that has no 64-bit integer registers.
	intPairTypes := func(et types.EType) (tHi, tLo *types.Type) {
		tHi = typ.UInt32
		if et == types.TINT64 {
			tHi = typ.Int32
		}
		tLo = typ.UInt32
		return
	}

	// isAlreadyExpandedAggregateType returns whether a type is an SSA-able "aggregate" (multiple register) type
	// that was expanded in an earlier phase (currently, expand_calls is intended to run after decomposeBuiltin,
	// so this is all aggregate types -- small struct and array, complex, interface, string, slice, and 64-bit
	// integer on 32-bit).
	isAlreadyExpandedAggregateType := func(t *types.Type) bool {
		if !canSSAType(t) {
			return false
		}
		return t.IsStruct() || t.IsArray() || t.IsComplex() || t.IsInterface() || t.IsString() || t.IsSlice() ||
			t.Size() > regSize && t.IsInteger()
	}

	offsets := make(map[offsetKey]*Value)

	// offsetFrom creates an offset from a pointer, simplifying chained offsets and offsets from SP
	// TODO should also optimize offsets from SB?
	offsetFrom := func(from *Value, offset int64, pt *types.Type) *Value {
		if offset == 0 && from.Type == pt { // this is not actually likely
			return from
		}
		// Simplify, canonicalize
		for from.Op == OpOffPtr {
			offset += from.AuxInt
			from = from.Args[0]
		}
		if from == sp {
			return f.ConstOffPtrSP(pt, offset, sp)
		}
		key := offsetKey{from, offset, pt}
		v := offsets[key]
		if v != nil {
			return v
		}
		v = from.Block.NewValue1I(from.Pos.WithNotStmt(), OpOffPtr, pt, offset, from)
		offsets[key] = v
		return v
	}

	// splitSlots splits one "field" (specified by sfx, offset, and ty) out of the LocalSlots in ls and returns the new LocalSlots this generates.
	splitSlots := func(ls []LocalSlot, sfx string, offset int64, ty *types.Type) []LocalSlot {
		var locs []LocalSlot
		for i := range ls {
			locs = append(locs, f.fe.SplitSlot(&ls[i], sfx, offset, ty))
		}
		return locs
	}

	// removeTrivialWrapperTypes unwraps layers of
	// struct { singleField SomeType } and [1]SomeType
	// until a non-wrapper type is reached.  This is useful
	// for working with assignments to/from interface data
	// fields (either second operand to OpIMake or OpIData)
	// where the wrapping or type conversion can be elided
	// because of type conversions/assertions in source code
	// that do not appear in SSA.
	removeTrivialWrapperTypes := func(t *types.Type) *types.Type {
		for {
			if t.IsStruct() && t.NumFields() == 1 {
				t = t.Field(0).Type
				continue
			}
			if t.IsArray() && t.NumElem() == 1 {
				t = t.Elem()
				continue
			}
			break
		}
		return t
	}

	// Calls that need lowering have some number of inputs, including a memory input,
	// and produce a tuple of (value1, value2, ..., mem) where valueK may or may not be SSA-able.

	// With the current ABI those inputs need to be converted into stores to memory,
	// rethreading the call's memory input to the first, and the new call now receiving the last.

	// With the current ABI, the outputs need to be converted to loads, which will all use the call's
	// memory output as their input.

	// rewriteSelect recursively walks from leaf selector to a root (OpSelectN, OpLoad, OpArg)
	// through a chain of Struct/Array/builtin Select operations.  If the chain of selectors does not
	// end in an expected root, it does nothing (this can happen depending on compiler phase ordering).
	// The "leaf" provides the type, the root supplies the container, and the leaf-to-root path
	// accumulates the offset.
	// It emits the code necessary to implement the leaf select operation that leads to the root.
	//
	// TODO when registers really arrive, must also decompose anything split across two registers or registers and memory.
	var rewriteSelect func(leaf *Value, selector *Value, offset int64) []LocalSlot
	rewriteSelect = func(leaf *Value, selector *Value, offset int64) []LocalSlot {
		if debug {
			fmt.Printf("rewriteSelect(%s, %s, %d)\n", leaf.LongString(), selector.LongString(), offset)
		}
		var locs []LocalSlot
		leafType := leaf.Type
		if len(selector.Args) > 0 {
			w := selector.Args[0]
			if w.Op == OpCopy {
				for w.Op == OpCopy {
					w = w.Args[0]
				}
				selector.SetArg(0, w)
			}
		}
		switch selector.Op {
		case OpArg:
			if !isAlreadyExpandedAggregateType(selector.Type) {
				if leafType == selector.Type { // OpIData leads us here, sometimes.
					leaf.copyOf(selector)
				} else {
					f.Fatalf("Unexpected OpArg type, selector=%s, leaf=%s\n", selector.LongString(), leaf.LongString())
				}
				if debug {
					fmt.Printf("\tOpArg, break\n")
				}
				break
			}
			switch leaf.Op {
			case OpIData, OpStructSelect, OpArraySelect:
				leafType = removeTrivialWrapperTypes(leaf.Type)
			}
			aux := selector.Aux
			auxInt := selector.AuxInt + offset
			if leaf.Block == selector.Block {
				leaf.reset(OpArg)
				leaf.Aux = aux
				leaf.AuxInt = auxInt
				leaf.Type = leafType
			} else {
				w := selector.Block.NewValue0IA(leaf.Pos, OpArg, leafType, auxInt, aux)
				leaf.copyOf(w)
				if debug {
					fmt.Printf("\tnew %s\n", w.LongString())
				}
			}
			for _, s := range namedSelects[selector] {
				locs = append(locs, f.Names[s.locIndex])
			}

		case OpLoad: // We end up here because of IData of immediate structures.
			// Failure case:
			// (note the failure case is very rare; w/o this case, make.bash and run.bash both pass, as well as
			// the hard cases of building {syscall,math,math/cmplx,math/bits,go/constant} on ppc64le and mips-softfloat).
			//
			// GOSSAFUNC='(*dumper).dump' go build -gcflags=-l -tags=math_big_pure_go cmd/compile/internal/gc
			// cmd/compile/internal/gc/dump.go:136:14: internal compiler error: '(*dumper).dump': not lowered: v827, StructSelect PTR PTR
			// b2: ← b1
			// v20 (+142) = StaticLECall <interface {},mem> {AuxCall{reflect.Value.Interface([reflect.Value,0])[interface {},24]}} [40] v8 v1
			// v21 (142) = SelectN <mem> [1] v20
			// v22 (142) = SelectN <interface {}> [0] v20
			// b15: ← b8
			// v71 (+143) = IData <Nodes> v22 (v[Nodes])
			// v73 (+146) = StaticLECall <[]*Node,mem> {AuxCall{"".Nodes.Slice([Nodes,0])[[]*Node,8]}} [32] v71 v21
			//
			// translates (w/o the "case OpLoad:" above) to:
			//
			// b2: ← b1
			// v20 (+142) = StaticCall <mem> {AuxCall{reflect.Value.Interface([reflect.Value,0])[interface {},24]}} [40] v715
			// v23 (142) = Load <*uintptr> v19 v20
			// v823 (142) = IsNonNil <bool> v23
			// v67 (+143) = Load <*[]*Node> v880 v20
			// b15: ← b8
			// v827 (146) = StructSelect <*[]*Node> [0] v67
			// v846 (146) = Store <mem> {*[]*Node} v769 v827 v20
			// v73 (+146) = StaticCall <mem> {AuxCall{"".Nodes.Slice([Nodes,0])[[]*Node,8]}} [32] v846
			// i.e., the struct select is generated and remains in because it is not applied to an actual structure.
			// The OpLoad was created to load the single field of the IData
			// This case removes that StructSelect.
			if leafType != selector.Type {
				f.Fatalf("Unexpected Load as selector, leaf=%s, selector=%s\n", leaf.LongString(), selector.LongString())
			}
			leaf.copyOf(selector)
			for _, s := range namedSelects[selector] {
				locs = append(locs, f.Names[s.locIndex])
			}

		case OpSelectN:
			// TODO these may be duplicated. Should memoize. Intermediate selectors will go dead, no worries there.
			call := selector.Args[0]
			aux := call.Aux.(*AuxCall)
			which := selector.AuxInt
			if which == aux.NResults() { // mem is after the results.
				// rewrite v as a Copy of call -- the replacement call will produce a mem.
				leaf.copyOf(call)
			} else {
				leafType := removeTrivialWrapperTypes(leaf.Type)
				if canSSAType(leafType) {
					pt := types.NewPtr(leafType)
					off := offsetFrom(sp, offset+aux.OffsetOfResult(which), pt)
					// Any selection right out of the arg area/registers has to be same Block as call, use call as mem input.
					if leaf.Block == call.Block {
						leaf.reset(OpLoad)
						leaf.SetArgs2(off, call)
						leaf.Type = leafType
					} else {
						w := call.Block.NewValue2(leaf.Pos, OpLoad, leafType, off, call)
						leaf.copyOf(w)
						if debug {
							fmt.Printf("\tnew %s\n", w.LongString())
						}
					}
					for _, s := range namedSelects[selector] {
						locs = append(locs, f.Names[s.locIndex])
					}
				} else {
					f.Fatalf("Should not have non-SSA-able OpSelectN, selector=%s", selector.LongString())
				}
			}

		case OpStructSelect:
			w := selector.Args[0]
			var ls []LocalSlot
			if w.Type.Etype != types.TSTRUCT { // IData artifact
				ls = rewriteSelect(leaf, w, offset)
			} else {
				ls = rewriteSelect(leaf, w, offset+w.Type.FieldOff(int(selector.AuxInt)))
				if w.Op != OpIData {
					for _, l := range ls {
						locs = append(locs, f.fe.SplitStruct(l, int(selector.AuxInt)))
					}
				}
			}

		case OpArraySelect:
			w := selector.Args[0]
			rewriteSelect(leaf, w, offset+selector.Type.Size()*selector.AuxInt)

		case OpInt64Hi:
			w := selector.Args[0]
			ls := rewriteSelect(leaf, w, offset+hiOffset)
			locs = splitSlots(ls, ".hi", hiOffset, leafType)

		case OpInt64Lo:
			w := selector.Args[0]
			ls := rewriteSelect(leaf, w, offset+lowOffset)
			locs = splitSlots(ls, ".lo", lowOffset, leafType)

		case OpStringPtr:
			ls := rewriteSelect(leaf, selector.Args[0], offset)
			locs = splitSlots(ls, ".ptr", 0, typ.BytePtr)

		case OpSlicePtr:
			w := selector.Args[0]
			ls := rewriteSelect(leaf, w, offset)
			locs = splitSlots(ls, ".ptr", 0, types.NewPtr(w.Type.Elem()))

		case OpITab:
			w := selector.Args[0]
			ls := rewriteSelect(leaf, w, offset)
			sfx := ".itab"
			if w.Type.IsEmptyInterface() {
				sfx = ".type"
			}
			locs = splitSlots(ls, sfx, 0, typ.Uintptr)

		case OpComplexReal:
			ls := rewriteSelect(leaf, selector.Args[0], offset)
			locs = splitSlots(ls, ".real", 0, leafType)

		case OpComplexImag:
			ls := rewriteSelect(leaf, selector.Args[0], offset+leafType.Width) // result is FloatNN, width of result is offset of imaginary part.
			locs = splitSlots(ls, ".imag", leafType.Width, leafType)

		case OpStringLen, OpSliceLen:
			ls := rewriteSelect(leaf, selector.Args[0], offset+ptrSize)
			locs = splitSlots(ls, ".len", ptrSize, leafType)

		case OpIData:
			ls := rewriteSelect(leaf, selector.Args[0], offset+ptrSize)
			locs = splitSlots(ls, ".data", ptrSize, leafType)

		case OpSliceCap:
			ls := rewriteSelect(leaf, selector.Args[0], offset+2*ptrSize)
			locs = splitSlots(ls, ".cap", 2*ptrSize, leafType)

		case OpCopy: // If it's an intermediate result, recurse
			locs = rewriteSelect(leaf, selector.Args[0], offset)
			for _, s := range namedSelects[selector] {
				// this copy may have had its own name, preserve that, too.
				locs = append(locs, f.Names[s.locIndex])
			}

		default:
			// Ignore dead ends. These can occur if this phase is run before decompose builtin (which is not intended, but allowed).
		}

		return locs
	}

	// storeArgOrLoad converts stores of SSA-able aggregate arguments (passed to a call) into a series of primitive-typed
	// stores of non-aggregate types.  It recursively walks up a chain of selectors until it reaches a Load or an Arg.
	// If it does not reach a Load or an Arg, nothing happens; this allows a little freedom in phase ordering.
	var storeArgOrLoad func(pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offset int64) *Value

	// decomposeArgOrLoad is a helper for storeArgOrLoad.
	// It decomposes a Load or an Arg into smaller parts, parameterized by the decomposeOne and decomposeTwo functions
	// passed to it, and returns the new mem. If the type does not match one of the expected aggregate types, it returns nil instead.
	decomposeArgOrLoad := func(pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offset int64,
		decomposeOne func(pos src.XPos, b *Block, base, source, mem *Value, t1 *types.Type, offArg, offStore int64) *Value,
		decomposeTwo func(pos src.XPos, b *Block, base, source, mem *Value, t1, t2 *types.Type, offArg, offStore int64) *Value) *Value {
		u := source.Type
		switch u.Etype {
		case types.TARRAY:
			elem := u.Elem()
			for i := int64(0); i < u.NumElem(); i++ {
				elemOff := i * elem.Size()
				mem = decomposeOne(pos, b, base, source, mem, elem, source.AuxInt+elemOff, offset+elemOff)
				pos = pos.WithNotStmt()
			}
			return mem
		case types.TSTRUCT:
			for i := 0; i < u.NumFields(); i++ {
				fld := u.Field(i)
				mem = decomposeOne(pos, b, base, source, mem, fld.Type, source.AuxInt+fld.Offset, offset+fld.Offset)
				pos = pos.WithNotStmt()
			}
			return mem
		case types.TINT64, types.TUINT64:
			if t.Width == regSize {
				break
			}
			tHi, tLo := intPairTypes(t.Etype)
			mem = decomposeOne(pos, b, base, source, mem, tHi, source.AuxInt+hiOffset, offset+hiOffset)
			pos = pos.WithNotStmt()
			return decomposeOne(pos, b, base, source, mem, tLo, source.AuxInt+lowOffset, offset+lowOffset)
		case types.TINTER:
			return decomposeTwo(pos, b, base, source, mem, typ.Uintptr, typ.BytePtr, source.AuxInt, offset)
		case types.TSTRING:
			return decomposeTwo(pos, b, base, source, mem, typ.BytePtr, typ.Int, source.AuxInt, offset)
		case types.TCOMPLEX64:
			return decomposeTwo(pos, b, base, source, mem, typ.Float32, typ.Float32, source.AuxInt, offset)
		case types.TCOMPLEX128:
			return decomposeTwo(pos, b, base, source, mem, typ.Float64, typ.Float64, source.AuxInt, offset)
		case types.TSLICE:
			mem = decomposeTwo(pos, b, base, source, mem, typ.BytePtr, typ.Int, source.AuxInt, offset)
			return decomposeOne(pos, b, base, source, mem, typ.Int, source.AuxInt+2*ptrSize, offset+2*ptrSize)
		}
		return nil
	}

	// storeOneArg creates a decomposed (one step) arg that is then stored.
	// pos and b locate the store instruction, base is the base of the store target, source is the "base" of the value input,
	// mem is the input mem, t is the type in question, and offArg and offStore are the offsets from the respective bases.
	storeOneArg := func(pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offArg, offStore int64) *Value {
		w := common[selKey{source, offArg, t.Width, t}]
		if w == nil {
			w = source.Block.NewValue0IA(source.Pos, OpArg, t, offArg, source.Aux)
			common[selKey{source, offArg, t.Width, t}] = w
		}
		return storeArgOrLoad(pos, b, base, w, mem, t, offStore)
	}

	// storeOneLoad creates a decomposed (one step) load that is then stored.
	storeOneLoad := func(pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offArg, offStore int64) *Value {
		from := offsetFrom(source.Args[0], offArg, types.NewPtr(t))
		w := source.Block.NewValue2(source.Pos, OpLoad, t, from, mem)
		return storeArgOrLoad(pos, b, base, w, mem, t, offStore)
	}

	storeTwoArg := func(pos src.XPos, b *Block, base, source, mem *Value, t1, t2 *types.Type, offArg, offStore int64) *Value {
		mem = storeOneArg(pos, b, base, source, mem, t1, offArg, offStore)
		pos = pos.WithNotStmt()
		t1Size := t1.Size()
		return storeOneArg(pos, b, base, source, mem, t2, offArg+t1Size, offStore+t1Size)
	}

	storeTwoLoad := func(pos src.XPos, b *Block, base, source, mem *Value, t1, t2 *types.Type, offArg, offStore int64) *Value {
		mem = storeOneLoad(pos, b, base, source, mem, t1, offArg, offStore)
		pos = pos.WithNotStmt()
		t1Size := t1.Size()
		return storeOneLoad(pos, b, base, source, mem, t2, offArg+t1Size, offStore+t1Size)
	}

	storeArgOrLoad = func(pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offset int64) *Value {
		if debug {
			fmt.Printf("\tstoreArgOrLoad(%s;  %s;  %s;  %s; %d)\n", base.LongString(), source.LongString(), mem.String(), t.String(), offset)
		}

		switch source.Op {
		case OpCopy:
			return storeArgOrLoad(pos, b, base, source.Args[0], mem, t, offset)

		case OpLoad:
			ret := decomposeArgOrLoad(pos, b, base, source, mem, t, offset, storeOneLoad, storeTwoLoad)
			if ret != nil {
				return ret
			}

		case OpArg:
			ret := decomposeArgOrLoad(pos, b, base, source, mem, t, offset, storeOneArg, storeTwoArg)
			if ret != nil {
				return ret
			}

		case OpArrayMake0, OpStructMake0:
			return mem

		case OpStructMake1, OpStructMake2, OpStructMake3, OpStructMake4:
			for i := 0; i < t.NumFields(); i++ {
				fld := t.Field(i)
				mem = storeArgOrLoad(pos, b, base, source.Args[i], mem, fld.Type, offset+fld.Offset)
				pos = pos.WithNotStmt()
			}
			return mem

		case OpArrayMake1:
			return storeArgOrLoad(pos, b, base, source.Args[0], mem, t.Elem(), offset)

		case OpInt64Make:
			tHi, tLo := intPairTypes(t.Etype)
			mem = storeArgOrLoad(pos, b, base, source.Args[0], mem, tHi, offset+hiOffset)
			pos = pos.WithNotStmt()
			return storeArgOrLoad(pos, b, base, source.Args[1], mem, tLo, offset+lowOffset)

		case OpComplexMake:
			tPart := typ.Float32
			wPart := t.Width / 2
			if wPart == 8 {
				tPart = typ.Float64
			}
			mem = storeArgOrLoad(pos, b, base, source.Args[0], mem, tPart, offset)
			pos = pos.WithNotStmt()
			return storeArgOrLoad(pos, b, base, source.Args[1], mem, tPart, offset+wPart)

		case OpIMake:
			mem = storeArgOrLoad(pos, b, base, source.Args[0], mem, typ.Uintptr, offset)
			pos = pos.WithNotStmt()
			return storeArgOrLoad(pos, b, base, source.Args[1], mem, typ.BytePtr, offset+ptrSize)

		case OpStringMake:
			mem = storeArgOrLoad(pos, b, base, source.Args[0], mem, typ.BytePtr, offset)
			pos = pos.WithNotStmt()
			return storeArgOrLoad(pos, b, base, source.Args[1], mem, typ.Int, offset+ptrSize)

		case OpSliceMake:
			mem = storeArgOrLoad(pos, b, base, source.Args[0], mem, typ.BytePtr, offset)
			pos = pos.WithNotStmt()
			mem = storeArgOrLoad(pos, b, base, source.Args[1], mem, typ.Int, offset+ptrSize)
			return storeArgOrLoad(pos, b, base, source.Args[2], mem, typ.Int, offset+2*ptrSize)
		}

		// For nodes that cannot be taken apart -- OpSelectN, other structure selectors.
		switch t.Etype {
		case types.TARRAY:
			elt := t.Elem()
			if source.Type != t && t.NumElem() == 1 && elt.Width == t.Width && t.Width == regSize {
				t = removeTrivialWrapperTypes(t)
				// it could be a leaf type, but the "leaf" could be complex64 (for example)
				return storeArgOrLoad(pos, b, base, source, mem, t, offset)
			}
			source.Type = t
			for i := int64(0); i < t.NumElem(); i++ {
				sel := source.Block.NewValue1I(pos, OpArraySelect, elt, i, source)
				mem = storeArgOrLoad(pos, b, base, sel, mem, elt, offset+i*elt.Width)
				pos = pos.WithNotStmt()
			}
			return mem

		case types.TSTRUCT:
			if source.Type != t && t.NumFields() == 1 && t.Field(0).Type.Width == t.Width && t.Width == regSize {
				// This peculiar test deals with accesses to immediate interface data.
				// It works okay because everything is the same size.
				// Example code that triggers this can be found in go/constant/value.go, function ToComplex
				// v119 (+881) = IData <intVal> v6
				// v121 (+882) = StaticLECall <floatVal,mem> {AuxCall{"".itof([intVal,0])[floatVal,8]}} [16] v119 v1
				// This corresponds to the generic rewrite rule "(StructSelect [0] (IData x)) => (IData x)"
				// Guard against "struct{struct{*foo}}"
				// Other rewriting phases create minor glitches when they transform IData, for instance the
				// interface-typed Arg "x" of ToFloat in go/constant/value.go
				//   v6 (858) = Arg <Value> {x} (x[Value], x[Value])
				// is rewritten by decomposeArgs into
				//   v141 (858) = Arg <uintptr> {x}
				//   v139 (858) = Arg <*uint8> {x} [8]
				// because of a type case clause on line 862 of go/constant/value.go
				//  	case intVal:
				//		   return itof(x)
				// v139 is later stored as an intVal == struct{val *big.Int} which naively requires the fields of
				// of a *uint8, which does not succeed.
				t = removeTrivialWrapperTypes(t)
				// it could be a leaf type, but the "leaf" could be complex64 (for example)
				return storeArgOrLoad(pos, b, base, source, mem, t, offset)
			}

			source.Type = t
			for i := 0; i < t.NumFields(); i++ {
				fld := t.Field(i)
				sel := source.Block.NewValue1I(pos, OpStructSelect, fld.Type, int64(i), source)
				mem = storeArgOrLoad(pos, b, base, sel, mem, fld.Type, offset+fld.Offset)
				pos = pos.WithNotStmt()
			}
			return mem

		case types.TINT64, types.TUINT64:
			if t.Width == regSize {
				break
			}
			tHi, tLo := intPairTypes(t.Etype)
			sel := source.Block.NewValue1(pos, OpInt64Hi, tHi, source)
			mem = storeArgOrLoad(pos, b, base, sel, mem, tHi, offset+hiOffset)
			pos = pos.WithNotStmt()
			sel = source.Block.NewValue1(pos, OpInt64Lo, tLo, source)
			return storeArgOrLoad(pos, b, base, sel, mem, tLo, offset+lowOffset)

		case types.TINTER:
			sel := source.Block.NewValue1(pos, OpITab, typ.BytePtr, source)
			mem = storeArgOrLoad(pos, b, base, sel, mem, typ.BytePtr, offset)
			pos = pos.WithNotStmt()
			sel = source.Block.NewValue1(pos, OpIData, typ.BytePtr, source)
			return storeArgOrLoad(pos, b, base, sel, mem, typ.BytePtr, offset+ptrSize)

		case types.TSTRING:
			sel := source.Block.NewValue1(pos, OpStringPtr, typ.BytePtr, source)
			mem = storeArgOrLoad(pos, b, base, sel, mem, typ.BytePtr, offset)
			pos = pos.WithNotStmt()
			sel = source.Block.NewValue1(pos, OpStringLen, typ.Int, source)
			return storeArgOrLoad(pos, b, base, sel, mem, typ.Int, offset+ptrSize)

		case types.TSLICE:
			et := types.NewPtr(t.Elem())
			sel := source.Block.NewValue1(pos, OpSlicePtr, et, source)
			mem = storeArgOrLoad(pos, b, base, sel, mem, et, offset)
			pos = pos.WithNotStmt()
			sel = source.Block.NewValue1(pos, OpSliceLen, typ.Int, source)
			mem = storeArgOrLoad(pos, b, base, sel, mem, typ.Int, offset+ptrSize)
			sel = source.Block.NewValue1(pos, OpSliceCap, typ.Int, source)
			return storeArgOrLoad(pos, b, base, sel, mem, typ.Int, offset+2*ptrSize)

		case types.TCOMPLEX64:
			sel := source.Block.NewValue1(pos, OpComplexReal, typ.Float32, source)
			mem = storeArgOrLoad(pos, b, base, sel, mem, typ.Float32, offset)
			pos = pos.WithNotStmt()
			sel = source.Block.NewValue1(pos, OpComplexImag, typ.Float32, source)
			return storeArgOrLoad(pos, b, base, sel, mem, typ.Float32, offset+4)

		case types.TCOMPLEX128:
			sel := source.Block.NewValue1(pos, OpComplexReal, typ.Float64, source)
			mem = storeArgOrLoad(pos, b, base, sel, mem, typ.Float64, offset)
			pos = pos.WithNotStmt()
			sel = source.Block.NewValue1(pos, OpComplexImag, typ.Float64, source)
			return storeArgOrLoad(pos, b, base, sel, mem, typ.Float64, offset+8)
		}

		dst := offsetFrom(base, offset, types.NewPtr(t))
		x := b.NewValue3A(pos, OpStore, types.TypeMem, t, dst, source, mem)
		if debug {
			fmt.Printf("\t\tstoreArg returns %s\n", x.LongString())
		}
		return x
	}

	// rewriteArgs removes all the Args from a call and converts the call args into appropriate
	// stores (or later, register movement).  Extra args for interface and closure calls are ignored,
	// but removed.
	rewriteArgs := func(v *Value, firstArg int) *Value {
		// Thread the stores on the memory arg
		aux := v.Aux.(*AuxCall)
		pos := v.Pos.WithNotStmt()
		m0 := v.Args[len(v.Args)-1]
		mem := m0
		for i, a := range v.Args {
			if i < firstArg {
				continue
			}
			if a == m0 { // mem is last.
				break
			}
			auxI := int64(i - firstArg)
			if a.Op == OpDereference {
				if a.MemoryArg() != m0 {
					f.Fatalf("Op...LECall and OpDereference have mismatched mem, %s and %s", v.LongString(), a.LongString())
				}
				// "Dereference" of addressed (probably not-SSA-eligible) value becomes Move
				// TODO this will be more complicated with registers in the picture.
				source := a.Args[0]
				dst := f.ConstOffPtrSP(source.Type, aux.OffsetOfArg(auxI), sp)
				if a.Uses == 1 && a.Block == v.Block {
					a.reset(OpMove)
					a.Pos = pos
					a.Type = types.TypeMem
					a.Aux = aux.TypeOfArg(auxI)
					a.AuxInt = aux.SizeOfArg(auxI)
					a.SetArgs3(dst, source, mem)
					mem = a
				} else {
					mem = v.Block.NewValue3A(pos, OpMove, types.TypeMem, aux.TypeOfArg(auxI), dst, source, mem)
					mem.AuxInt = aux.SizeOfArg(auxI)
				}
			} else {
				if debug {
					fmt.Printf("storeArg %s, %v, %d\n", a.LongString(), aux.TypeOfArg(auxI), aux.OffsetOfArg(auxI))
				}
				mem = storeArgOrLoad(pos, v.Block, sp, a, mem, aux.TypeOfArg(auxI), aux.OffsetOfArg(auxI))
			}
		}
		v.resetArgs()
		return mem
	}

	// TODO if too slow, whole program iteration can be replaced w/ slices of appropriate values, accumulated in first loop here.

	// Step 0: rewrite the calls to convert incoming args to stores.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			switch v.Op {
			case OpStaticLECall:
				mem := rewriteArgs(v, 0)
				v.SetArgs1(mem)
			case OpClosureLECall:
				code := v.Args[0]
				context := v.Args[1]
				mem := rewriteArgs(v, 2)
				v.SetArgs3(code, context, mem)
			case OpInterLECall:
				code := v.Args[0]
				mem := rewriteArgs(v, 1)
				v.SetArgs2(code, mem)
			}
		}
	}

	for i, name := range f.Names {
		t := name.Type
		if isAlreadyExpandedAggregateType(t) {
			for j, v := range f.NamedValues[name] {
				if v.Op == OpSelectN || v.Op == OpArg && isAlreadyExpandedAggregateType(v.Type) {
					ns := namedSelects[v]
					namedSelects[v] = append(ns, namedVal{locIndex: i, valIndex: j})
				}
			}
		}
	}

	// Step 1: any stores of aggregates remaining are believed to be sourced from call results or args.
	// Decompose those stores into a series of smaller stores, adding selection ops as necessary.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			if v.Op == OpStore {
				t := v.Aux.(*types.Type)
				source := v.Args[1]
				tSrc := source.Type
				iAEATt := isAlreadyExpandedAggregateType(t)

				if !iAEATt {
					// guarding against store immediate struct into interface data field -- store type is *uint8
					// TODO can this happen recursively?
					iAEATt = isAlreadyExpandedAggregateType(tSrc)
					if iAEATt {
						t = tSrc
					}
				}
				if iAEATt {
					if debug {
						fmt.Printf("Splitting store %s\n", v.LongString())
					}
					dst, mem := v.Args[0], v.Args[2]
					mem = storeArgOrLoad(v.Pos, b, dst, source, mem, t, 0)
					v.copyOf(mem)
				}
			}
		}
	}

	val2Preds := make(map[*Value]int32) // Used to accumulate dependency graph of selection operations for topological ordering.

	// Step 2: transform or accumulate selection operations for rewrite in topological order.
	//
	// Aggregate types that have already (in earlier phases) been transformed must be lowered comprehensively to finish
	// the transformation (user-defined structs and arrays, slices, strings, interfaces, complex, 64-bit on 32-bit architectures),
	//
	// Any select-for-addressing applied to call results can be transformed directly.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			// Accumulate chains of selectors for processing in topological order
			switch v.Op {
			case OpStructSelect, OpArraySelect,
				OpIData, OpITab,
				OpStringPtr, OpStringLen,
				OpSlicePtr, OpSliceLen, OpSliceCap,
				OpComplexReal, OpComplexImag,
				OpInt64Hi, OpInt64Lo:
				w := v.Args[0]
				switch w.Op {
				case OpStructSelect, OpArraySelect, OpSelectN, OpArg:
					val2Preds[w] += 1
					if debug {
						fmt.Printf("v2p[%s] = %d\n", w.LongString(), val2Preds[w])
					}
				}
				fallthrough

			case OpSelectN:
				if _, ok := val2Preds[v]; !ok {
					val2Preds[v] = 0
					if debug {
						fmt.Printf("v2p[%s] = %d\n", v.LongString(), val2Preds[v])
					}
				}

			case OpArg:
				if !isAlreadyExpandedAggregateType(v.Type) {
					continue
				}
				if _, ok := val2Preds[v]; !ok {
					val2Preds[v] = 0
					if debug {
						fmt.Printf("v2p[%s] = %d\n", v.LongString(), val2Preds[v])
					}
				}

			case OpSelectNAddr:
				// Do these directly, there are no chains of selectors.
				call := v.Args[0]
				which := v.AuxInt
				aux := call.Aux.(*AuxCall)
				pt := v.Type
				off := offsetFrom(sp, aux.OffsetOfResult(which), pt)
				v.copyOf(off)
			}
		}
	}

	// Step 3: Compute topological order of selectors,
	// then process it in reverse to eliminate duplicates,
	// then forwards to rewrite selectors.
	//
	// All chains of selectors end up in same block as the call.

	// Compilation must be deterministic, so sort after extracting first zeroes from map.
	// Sorting allows dominators-last order within each batch,
	// so that the backwards scan for duplicates will most often find copies from dominating blocks (it is best-effort).
	var toProcess []*Value
	less := func(i, j int) bool {
		vi, vj := toProcess[i], toProcess[j]
		bi, bj := vi.Block, vj.Block
		if bi == bj {
			return vi.ID < vj.ID
		}
		return sdom.domorder(bi) > sdom.domorder(bj) // reverse the order to put dominators last.
	}

	// Accumulate order in allOrdered
	var allOrdered []*Value
	for v, n := range val2Preds {
		if n == 0 {
			allOrdered = append(allOrdered, v)
		}
	}
	last := 0 // allOrdered[0:last] has been top-sorted and processed
	for len(val2Preds) > 0 {
		toProcess = allOrdered[last:]
		last = len(allOrdered)
		sort.SliceStable(toProcess, less)
		for _, v := range toProcess {
			delete(val2Preds, v)
			if v.Op == OpArg {
				continue // no Args[0], hence done.
			}
			w := v.Args[0]
			n, ok := val2Preds[w]
			if !ok {
				continue
			}
			if n == 1 {
				allOrdered = append(allOrdered, w)
				delete(val2Preds, w)
				continue
			}
			val2Preds[w] = n - 1
		}
	}

	common = make(map[selKey]*Value)
	// Rewrite duplicate selectors as copies where possible.
	for i := len(allOrdered) - 1; i >= 0; i-- {
		v := allOrdered[i]
		if v.Op == OpArg {
			continue
		}
		w := v.Args[0]
		if w.Op == OpCopy {
			for w.Op == OpCopy {
				w = w.Args[0]
			}
			v.SetArg(0, w)
		}
		typ := v.Type
		if typ.IsMemory() {
			continue // handled elsewhere, not an indexable result
		}
		size := typ.Width
		offset := int64(0)
		switch v.Op {
		case OpStructSelect:
			if w.Type.Etype == types.TSTRUCT {
				offset = w.Type.FieldOff(int(v.AuxInt))
			} else { // Immediate interface data artifact, offset is zero.
				f.Fatalf("Expand calls interface data problem, func %s, v=%s, w=%s\n", f.Name, v.LongString(), w.LongString())
			}
		case OpArraySelect:
			offset = size * v.AuxInt
		case OpSelectN:
			offset = w.Aux.(*AuxCall).OffsetOfResult(v.AuxInt)
		case OpInt64Hi:
			offset = hiOffset
		case OpInt64Lo:
			offset = lowOffset
		case OpStringLen, OpSliceLen, OpIData:
			offset = ptrSize
		case OpSliceCap:
			offset = 2 * ptrSize
		case OpComplexImag:
			offset = size
		}
		sk := selKey{from: w, size: size, offset: offset, typ: typ}
		dupe := common[sk]
		if dupe == nil {
			common[sk] = v
		} else if sdom.IsAncestorEq(dupe.Block, v.Block) {
			v.copyOf(dupe)
		} else {
			// Because values are processed in dominator order, the old common[s] will never dominate after a miss is seen.
			// Installing the new value might match some future values.
			common[sk] = v
		}
	}

	// Indices of entries in f.Names that need to be deleted.
	var toDelete []namedVal

	// Rewrite selectors.
	for i, v := range allOrdered {
		if debug {
			b := v.Block
			fmt.Printf("allOrdered[%d] = b%d, %s, uses=%d\n", i, b.ID, v.LongString(), v.Uses)
		}
		if v.Uses == 0 {
			v.reset(OpInvalid)
			continue
		}
		if v.Op == OpCopy {
			continue
		}
		locs := rewriteSelect(v, v, 0)
		// Install new names.
		if v.Type.IsMemory() {
			continue
		}
		// Leaf types may have debug locations
		if !isAlreadyExpandedAggregateType(v.Type) {
			for _, l := range locs {
				f.NamedValues[l] = append(f.NamedValues[l], v)
			}
			f.Names = append(f.Names, locs...)
			continue
		}
		// Not-leaf types that had debug locations need to lose them.
		if ns, ok := namedSelects[v]; ok {
			toDelete = append(toDelete, ns...)
		}
	}

	deleteNamedVals(f, toDelete)

	// Step 4: rewrite the calls themselves, correcting the type
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			switch v.Op {
			case OpStaticLECall:
				v.Op = OpStaticCall
				v.Type = types.TypeMem
			case OpClosureLECall:
				v.Op = OpClosureCall
				v.Type = types.TypeMem
			case OpInterLECall:
				v.Op = OpInterCall
				v.Type = types.TypeMem
			}
		}
	}

	// Step 5: elide any copies introduced.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			for i, a := range v.Args {
				if a.Op != OpCopy {
					continue
				}
				aa := copySource(a)
				v.SetArg(i, aa)
				for a.Uses == 0 {
					b := a.Args[0]
					a.reset(OpInvalid)
					a = b
				}
			}
		}
	}
}