aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ssa/expand_calls.go
blob: b37d3b8c9c03a400f24b46be3bba51d9fa0fed80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"cmd/compile/internal/abi"
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/types"
	"cmd/internal/src"
	"fmt"
	"sort"
)

type selKey struct {
	from          *Value // what is selected from
	offsetOrIndex int64  // whatever is appropriate for the selector
	size          int64
	typ           *types.Type
}

type Abi1RO uint8 // An offset within a parameter's slice of register indices, for abi1.

func isBlockMultiValueExit(b *Block) bool {
	return (b.Kind == BlockRet || b.Kind == BlockRetJmp) && b.Controls[0] != nil && b.Controls[0].Op == OpMakeResult
}

func badVal(s string, v *Value) error {
	return fmt.Errorf("%s %s", s, v.LongString())
}

// removeTrivialWrapperTypes unwraps layers of
// struct { singleField SomeType } and [1]SomeType
// until a non-wrapper type is reached.  This is useful
// for working with assignments to/from interface data
// fields (either second operand to OpIMake or OpIData)
// where the wrapping or type conversion can be elided
// because of type conversions/assertions in source code
// that do not appear in SSA.
func removeTrivialWrapperTypes(t *types.Type) *types.Type {
	for {
		if t.IsStruct() && t.NumFields() == 1 {
			t = t.Field(0).Type
			continue
		}
		if t.IsArray() && t.NumElem() == 1 {
			t = t.Elem()
			continue
		}
		break
	}
	return t
}

// A registerCursor tracks which register is used for an Arg or regValues, or a piece of such.
type registerCursor struct {
	// TODO(register args) convert this to a generalized target cursor.
	storeDest *Value // if there are no register targets, then this is the base of the store.
	regsLen   int    // the number of registers available for this Arg/result (which is all in registers or not at all)
	nextSlice Abi1RO // the next register/register-slice offset
	config    *abi.ABIConfig
	regValues *[]*Value // values assigned to registers accumulate here
}

func (rc *registerCursor) String() string {
	dest := "<none>"
	if rc.storeDest != nil {
		dest = rc.storeDest.String()
	}
	regs := "<none>"
	if rc.regValues != nil {
		regs = ""
		for i, x := range *rc.regValues {
			if i > 0 {
				regs = regs + "; "
			}
			regs = regs + x.LongString()
		}
	}
	// not printing the config because that has not been useful
	return fmt.Sprintf("RCSR{storeDest=%v, regsLen=%d, nextSlice=%d, regValues=[%s]}", dest, rc.regsLen, rc.nextSlice, regs)
}

// next effectively post-increments the register cursor; the receiver is advanced,
// the old value is returned.
func (c *registerCursor) next(t *types.Type) registerCursor {
	rc := *c
	if int(c.nextSlice) < c.regsLen {
		w := c.config.NumParamRegs(t)
		c.nextSlice += Abi1RO(w)
	}
	return rc
}

// plus returns a register cursor offset from the original, without modifying the original.
func (c *registerCursor) plus(regWidth Abi1RO) registerCursor {
	rc := *c
	rc.nextSlice += regWidth
	return rc
}

const (
	// Register offsets for fields of built-in aggregate types; the ones not listed are zero.
	RO_complex_imag = 1
	RO_string_len   = 1
	RO_slice_len    = 1
	RO_slice_cap    = 2
	RO_iface_data   = 1
)

func (x *expandState) regWidth(t *types.Type) Abi1RO {
	return Abi1RO(x.abi1.NumParamRegs(t))
}

// regOffset returns the register offset of the i'th element of type t
func (x *expandState) regOffset(t *types.Type, i int) Abi1RO {
	// TODO maybe cache this in a map if profiling recommends.
	if i == 0 {
		return 0
	}
	if t.IsArray() {
		return Abi1RO(i) * x.regWidth(t.Elem())
	}
	if t.IsStruct() {
		k := Abi1RO(0)
		for j := 0; j < i; j++ {
			k += x.regWidth(t.FieldType(j))
		}
		return k
	}
	panic("Haven't implemented this case yet, do I need to?")
}

// at returns the register cursor for component i of t, where the first
// component is numbered 0.
func (c *registerCursor) at(t *types.Type, i int) registerCursor {
	rc := *c
	if i == 0 || c.regsLen == 0 {
		return rc
	}
	if t.IsArray() {
		w := c.config.NumParamRegs(t.Elem())
		rc.nextSlice += Abi1RO(i * w)
		return rc
	}
	if t.IsStruct() {
		for j := 0; j < i; j++ {
			rc.next(t.FieldType(j))
		}
		return rc
	}
	panic("Haven't implemented this case yet, do I need to?")
}

func (c *registerCursor) init(regs []abi.RegIndex, info *abi.ABIParamResultInfo, result *[]*Value, storeDest *Value) {
	c.regsLen = len(regs)
	c.nextSlice = 0
	if len(regs) == 0 {
		c.storeDest = storeDest // only save this if there are no registers, will explode if misused.
		return
	}
	c.config = info.Config()
	c.regValues = result
}

func (c *registerCursor) addArg(v *Value) {
	*c.regValues = append(*c.regValues, v)
}

func (c *registerCursor) hasRegs() bool {
	return c.regsLen > 0
}

type expandState struct {
	f                  *Func
	abi1               *abi.ABIConfig
	debug              bool
	canSSAType         func(*types.Type) bool
	regSize            int64
	sp                 *Value
	typs               *Types
	ptrSize            int64
	hiOffset           int64
	lowOffset          int64
	hiRo               Abi1RO
	loRo               Abi1RO
	namedSelects       map[*Value][]namedVal
	sdom               SparseTree
	commonSelectors    map[selKey]*Value // used to de-dupe selectors
	commonArgs         map[selKey]*Value // used to de-dupe OpArg/OpArgIntReg/OpArgFloatReg
	memForCall         map[ID]*Value     // For a call, need to know the unique selector that gets the mem.
	transformedSelects map[ID]bool       // OpSelectN after rewriting, either created or renumbered.
	indentLevel        int               // Indentation for debugging recursion
}

// intPairTypes returns the pair of 32-bit int types needed to encode a 64-bit integer type on a target
// that has no 64-bit integer registers.
func (x *expandState) intPairTypes(et types.Kind) (tHi, tLo *types.Type) {
	tHi = x.typs.UInt32
	if et == types.TINT64 {
		tHi = x.typs.Int32
	}
	tLo = x.typs.UInt32
	return
}

// isAlreadyExpandedAggregateType returns whether a type is an SSA-able "aggregate" (multiple register) type
// that was expanded in an earlier phase (currently, expand_calls is intended to run after decomposeBuiltin,
// so this is all aggregate types -- small struct and array, complex, interface, string, slice, and 64-bit
// integer on 32-bit).
func (x *expandState) isAlreadyExpandedAggregateType(t *types.Type) bool {
	if !x.canSSAType(t) {
		return false
	}
	return t.IsStruct() || t.IsArray() || t.IsComplex() || t.IsInterface() || t.IsString() || t.IsSlice() ||
		(t.Size() > x.regSize && (t.IsInteger() || (x.f.Config.SoftFloat && t.IsFloat())))
}

// offsetFrom creates an offset from a pointer, simplifying chained offsets and offsets from SP
// TODO should also optimize offsets from SB?
func (x *expandState) offsetFrom(b *Block, from *Value, offset int64, pt *types.Type) *Value {
	ft := from.Type
	if offset == 0 {
		if ft == pt {
			return from
		}
		// This captures common, (apparently) safe cases.  The unsafe cases involve ft == uintptr
		if (ft.IsPtr() || ft.IsUnsafePtr()) && pt.IsPtr() {
			return from
		}
	}
	// Simplify, canonicalize
	for from.Op == OpOffPtr {
		offset += from.AuxInt
		from = from.Args[0]
	}
	if from == x.sp {
		return x.f.ConstOffPtrSP(pt, offset, x.sp)
	}
	return b.NewValue1I(from.Pos.WithNotStmt(), OpOffPtr, pt, offset, from)
}

// splitSlots splits one "field" (specified by sfx, offset, and ty) out of the LocalSlots in ls and returns the new LocalSlots this generates.
func (x *expandState) splitSlots(ls []*LocalSlot, sfx string, offset int64, ty *types.Type) []*LocalSlot {
	var locs []*LocalSlot
	for i := range ls {
		locs = append(locs, x.f.SplitSlot(ls[i], sfx, offset, ty))
	}
	return locs
}

// prAssignForArg returns the ABIParamAssignment for v, assumed to be an OpArg.
func (x *expandState) prAssignForArg(v *Value) *abi.ABIParamAssignment {
	if v.Op != OpArg {
		panic(badVal("Wanted OpArg, instead saw", v))
	}
	return ParamAssignmentForArgName(x.f, v.Aux.(*ir.Name))
}

// ParamAssignmentForArgName returns the ABIParamAssignment for f's arg with matching name.
func ParamAssignmentForArgName(f *Func, name *ir.Name) *abi.ABIParamAssignment {
	abiInfo := f.OwnAux.abiInfo
	ip := abiInfo.InParams()
	for i, a := range ip {
		if a.Name == name {
			return &ip[i]
		}
	}
	panic(fmt.Errorf("Did not match param %v in prInfo %+v", name, abiInfo.InParams()))
}

// indent increments (or decrements) the indentation.
func (x *expandState) indent(n int) {
	x.indentLevel += n
}

// Printf does an indented fmt.Printf on te format and args.
func (x *expandState) Printf(format string, a ...interface{}) (n int, err error) {
	if x.indentLevel > 0 {
		fmt.Printf("%[1]*s", x.indentLevel, "")
	}
	return fmt.Printf(format, a...)
}

// Calls that need lowering have some number of inputs, including a memory input,
// and produce a tuple of (value1, value2, ..., mem) where valueK may or may not be SSA-able.

// With the current ABI those inputs need to be converted into stores to memory,
// rethreading the call's memory input to the first, and the new call now receiving the last.

// With the current ABI, the outputs need to be converted to loads, which will all use the call's
// memory output as their input.

// rewriteSelect recursively walks from leaf selector to a root (OpSelectN, OpLoad, OpArg)
// through a chain of Struct/Array/builtin Select operations.  If the chain of selectors does not
// end in an expected root, it does nothing (this can happen depending on compiler phase ordering).
// The "leaf" provides the type, the root supplies the container, and the leaf-to-root path
// accumulates the offset.
// It emits the code necessary to implement the leaf select operation that leads to the root.
//
// TODO when registers really arrive, must also decompose anything split across two registers or registers and memory.
func (x *expandState) rewriteSelect(leaf *Value, selector *Value, offset int64, regOffset Abi1RO) []*LocalSlot {
	if x.debug {
		x.indent(3)
		defer x.indent(-3)
		x.Printf("rewriteSelect(%s; %s; memOff=%d; regOff=%d)\n", leaf.LongString(), selector.LongString(), offset, regOffset)
	}
	var locs []*LocalSlot
	leafType := leaf.Type
	if len(selector.Args) > 0 {
		w := selector.Args[0]
		if w.Op == OpCopy {
			for w.Op == OpCopy {
				w = w.Args[0]
			}
			selector.SetArg(0, w)
		}
	}
	switch selector.Op {
	case OpArgIntReg, OpArgFloatReg:
		if leafType == selector.Type { // OpIData leads us here, sometimes.
			leaf.copyOf(selector)
		} else {
			x.f.Fatalf("Unexpected %s type, selector=%s, leaf=%s\n", selector.Op.String(), selector.LongString(), leaf.LongString())
		}
		if x.debug {
			x.Printf("---%s, break\n", selector.Op.String())
		}
	case OpArg:
		if !x.isAlreadyExpandedAggregateType(selector.Type) {
			if leafType == selector.Type { // OpIData leads us here, sometimes.
				x.newArgToMemOrRegs(selector, leaf, offset, regOffset, leafType, leaf.Pos)
			} else {
				x.f.Fatalf("Unexpected OpArg type, selector=%s, leaf=%s\n", selector.LongString(), leaf.LongString())
			}
			if x.debug {
				x.Printf("---OpArg, break\n")
			}
			break
		}
		switch leaf.Op {
		case OpIData, OpStructSelect, OpArraySelect:
			leafType = removeTrivialWrapperTypes(leaf.Type)
		}
		x.newArgToMemOrRegs(selector, leaf, offset, regOffset, leafType, leaf.Pos)

		for _, s := range x.namedSelects[selector] {
			locs = append(locs, x.f.Names[s.locIndex])
		}

	case OpLoad: // We end up here because of IData of immediate structures.
		// Failure case:
		// (note the failure case is very rare; w/o this case, make.bash and run.bash both pass, as well as
		// the hard cases of building {syscall,math,math/cmplx,math/bits,go/constant} on ppc64le and mips-softfloat).
		//
		// GOSSAFUNC='(*dumper).dump' go build -gcflags=-l -tags=math_big_pure_go cmd/compile/internal/gc
		// cmd/compile/internal/gc/dump.go:136:14: internal compiler error: '(*dumper).dump': not lowered: v827, StructSelect PTR PTR
		// b2: ← b1
		// v20 (+142) = StaticLECall <interface {},mem> {AuxCall{reflect.Value.Interface([reflect.Value,0])[interface {},24]}} [40] v8 v1
		// v21 (142) = SelectN <mem> [1] v20
		// v22 (142) = SelectN <interface {}> [0] v20
		// b15: ← b8
		// v71 (+143) = IData <Nodes> v22 (v[Nodes])
		// v73 (+146) = StaticLECall <[]*Node,mem> {AuxCall{"".Nodes.Slice([Nodes,0])[[]*Node,8]}} [32] v71 v21
		//
		// translates (w/o the "case OpLoad:" above) to:
		//
		// b2: ← b1
		// v20 (+142) = StaticCall <mem> {AuxCall{reflect.Value.Interface([reflect.Value,0])[interface {},24]}} [40] v715
		// v23 (142) = Load <*uintptr> v19 v20
		// v823 (142) = IsNonNil <bool> v23
		// v67 (+143) = Load <*[]*Node> v880 v20
		// b15: ← b8
		// v827 (146) = StructSelect <*[]*Node> [0] v67
		// v846 (146) = Store <mem> {*[]*Node} v769 v827 v20
		// v73 (+146) = StaticCall <mem> {AuxCall{"".Nodes.Slice([Nodes,0])[[]*Node,8]}} [32] v846
		// i.e., the struct select is generated and remains in because it is not applied to an actual structure.
		// The OpLoad was created to load the single field of the IData
		// This case removes that StructSelect.
		if leafType != selector.Type {
			if x.f.Config.SoftFloat && selector.Type.IsFloat() {
				if x.debug {
					x.Printf("---OpLoad, break\n")
				}
				break // softfloat pass will take care of that
			}
			x.f.Fatalf("Unexpected Load as selector, leaf=%s, selector=%s\n", leaf.LongString(), selector.LongString())
		}
		leaf.copyOf(selector)
		for _, s := range x.namedSelects[selector] {
			locs = append(locs, x.f.Names[s.locIndex])
		}

	case OpSelectN:
		// TODO(register args) result case
		// if applied to Op-mumble-call, the Aux tells us which result, regOffset specifies offset within result.  If a register, should rewrite to OpSelectN for new call.
		// TODO these may be duplicated. Should memoize. Intermediate selectors will go dead, no worries there.
		call := selector.Args[0]
		call0 := call
		aux := call.Aux.(*AuxCall)
		which := selector.AuxInt
		if x.transformedSelects[selector.ID] {
			// This is a minor hack.  Either this select has had its operand adjusted (mem) or
			// it is some other intermediate node that was rewritten to reference a register (not a generic arg).
			// This can occur with chains of selection/indexing from single field/element aggregates.
			leaf.copyOf(selector)
			break
		}
		if which == aux.NResults() { // mem is after the results.
			// rewrite v as a Copy of call -- the replacement call will produce a mem.
			if leaf != selector {
				panic(fmt.Errorf("Unexpected selector of memory, selector=%s, call=%s, leaf=%s", selector.LongString(), call.LongString(), leaf.LongString()))
			}
			if aux.abiInfo == nil {
				panic(badVal("aux.abiInfo nil for call", call))
			}
			if existing := x.memForCall[call.ID]; existing == nil {
				selector.AuxInt = int64(aux.abiInfo.OutRegistersUsed())
				x.memForCall[call.ID] = selector
				x.transformedSelects[selector.ID] = true // operand adjusted
			} else {
				selector.copyOf(existing)
			}

		} else {
			leafType := removeTrivialWrapperTypes(leaf.Type)
			if x.canSSAType(leafType) {
				pt := types.NewPtr(leafType)
				// Any selection right out of the arg area/registers has to be same Block as call, use call as mem input.
				// Create a "mem" for any loads that need to occur.
				if mem := x.memForCall[call.ID]; mem != nil {
					if mem.Block != call.Block {
						panic(fmt.Errorf("selector and call need to be in same block, selector=%s; call=%s", selector.LongString(), call.LongString()))
					}
					call = mem
				} else {
					mem = call.Block.NewValue1I(call.Pos.WithNotStmt(), OpSelectN, types.TypeMem, int64(aux.abiInfo.OutRegistersUsed()), call)
					x.transformedSelects[mem.ID] = true // select uses post-expansion indexing
					x.memForCall[call.ID] = mem
					call = mem
				}
				outParam := aux.abiInfo.OutParam(int(which))
				if len(outParam.Registers) > 0 {
					firstReg := uint32(0)
					for i := 0; i < int(which); i++ {
						firstReg += uint32(len(aux.abiInfo.OutParam(i).Registers))
					}
					reg := int64(regOffset + Abi1RO(firstReg))
					if leaf.Block == call.Block {
						leaf.reset(OpSelectN)
						leaf.SetArgs1(call0)
						leaf.Type = leafType
						leaf.AuxInt = reg
						x.transformedSelects[leaf.ID] = true // leaf, rewritten to use post-expansion indexing.
					} else {
						w := call.Block.NewValue1I(leaf.Pos, OpSelectN, leafType, reg, call0)
						x.transformedSelects[w.ID] = true // select, using post-expansion indexing.
						leaf.copyOf(w)
					}
				} else {
					off := x.offsetFrom(x.f.Entry, x.sp, offset+aux.OffsetOfResult(which), pt)
					if leaf.Block == call.Block {
						leaf.reset(OpLoad)
						leaf.SetArgs2(off, call)
						leaf.Type = leafType
					} else {
						w := call.Block.NewValue2(leaf.Pos, OpLoad, leafType, off, call)
						leaf.copyOf(w)
						if x.debug {
							x.Printf("---new %s\n", w.LongString())
						}
					}
				}
				for _, s := range x.namedSelects[selector] {
					locs = append(locs, x.f.Names[s.locIndex])
				}
			} else {
				x.f.Fatalf("Should not have non-SSA-able OpSelectN, selector=%s", selector.LongString())
			}
		}

	case OpStructSelect:
		w := selector.Args[0]
		var ls []*LocalSlot
		if w.Type.Kind() != types.TSTRUCT { // IData artifact
			ls = x.rewriteSelect(leaf, w, offset, regOffset)
		} else {
			fldi := int(selector.AuxInt)
			ls = x.rewriteSelect(leaf, w, offset+w.Type.FieldOff(fldi), regOffset+x.regOffset(w.Type, fldi))
			if w.Op != OpIData {
				for _, l := range ls {
					locs = append(locs, x.f.SplitStruct(l, int(selector.AuxInt)))
				}
			}
		}

	case OpArraySelect:
		w := selector.Args[0]
		index := selector.AuxInt
		x.rewriteSelect(leaf, w, offset+selector.Type.Size()*index, regOffset+x.regOffset(w.Type, int(index)))

	case OpInt64Hi:
		w := selector.Args[0]
		ls := x.rewriteSelect(leaf, w, offset+x.hiOffset, regOffset+x.hiRo)
		locs = x.splitSlots(ls, ".hi", x.hiOffset, leafType)

	case OpInt64Lo:
		w := selector.Args[0]
		ls := x.rewriteSelect(leaf, w, offset+x.lowOffset, regOffset+x.loRo)
		locs = x.splitSlots(ls, ".lo", x.lowOffset, leafType)

	case OpStringPtr:
		ls := x.rewriteSelect(leaf, selector.Args[0], offset, regOffset)
		locs = x.splitSlots(ls, ".ptr", 0, x.typs.BytePtr)

	case OpSlicePtr, OpSlicePtrUnchecked:
		w := selector.Args[0]
		ls := x.rewriteSelect(leaf, w, offset, regOffset)
		locs = x.splitSlots(ls, ".ptr", 0, types.NewPtr(w.Type.Elem()))

	case OpITab:
		w := selector.Args[0]
		ls := x.rewriteSelect(leaf, w, offset, regOffset)
		sfx := ".itab"
		if w.Type.IsEmptyInterface() {
			sfx = ".type"
		}
		locs = x.splitSlots(ls, sfx, 0, x.typs.Uintptr)

	case OpComplexReal:
		ls := x.rewriteSelect(leaf, selector.Args[0], offset, regOffset)
		locs = x.splitSlots(ls, ".real", 0, selector.Type)

	case OpComplexImag:
		ls := x.rewriteSelect(leaf, selector.Args[0], offset+selector.Type.Size(), regOffset+RO_complex_imag) // result is FloatNN, width of result is offset of imaginary part.
		locs = x.splitSlots(ls, ".imag", selector.Type.Size(), selector.Type)

	case OpStringLen, OpSliceLen:
		ls := x.rewriteSelect(leaf, selector.Args[0], offset+x.ptrSize, regOffset+RO_slice_len)
		locs = x.splitSlots(ls, ".len", x.ptrSize, leafType)

	case OpIData:
		ls := x.rewriteSelect(leaf, selector.Args[0], offset+x.ptrSize, regOffset+RO_iface_data)
		locs = x.splitSlots(ls, ".data", x.ptrSize, leafType)

	case OpSliceCap:
		ls := x.rewriteSelect(leaf, selector.Args[0], offset+2*x.ptrSize, regOffset+RO_slice_cap)
		locs = x.splitSlots(ls, ".cap", 2*x.ptrSize, leafType)

	case OpCopy: // If it's an intermediate result, recurse
		locs = x.rewriteSelect(leaf, selector.Args[0], offset, regOffset)
		for _, s := range x.namedSelects[selector] {
			// this copy may have had its own name, preserve that, too.
			locs = append(locs, x.f.Names[s.locIndex])
		}

	default:
		// Ignore dead ends. These can occur if this phase is run before decompose builtin (which is not intended, but allowed).
	}

	return locs
}

func (x *expandState) rewriteDereference(b *Block, base, a, mem *Value, offset, size int64, typ *types.Type, pos src.XPos) *Value {
	source := a.Args[0]
	dst := x.offsetFrom(b, base, offset, source.Type)
	if a.Uses == 1 && a.Block == b {
		a.reset(OpMove)
		a.Pos = pos
		a.Type = types.TypeMem
		a.Aux = typ
		a.AuxInt = size
		a.SetArgs3(dst, source, mem)
		mem = a
	} else {
		mem = b.NewValue3A(pos, OpMove, types.TypeMem, typ, dst, source, mem)
		mem.AuxInt = size
	}
	return mem
}

var indexNames [1]string = [1]string{"[0]"}

// pathTo returns the selection path to the leaf type at offset within container.
// e.g. len(thing.field[0]) => ".field[0].len"
// this is for purposes of generating names ultimately fed to a debugger.
func (x *expandState) pathTo(container, leaf *types.Type, offset int64) string {
	if container == leaf || offset == 0 && container.Size() == leaf.Size() {
		return ""
	}
	path := ""
outer:
	for {
		switch container.Kind() {
		case types.TARRAY:
			container = container.Elem()
			if container.Size() == 0 {
				return path
			}
			i := offset / container.Size()
			offset = offset % container.Size()
			// If a future compiler/ABI supports larger SSA/Arg-able arrays, expand indexNames.
			path = path + indexNames[i]
			continue
		case types.TSTRUCT:
			for i := 0; i < container.NumFields(); i++ {
				fld := container.Field(i)
				if fld.Offset+fld.Type.Size() > offset {
					offset -= fld.Offset
					path += "." + fld.Sym.Name
					container = fld.Type
					continue outer
				}
			}
			return path
		case types.TINT64, types.TUINT64:
			if container.Size() == x.regSize {
				return path
			}
			if offset == x.hiOffset {
				return path + ".hi"
			}
			return path + ".lo"
		case types.TINTER:
			if offset != 0 {
				return path + ".data"
			}
			if container.IsEmptyInterface() {
				return path + ".type"
			}
			return path + ".itab"

		case types.TSLICE:
			if offset == 2*x.regSize {
				return path + ".cap"
			}
			fallthrough
		case types.TSTRING:
			if offset == 0 {
				return path + ".ptr"
			}
			return path + ".len"
		case types.TCOMPLEX64, types.TCOMPLEX128:
			if offset == 0 {
				return path + ".real"
			}
			return path + ".imag"
		}
		return path
	}
}

// decomposeArg is a helper for storeArgOrLoad.
// It decomposes a Load or an Arg into smaller parts and returns the new mem.
// If the type does not match one of the expected aggregate types, it returns nil instead.
// Parameters:
//  pos           -- the location of any generated code.
//  b             -- the block into which any generated code should normally be placed
//  source        -- the value, possibly an aggregate, to be stored.
//  mem           -- the mem flowing into this decomposition (loads depend on it, stores updated it)
//  t             -- the type of the value to be stored
//  storeOffset   -- if the value is stored in memory, it is stored at base (see storeRc) + storeOffset
//  loadRegOffset -- regarding source as a value in registers, the register offset in ABI1.  Meaningful only if source is OpArg.
//  storeRc       -- storeRC; if the value is stored in registers, this specifies the registers.
//                   StoreRc also identifies whether the target is registers or memory, and has the base for the store operation.
func (x *expandState) decomposeArg(pos src.XPos, b *Block, source, mem *Value, t *types.Type, storeOffset int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {

	pa := x.prAssignForArg(source)
	var locs []*LocalSlot
	for _, s := range x.namedSelects[source] {
		locs = append(locs, x.f.Names[s.locIndex])
	}

	if len(pa.Registers) > 0 {
		// Handle the in-registers case directly
		rts, offs := pa.RegisterTypesAndOffsets()
		last := loadRegOffset + x.regWidth(t)
		if offs[loadRegOffset] != 0 {
			// Document the problem before panicking.
			for i := 0; i < len(rts); i++ {
				rt := rts[i]
				off := offs[i]
				fmt.Printf("rt=%s, off=%d, rt.Width=%d, rt.Align=%d\n", rt.String(), off, rt.Size(), uint8(rt.Alignment()))
			}
			panic(fmt.Errorf("offset %d of requested register %d should be zero, source=%s", offs[loadRegOffset], loadRegOffset, source.LongString()))
		}

		if x.debug {
			x.Printf("decompose arg %s has %d locs\n", source.LongString(), len(locs))
		}

		for i := loadRegOffset; i < last; i++ {
			rt := rts[i]
			off := offs[i]
			w := x.commonArgs[selKey{source, off, rt.Size(), rt}]
			if w == nil {
				w = x.newArgToMemOrRegs(source, w, off, i, rt, pos)
				suffix := x.pathTo(source.Type, rt, off)
				if suffix != "" {
					x.splitSlotsIntoNames(locs, suffix, off, rt, w)
				}
			}
			if t.IsPtrShaped() {
				// Preserve the original store type. This ensures pointer type
				// properties aren't discarded (e.g, notinheap).
				if rt.Size() != t.Size() || len(pa.Registers) != 1 || i != loadRegOffset {
					b.Func.Fatalf("incompatible store type %v and %v, i=%d", t, rt, i)
				}
				rt = t
			}
			mem = x.storeArgOrLoad(pos, b, w, mem, rt, storeOffset+off, i, storeRc.next(rt))
		}
		return mem
	}

	u := source.Type
	switch u.Kind() {
	case types.TARRAY:
		elem := u.Elem()
		elemRO := x.regWidth(elem)
		for i := int64(0); i < u.NumElem(); i++ {
			elemOff := i * elem.Size()
			mem = storeOneArg(x, pos, b, locs, indexNames[i], source, mem, elem, elemOff, storeOffset+elemOff, loadRegOffset, storeRc.next(elem))
			loadRegOffset += elemRO
			pos = pos.WithNotStmt()
		}
		return mem
	case types.TSTRUCT:
		for i := 0; i < u.NumFields(); i++ {
			fld := u.Field(i)
			mem = storeOneArg(x, pos, b, locs, "."+fld.Sym.Name, source, mem, fld.Type, fld.Offset, storeOffset+fld.Offset, loadRegOffset, storeRc.next(fld.Type))
			loadRegOffset += x.regWidth(fld.Type)
			pos = pos.WithNotStmt()
		}
		return mem
	case types.TINT64, types.TUINT64:
		if t.Size() == x.regSize {
			break
		}
		tHi, tLo := x.intPairTypes(t.Kind())
		mem = storeOneArg(x, pos, b, locs, ".hi", source, mem, tHi, x.hiOffset, storeOffset+x.hiOffset, loadRegOffset+x.hiRo, storeRc.plus(x.hiRo))
		pos = pos.WithNotStmt()
		return storeOneArg(x, pos, b, locs, ".lo", source, mem, tLo, x.lowOffset, storeOffset+x.lowOffset, loadRegOffset+x.loRo, storeRc.plus(x.loRo))
	case types.TINTER:
		sfx := ".itab"
		if u.IsEmptyInterface() {
			sfx = ".type"
		}
		return storeTwoArg(x, pos, b, locs, sfx, ".idata", source, mem, x.typs.Uintptr, x.typs.BytePtr, 0, storeOffset, loadRegOffset, storeRc)
	case types.TSTRING:
		return storeTwoArg(x, pos, b, locs, ".ptr", ".len", source, mem, x.typs.BytePtr, x.typs.Int, 0, storeOffset, loadRegOffset, storeRc)
	case types.TCOMPLEX64:
		return storeTwoArg(x, pos, b, locs, ".real", ".imag", source, mem, x.typs.Float32, x.typs.Float32, 0, storeOffset, loadRegOffset, storeRc)
	case types.TCOMPLEX128:
		return storeTwoArg(x, pos, b, locs, ".real", ".imag", source, mem, x.typs.Float64, x.typs.Float64, 0, storeOffset, loadRegOffset, storeRc)
	case types.TSLICE:
		mem = storeOneArg(x, pos, b, locs, ".ptr", source, mem, x.typs.BytePtr, 0, storeOffset, loadRegOffset, storeRc.next(x.typs.BytePtr))
		return storeTwoArg(x, pos, b, locs, ".len", ".cap", source, mem, x.typs.Int, x.typs.Int, x.ptrSize, storeOffset+x.ptrSize, loadRegOffset+RO_slice_len, storeRc)
	}
	return nil
}

func (x *expandState) splitSlotsIntoNames(locs []*LocalSlot, suffix string, off int64, rt *types.Type, w *Value) {
	wlocs := x.splitSlots(locs, suffix, off, rt)
	for _, l := range wlocs {
		old, ok := x.f.NamedValues[*l]
		x.f.NamedValues[*l] = append(old, w)
		if !ok {
			x.f.Names = append(x.f.Names, l)
		}
	}
}

// decomposeLoad is a helper for storeArgOrLoad.
// It decomposes a Load  into smaller parts and returns the new mem.
// If the type does not match one of the expected aggregate types, it returns nil instead.
// Parameters:
//  pos           -- the location of any generated code.
//  b             -- the block into which any generated code should normally be placed
//  source        -- the value, possibly an aggregate, to be stored.
//  mem           -- the mem flowing into this decomposition (loads depend on it, stores updated it)
//  t             -- the type of the value to be stored
//  storeOffset   -- if the value is stored in memory, it is stored at base (see storeRc) + offset
//  loadRegOffset -- regarding source as a value in registers, the register offset in ABI1.  Meaningful only if source is OpArg.
//  storeRc       -- storeRC; if the value is stored in registers, this specifies the registers.
//                   StoreRc also identifies whether the target is registers or memory, and has the base for the store operation.
//
// TODO -- this needs cleanup; it just works for SSA-able aggregates, and won't fully generalize to register-args aggregates.
func (x *expandState) decomposeLoad(pos src.XPos, b *Block, source, mem *Value, t *types.Type, storeOffset int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
	u := source.Type
	switch u.Kind() {
	case types.TARRAY:
		elem := u.Elem()
		elemRO := x.regWidth(elem)
		for i := int64(0); i < u.NumElem(); i++ {
			elemOff := i * elem.Size()
			mem = storeOneLoad(x, pos, b, source, mem, elem, elemOff, storeOffset+elemOff, loadRegOffset, storeRc.next(elem))
			loadRegOffset += elemRO
			pos = pos.WithNotStmt()
		}
		return mem
	case types.TSTRUCT:
		for i := 0; i < u.NumFields(); i++ {
			fld := u.Field(i)
			mem = storeOneLoad(x, pos, b, source, mem, fld.Type, fld.Offset, storeOffset+fld.Offset, loadRegOffset, storeRc.next(fld.Type))
			loadRegOffset += x.regWidth(fld.Type)
			pos = pos.WithNotStmt()
		}
		return mem
	case types.TINT64, types.TUINT64:
		if t.Size() == x.regSize {
			break
		}
		tHi, tLo := x.intPairTypes(t.Kind())
		mem = storeOneLoad(x, pos, b, source, mem, tHi, x.hiOffset, storeOffset+x.hiOffset, loadRegOffset+x.hiRo, storeRc.plus(x.hiRo))
		pos = pos.WithNotStmt()
		return storeOneLoad(x, pos, b, source, mem, tLo, x.lowOffset, storeOffset+x.lowOffset, loadRegOffset+x.loRo, storeRc.plus(x.loRo))
	case types.TINTER:
		return storeTwoLoad(x, pos, b, source, mem, x.typs.Uintptr, x.typs.BytePtr, 0, storeOffset, loadRegOffset, storeRc)
	case types.TSTRING:
		return storeTwoLoad(x, pos, b, source, mem, x.typs.BytePtr, x.typs.Int, 0, storeOffset, loadRegOffset, storeRc)
	case types.TCOMPLEX64:
		return storeTwoLoad(x, pos, b, source, mem, x.typs.Float32, x.typs.Float32, 0, storeOffset, loadRegOffset, storeRc)
	case types.TCOMPLEX128:
		return storeTwoLoad(x, pos, b, source, mem, x.typs.Float64, x.typs.Float64, 0, storeOffset, loadRegOffset, storeRc)
	case types.TSLICE:
		mem = storeOneLoad(x, pos, b, source, mem, x.typs.BytePtr, 0, storeOffset, loadRegOffset, storeRc.next(x.typs.BytePtr))
		return storeTwoLoad(x, pos, b, source, mem, x.typs.Int, x.typs.Int, x.ptrSize, storeOffset+x.ptrSize, loadRegOffset+RO_slice_len, storeRc)
	}
	return nil
}

// storeOneArg creates a decomposed (one step) arg that is then stored.
// pos and b locate the store instruction, source is the "base" of the value input,
// mem is the input mem, t is the type in question, and offArg and offStore are the offsets from the respective bases.
func storeOneArg(x *expandState, pos src.XPos, b *Block, locs []*LocalSlot, suffix string, source, mem *Value, t *types.Type, argOffset, storeOffset int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
	if x.debug {
		x.indent(3)
		defer x.indent(-3)
		x.Printf("storeOneArg(%s;  %s;  %s; aO=%d; sO=%d; lrO=%d; %s)\n", source.LongString(), mem.String(), t.String(), argOffset, storeOffset, loadRegOffset, storeRc.String())
	}

	w := x.commonArgs[selKey{source, argOffset, t.Size(), t}]
	if w == nil {
		w = x.newArgToMemOrRegs(source, w, argOffset, loadRegOffset, t, pos)
		x.splitSlotsIntoNames(locs, suffix, argOffset, t, w)
	}
	return x.storeArgOrLoad(pos, b, w, mem, t, storeOffset, loadRegOffset, storeRc)
}

// storeOneLoad creates a decomposed (one step) load that is then stored.
func storeOneLoad(x *expandState, pos src.XPos, b *Block, source, mem *Value, t *types.Type, offArg, offStore int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
	from := x.offsetFrom(source.Block, source.Args[0], offArg, types.NewPtr(t))
	w := source.Block.NewValue2(source.Pos, OpLoad, t, from, mem)
	return x.storeArgOrLoad(pos, b, w, mem, t, offStore, loadRegOffset, storeRc)
}

func storeTwoArg(x *expandState, pos src.XPos, b *Block, locs []*LocalSlot, suffix1 string, suffix2 string, source, mem *Value, t1, t2 *types.Type, offArg, offStore int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
	mem = storeOneArg(x, pos, b, locs, suffix1, source, mem, t1, offArg, offStore, loadRegOffset, storeRc.next(t1))
	pos = pos.WithNotStmt()
	t1Size := t1.Size()
	return storeOneArg(x, pos, b, locs, suffix2, source, mem, t2, offArg+t1Size, offStore+t1Size, loadRegOffset+1, storeRc)
}

// storeTwoLoad creates a pair of decomposed (one step) loads that are then stored.
// the elements of the pair must not require any additional alignment.
func storeTwoLoad(x *expandState, pos src.XPos, b *Block, source, mem *Value, t1, t2 *types.Type, offArg, offStore int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
	mem = storeOneLoad(x, pos, b, source, mem, t1, offArg, offStore, loadRegOffset, storeRc.next(t1))
	pos = pos.WithNotStmt()
	t1Size := t1.Size()
	return storeOneLoad(x, pos, b, source, mem, t2, offArg+t1Size, offStore+t1Size, loadRegOffset+1, storeRc)
}

// storeArgOrLoad converts stores of SSA-able potentially aggregatable arguments (passed to a call) into a series of primitive-typed
// stores of non-aggregate types.  It recursively walks up a chain of selectors until it reaches a Load or an Arg.
// If it does not reach a Load or an Arg, nothing happens; this allows a little freedom in phase ordering.
func (x *expandState) storeArgOrLoad(pos src.XPos, b *Block, source, mem *Value, t *types.Type, storeOffset int64, loadRegOffset Abi1RO, storeRc registerCursor) *Value {
	if x.debug {
		x.indent(3)
		defer x.indent(-3)
		x.Printf("storeArgOrLoad(%s;  %s;  %s; %d; %s)\n", source.LongString(), mem.String(), t.String(), storeOffset, storeRc.String())
	}

	// Start with Opcodes that can be disassembled
	switch source.Op {
	case OpCopy:
		return x.storeArgOrLoad(pos, b, source.Args[0], mem, t, storeOffset, loadRegOffset, storeRc)

	case OpLoad, OpDereference:
		ret := x.decomposeLoad(pos, b, source, mem, t, storeOffset, loadRegOffset, storeRc)
		if ret != nil {
			return ret
		}

	case OpArg:
		ret := x.decomposeArg(pos, b, source, mem, t, storeOffset, loadRegOffset, storeRc)
		if ret != nil {
			return ret
		}

	case OpArrayMake0, OpStructMake0:
		// TODO(register args) is this correct for registers?
		return mem

	case OpStructMake1, OpStructMake2, OpStructMake3, OpStructMake4:
		for i := 0; i < t.NumFields(); i++ {
			fld := t.Field(i)
			mem = x.storeArgOrLoad(pos, b, source.Args[i], mem, fld.Type, storeOffset+fld.Offset, 0, storeRc.next(fld.Type))
			pos = pos.WithNotStmt()
		}
		return mem

	case OpArrayMake1:
		return x.storeArgOrLoad(pos, b, source.Args[0], mem, t.Elem(), storeOffset, 0, storeRc.at(t, 0))

	case OpInt64Make:
		tHi, tLo := x.intPairTypes(t.Kind())
		mem = x.storeArgOrLoad(pos, b, source.Args[0], mem, tHi, storeOffset+x.hiOffset, 0, storeRc.next(tHi))
		pos = pos.WithNotStmt()
		return x.storeArgOrLoad(pos, b, source.Args[1], mem, tLo, storeOffset+x.lowOffset, 0, storeRc)

	case OpComplexMake:
		tPart := x.typs.Float32
		wPart := t.Size() / 2
		if wPart == 8 {
			tPart = x.typs.Float64
		}
		mem = x.storeArgOrLoad(pos, b, source.Args[0], mem, tPart, storeOffset, 0, storeRc.next(tPart))
		pos = pos.WithNotStmt()
		return x.storeArgOrLoad(pos, b, source.Args[1], mem, tPart, storeOffset+wPart, 0, storeRc)

	case OpIMake:
		mem = x.storeArgOrLoad(pos, b, source.Args[0], mem, x.typs.Uintptr, storeOffset, 0, storeRc.next(x.typs.Uintptr))
		pos = pos.WithNotStmt()
		return x.storeArgOrLoad(pos, b, source.Args[1], mem, x.typs.BytePtr, storeOffset+x.ptrSize, 0, storeRc)

	case OpStringMake:
		mem = x.storeArgOrLoad(pos, b, source.Args[0], mem, x.typs.BytePtr, storeOffset, 0, storeRc.next(x.typs.BytePtr))
		pos = pos.WithNotStmt()
		return x.storeArgOrLoad(pos, b, source.Args[1], mem, x.typs.Int, storeOffset+x.ptrSize, 0, storeRc)

	case OpSliceMake:
		mem = x.storeArgOrLoad(pos, b, source.Args[0], mem, x.typs.BytePtr, storeOffset, 0, storeRc.next(x.typs.BytePtr))
		pos = pos.WithNotStmt()
		mem = x.storeArgOrLoad(pos, b, source.Args[1], mem, x.typs.Int, storeOffset+x.ptrSize, 0, storeRc.next(x.typs.Int))
		return x.storeArgOrLoad(pos, b, source.Args[2], mem, x.typs.Int, storeOffset+2*x.ptrSize, 0, storeRc)
	}

	// For nodes that cannot be taken apart -- OpSelectN, other structure selectors.
	switch t.Kind() {
	case types.TARRAY:
		elt := t.Elem()
		if source.Type != t && t.NumElem() == 1 && elt.Size() == t.Size() && t.Size() == x.regSize {
			t = removeTrivialWrapperTypes(t)
			// it could be a leaf type, but the "leaf" could be complex64 (for example)
			return x.storeArgOrLoad(pos, b, source, mem, t, storeOffset, loadRegOffset, storeRc)
		}
		eltRO := x.regWidth(elt)
		for i := int64(0); i < t.NumElem(); i++ {
			sel := source.Block.NewValue1I(pos, OpArraySelect, elt, i, source)
			mem = x.storeArgOrLoad(pos, b, sel, mem, elt, storeOffset+i*elt.Size(), loadRegOffset, storeRc.at(t, 0))
			loadRegOffset += eltRO
			pos = pos.WithNotStmt()
		}
		return mem

	case types.TSTRUCT:
		if source.Type != t && t.NumFields() == 1 && t.Field(0).Type.Size() == t.Size() && t.Size() == x.regSize {
			// This peculiar test deals with accesses to immediate interface data.
			// It works okay because everything is the same size.
			// Example code that triggers this can be found in go/constant/value.go, function ToComplex
			// v119 (+881) = IData <intVal> v6
			// v121 (+882) = StaticLECall <floatVal,mem> {AuxCall{"".itof([intVal,0])[floatVal,8]}} [16] v119 v1
			// This corresponds to the generic rewrite rule "(StructSelect [0] (IData x)) => (IData x)"
			// Guard against "struct{struct{*foo}}"
			// Other rewriting phases create minor glitches when they transform IData, for instance the
			// interface-typed Arg "x" of ToFloat in go/constant/value.go
			//   v6 (858) = Arg <Value> {x} (x[Value], x[Value])
			// is rewritten by decomposeArgs into
			//   v141 (858) = Arg <uintptr> {x}
			//   v139 (858) = Arg <*uint8> {x} [8]
			// because of a type case clause on line 862 of go/constant/value.go
			//  	case intVal:
			//		   return itof(x)
			// v139 is later stored as an intVal == struct{val *big.Int} which naively requires the fields of
			// of a *uint8, which does not succeed.
			t = removeTrivialWrapperTypes(t)
			// it could be a leaf type, but the "leaf" could be complex64 (for example)
			return x.storeArgOrLoad(pos, b, source, mem, t, storeOffset, loadRegOffset, storeRc)
		}

		for i := 0; i < t.NumFields(); i++ {
			fld := t.Field(i)
			sel := source.Block.NewValue1I(pos, OpStructSelect, fld.Type, int64(i), source)
			mem = x.storeArgOrLoad(pos, b, sel, mem, fld.Type, storeOffset+fld.Offset, loadRegOffset, storeRc.next(fld.Type))
			loadRegOffset += x.regWidth(fld.Type)
			pos = pos.WithNotStmt()
		}
		return mem

	case types.TINT64, types.TUINT64:
		if t.Size() == x.regSize {
			break
		}
		tHi, tLo := x.intPairTypes(t.Kind())
		sel := source.Block.NewValue1(pos, OpInt64Hi, tHi, source)
		mem = x.storeArgOrLoad(pos, b, sel, mem, tHi, storeOffset+x.hiOffset, loadRegOffset+x.hiRo, storeRc.plus(x.hiRo))
		pos = pos.WithNotStmt()
		sel = source.Block.NewValue1(pos, OpInt64Lo, tLo, source)
		return x.storeArgOrLoad(pos, b, sel, mem, tLo, storeOffset+x.lowOffset, loadRegOffset+x.loRo, storeRc.plus(x.hiRo))

	case types.TINTER:
		sel := source.Block.NewValue1(pos, OpITab, x.typs.BytePtr, source)
		mem = x.storeArgOrLoad(pos, b, sel, mem, x.typs.BytePtr, storeOffset, loadRegOffset, storeRc.next(x.typs.BytePtr))
		pos = pos.WithNotStmt()
		sel = source.Block.NewValue1(pos, OpIData, x.typs.BytePtr, source)
		return x.storeArgOrLoad(pos, b, sel, mem, x.typs.BytePtr, storeOffset+x.ptrSize, loadRegOffset+RO_iface_data, storeRc)

	case types.TSTRING:
		sel := source.Block.NewValue1(pos, OpStringPtr, x.typs.BytePtr, source)
		mem = x.storeArgOrLoad(pos, b, sel, mem, x.typs.BytePtr, storeOffset, loadRegOffset, storeRc.next(x.typs.BytePtr))
		pos = pos.WithNotStmt()
		sel = source.Block.NewValue1(pos, OpStringLen, x.typs.Int, source)
		return x.storeArgOrLoad(pos, b, sel, mem, x.typs.Int, storeOffset+x.ptrSize, loadRegOffset+RO_string_len, storeRc)

	case types.TSLICE:
		et := types.NewPtr(t.Elem())
		sel := source.Block.NewValue1(pos, OpSlicePtr, et, source)
		mem = x.storeArgOrLoad(pos, b, sel, mem, et, storeOffset, loadRegOffset, storeRc.next(et))
		pos = pos.WithNotStmt()
		sel = source.Block.NewValue1(pos, OpSliceLen, x.typs.Int, source)
		mem = x.storeArgOrLoad(pos, b, sel, mem, x.typs.Int, storeOffset+x.ptrSize, loadRegOffset+RO_slice_len, storeRc.next(x.typs.Int))
		sel = source.Block.NewValue1(pos, OpSliceCap, x.typs.Int, source)
		return x.storeArgOrLoad(pos, b, sel, mem, x.typs.Int, storeOffset+2*x.ptrSize, loadRegOffset+RO_slice_cap, storeRc)

	case types.TCOMPLEX64:
		sel := source.Block.NewValue1(pos, OpComplexReal, x.typs.Float32, source)
		mem = x.storeArgOrLoad(pos, b, sel, mem, x.typs.Float32, storeOffset, loadRegOffset, storeRc.next(x.typs.Float32))
		pos = pos.WithNotStmt()
		sel = source.Block.NewValue1(pos, OpComplexImag, x.typs.Float32, source)
		return x.storeArgOrLoad(pos, b, sel, mem, x.typs.Float32, storeOffset+4, loadRegOffset+RO_complex_imag, storeRc)

	case types.TCOMPLEX128:
		sel := source.Block.NewValue1(pos, OpComplexReal, x.typs.Float64, source)
		mem = x.storeArgOrLoad(pos, b, sel, mem, x.typs.Float64, storeOffset, loadRegOffset, storeRc.next(x.typs.Float64))
		pos = pos.WithNotStmt()
		sel = source.Block.NewValue1(pos, OpComplexImag, x.typs.Float64, source)
		return x.storeArgOrLoad(pos, b, sel, mem, x.typs.Float64, storeOffset+8, loadRegOffset+RO_complex_imag, storeRc)
	}

	s := mem
	if source.Op == OpDereference {
		source.Op = OpLoad // For purposes of parameter passing expansion, a Dereference is a Load.
	}
	if storeRc.hasRegs() {
		storeRc.addArg(source)
	} else {
		dst := x.offsetFrom(b, storeRc.storeDest, storeOffset, types.NewPtr(t))
		s = b.NewValue3A(pos, OpStore, types.TypeMem, t, dst, source, mem)
	}
	if x.debug {
		x.Printf("-->storeArg returns %s, storeRc=%s\n", s.LongString(), storeRc.String())
	}
	return s
}

// rewriteArgs replaces all the call-parameter Args to a call with their register translation (if any).
// Preceding parameters (code pointers, closure pointer) are preserved, and the memory input is modified
// to account for any parameter stores required.
// Any of the old Args that have their use count fall to zero are marked OpInvalid.
func (x *expandState) rewriteArgs(v *Value, firstArg int) {
	if x.debug {
		x.indent(3)
		defer x.indent(-3)
		x.Printf("rewriteArgs(%s; %d)\n", v.LongString(), firstArg)
	}
	// Thread the stores on the memory arg
	aux := v.Aux.(*AuxCall)
	pos := v.Pos.WithNotStmt()
	m0 := v.MemoryArg()
	mem := m0
	newArgs := []*Value{}
	oldArgs := []*Value{}
	for i, a := range v.Args[firstArg : len(v.Args)-1] { // skip leading non-parameter SSA Args and trailing mem SSA Arg.
		oldArgs = append(oldArgs, a)
		auxI := int64(i)
		aRegs := aux.RegsOfArg(auxI)
		aType := aux.TypeOfArg(auxI)
		if len(aRegs) == 0 && a.Op == OpDereference {
			aOffset := aux.OffsetOfArg(auxI)
			if a.MemoryArg() != m0 {
				x.f.Fatalf("Op...LECall and OpDereference have mismatched mem, %s and %s", v.LongString(), a.LongString())
			}
			// "Dereference" of addressed (probably not-SSA-eligible) value becomes Move
			// TODO(register args) this will be more complicated with registers in the picture.
			mem = x.rewriteDereference(v.Block, x.sp, a, mem, aOffset, aux.SizeOfArg(auxI), aType, pos)
		} else {
			var rc registerCursor
			var result *[]*Value
			var aOffset int64
			if len(aRegs) > 0 {
				result = &newArgs
			} else {
				aOffset = aux.OffsetOfArg(auxI)
			}
			if x.debug {
				x.Printf("...storeArg %s, %v, %d\n", a.LongString(), aType, aOffset)
			}
			rc.init(aRegs, aux.abiInfo, result, x.sp)
			mem = x.storeArgOrLoad(pos, v.Block, a, mem, aType, aOffset, 0, rc)
		}
	}
	var preArgStore [2]*Value
	preArgs := append(preArgStore[:0], v.Args[0:firstArg]...)
	v.resetArgs()
	v.AddArgs(preArgs...)
	v.AddArgs(newArgs...)
	v.AddArg(mem)
	for _, a := range oldArgs {
		if a.Uses == 0 {
			if x.debug {
				x.Printf("...marking %v unused\n", a.LongString())
			}
			a.invalidateRecursively()
		}
	}

	return
}

// expandCalls converts LE (Late Expansion) calls that act like they receive value args into a lower-level form
// that is more oriented to a platform's ABI.  The SelectN operations that extract results are rewritten into
// more appropriate forms, and any StructMake or ArrayMake inputs are decomposed until non-struct values are
// reached.  On the callee side, OpArg nodes are not decomposed until this phase is run.
// TODO results should not be lowered until this phase.
func expandCalls(f *Func) {
	// Calls that need lowering have some number of inputs, including a memory input,
	// and produce a tuple of (value1, value2, ..., mem) where valueK may or may not be SSA-able.

	// With the current ABI those inputs need to be converted into stores to memory,
	// rethreading the call's memory input to the first, and the new call now receiving the last.

	// With the current ABI, the outputs need to be converted to loads, which will all use the call's
	// memory output as their input.
	sp, _ := f.spSb()
	x := &expandState{
		f:                  f,
		abi1:               f.ABI1,
		debug:              f.pass.debug > 0,
		canSSAType:         f.fe.CanSSA,
		regSize:            f.Config.RegSize,
		sp:                 sp,
		typs:               &f.Config.Types,
		ptrSize:            f.Config.PtrSize,
		namedSelects:       make(map[*Value][]namedVal),
		sdom:               f.Sdom(),
		commonArgs:         make(map[selKey]*Value),
		memForCall:         make(map[ID]*Value),
		transformedSelects: make(map[ID]bool),
	}

	// For 32-bit, need to deal with decomposition of 64-bit integers, which depends on endianness.
	if f.Config.BigEndian {
		x.lowOffset, x.hiOffset = 4, 0
		x.loRo, x.hiRo = 1, 0
	} else {
		x.lowOffset, x.hiOffset = 0, 4
		x.loRo, x.hiRo = 0, 1
	}

	if x.debug {
		x.Printf("\nexpandsCalls(%s)\n", f.Name)
	}

	for i, name := range f.Names {
		t := name.Type
		if x.isAlreadyExpandedAggregateType(t) {
			for j, v := range f.NamedValues[*name] {
				if v.Op == OpSelectN || v.Op == OpArg && x.isAlreadyExpandedAggregateType(v.Type) {
					ns := x.namedSelects[v]
					x.namedSelects[v] = append(ns, namedVal{locIndex: i, valIndex: j})
				}
			}
		}
	}

	// TODO if too slow, whole program iteration can be replaced w/ slices of appropriate values, accumulated in first loop here.

	// Step 0: rewrite the calls to convert args to calls into stores/register movement.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			firstArg := 0
			switch v.Op {
			case OpStaticLECall:
			case OpInterLECall:
				firstArg = 1
			case OpClosureLECall:
				firstArg = 2
			default:
				continue
			}
			x.rewriteArgs(v, firstArg)
		}
		if isBlockMultiValueExit(b) {
			x.indent(3)
			// Very similar to code in rewriteArgs, but results instead of args.
			v := b.Controls[0]
			m0 := v.MemoryArg()
			mem := m0
			aux := f.OwnAux
			pos := v.Pos.WithNotStmt()
			allResults := []*Value{}
			if x.debug {
				x.Printf("multiValueExit rewriting %s\n", v.LongString())
			}
			var oldArgs []*Value
			for j, a := range v.Args[:len(v.Args)-1] {
				oldArgs = append(oldArgs, a)
				i := int64(j)
				auxType := aux.TypeOfResult(i)
				auxBase := b.NewValue2A(v.Pos, OpLocalAddr, types.NewPtr(auxType), aux.NameOfResult(i), x.sp, mem)
				auxOffset := int64(0)
				auxSize := aux.SizeOfResult(i)
				aRegs := aux.RegsOfResult(int64(j))
				if len(aRegs) == 0 && a.Op == OpDereference {
					// Avoid a self-move, and if one is detected try to remove the already-inserted VarDef for the assignment that won't happen.
					if dAddr, dMem := a.Args[0], a.Args[1]; dAddr.Op == OpLocalAddr && dAddr.Args[0].Op == OpSP &&
						dAddr.Args[1] == dMem && dAddr.Aux == aux.NameOfResult(i) {
						if dMem.Op == OpVarDef && dMem.Aux == dAddr.Aux {
							dMem.copyOf(dMem.MemoryArg()) // elide the VarDef
						}
						continue
					}
					mem = x.rewriteDereference(v.Block, auxBase, a, mem, auxOffset, auxSize, auxType, pos)
				} else {
					if a.Op == OpLoad && a.Args[0].Op == OpLocalAddr {
						addr := a.Args[0] // This is a self-move. // TODO(register args) do what here for registers?
						if addr.MemoryArg() == a.MemoryArg() && addr.Aux == aux.NameOfResult(i) {
							continue
						}
					}
					var rc registerCursor
					var result *[]*Value
					if len(aRegs) > 0 {
						result = &allResults
					}
					rc.init(aRegs, aux.abiInfo, result, auxBase)
					mem = x.storeArgOrLoad(v.Pos, b, a, mem, aux.TypeOfResult(i), auxOffset, 0, rc)
				}
			}
			v.resetArgs()
			v.AddArgs(allResults...)
			v.AddArg(mem)
			v.Type = types.NewResults(append(abi.RegisterTypes(aux.abiInfo.OutParams()), types.TypeMem))
			b.SetControl(v)
			for _, a := range oldArgs {
				if a.Uses == 0 {
					if x.debug {
						x.Printf("...marking %v unused\n", a.LongString())
					}
					a.invalidateRecursively()
				}
			}
			if x.debug {
				x.Printf("...multiValueExit new result %s\n", v.LongString())
			}
			x.indent(-3)
		}
	}

	// Step 1: any stores of aggregates remaining are believed to be sourced from call results or args.
	// Decompose those stores into a series of smaller stores, adding selection ops as necessary.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			if v.Op == OpStore {
				t := v.Aux.(*types.Type)
				source := v.Args[1]
				tSrc := source.Type
				iAEATt := x.isAlreadyExpandedAggregateType(t)

				if !iAEATt {
					// guarding against store immediate struct into interface data field -- store type is *uint8
					// TODO can this happen recursively?
					iAEATt = x.isAlreadyExpandedAggregateType(tSrc)
					if iAEATt {
						t = tSrc
					}
				}
				dst, mem := v.Args[0], v.Args[2]
				mem = x.storeArgOrLoad(v.Pos, b, source, mem, t, 0, 0, registerCursor{storeDest: dst})
				v.copyOf(mem)
			}
		}
	}

	val2Preds := make(map[*Value]int32) // Used to accumulate dependency graph of selection operations for topological ordering.

	// Step 2: transform or accumulate selection operations for rewrite in topological order.
	//
	// Aggregate types that have already (in earlier phases) been transformed must be lowered comprehensively to finish
	// the transformation (user-defined structs and arrays, slices, strings, interfaces, complex, 64-bit on 32-bit architectures),
	//
	// Any select-for-addressing applied to call results can be transformed directly.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			// Accumulate chains of selectors for processing in topological order
			switch v.Op {
			case OpStructSelect, OpArraySelect,
				OpIData, OpITab,
				OpStringPtr, OpStringLen,
				OpSlicePtr, OpSliceLen, OpSliceCap, OpSlicePtrUnchecked,
				OpComplexReal, OpComplexImag,
				OpInt64Hi, OpInt64Lo:
				w := v.Args[0]
				switch w.Op {
				case OpStructSelect, OpArraySelect, OpSelectN, OpArg:
					val2Preds[w] += 1
					if x.debug {
						x.Printf("v2p[%s] = %d\n", w.LongString(), val2Preds[w])
					}
				}
				fallthrough

			case OpSelectN:
				if _, ok := val2Preds[v]; !ok {
					val2Preds[v] = 0
					if x.debug {
						x.Printf("v2p[%s] = %d\n", v.LongString(), val2Preds[v])
					}
				}

			case OpArg:
				if !x.isAlreadyExpandedAggregateType(v.Type) {
					continue
				}
				if _, ok := val2Preds[v]; !ok {
					val2Preds[v] = 0
					if x.debug {
						x.Printf("v2p[%s] = %d\n", v.LongString(), val2Preds[v])
					}
				}

			case OpSelectNAddr:
				// Do these directly, there are no chains of selectors.
				call := v.Args[0]
				which := v.AuxInt
				aux := call.Aux.(*AuxCall)
				pt := v.Type
				off := x.offsetFrom(x.f.Entry, x.sp, aux.OffsetOfResult(which), pt)
				v.copyOf(off)
			}
		}
	}

	// Step 3: Compute topological order of selectors,
	// then process it in reverse to eliminate duplicates,
	// then forwards to rewrite selectors.
	//
	// All chains of selectors end up in same block as the call.

	// Compilation must be deterministic, so sort after extracting first zeroes from map.
	// Sorting allows dominators-last order within each batch,
	// so that the backwards scan for duplicates will most often find copies from dominating blocks (it is best-effort).
	var toProcess []*Value
	less := func(i, j int) bool {
		vi, vj := toProcess[i], toProcess[j]
		bi, bj := vi.Block, vj.Block
		if bi == bj {
			return vi.ID < vj.ID
		}
		return x.sdom.domorder(bi) > x.sdom.domorder(bj) // reverse the order to put dominators last.
	}

	// Accumulate order in allOrdered
	var allOrdered []*Value
	for v, n := range val2Preds {
		if n == 0 {
			allOrdered = append(allOrdered, v)
		}
	}
	last := 0 // allOrdered[0:last] has been top-sorted and processed
	for len(val2Preds) > 0 {
		toProcess = allOrdered[last:]
		last = len(allOrdered)
		sort.SliceStable(toProcess, less)
		for _, v := range toProcess {
			delete(val2Preds, v)
			if v.Op == OpArg {
				continue // no Args[0], hence done.
			}
			w := v.Args[0]
			n, ok := val2Preds[w]
			if !ok {
				continue
			}
			if n == 1 {
				allOrdered = append(allOrdered, w)
				delete(val2Preds, w)
				continue
			}
			val2Preds[w] = n - 1
		}
	}

	x.commonSelectors = make(map[selKey]*Value)
	// Rewrite duplicate selectors as copies where possible.
	for i := len(allOrdered) - 1; i >= 0; i-- {
		v := allOrdered[i]
		if v.Op == OpArg {
			continue
		}
		w := v.Args[0]
		if w.Op == OpCopy {
			for w.Op == OpCopy {
				w = w.Args[0]
			}
			v.SetArg(0, w)
		}
		typ := v.Type
		if typ.IsMemory() {
			continue // handled elsewhere, not an indexable result
		}
		size := typ.Size()
		offset := int64(0)
		switch v.Op {
		case OpStructSelect:
			if w.Type.Kind() == types.TSTRUCT {
				offset = w.Type.FieldOff(int(v.AuxInt))
			} else { // Immediate interface data artifact, offset is zero.
				f.Fatalf("Expand calls interface data problem, func %s, v=%s, w=%s\n", f.Name, v.LongString(), w.LongString())
			}
		case OpArraySelect:
			offset = size * v.AuxInt
		case OpSelectN:
			offset = v.AuxInt // offset is just a key, really.
		case OpInt64Hi:
			offset = x.hiOffset
		case OpInt64Lo:
			offset = x.lowOffset
		case OpStringLen, OpSliceLen, OpIData:
			offset = x.ptrSize
		case OpSliceCap:
			offset = 2 * x.ptrSize
		case OpComplexImag:
			offset = size
		}
		sk := selKey{from: w, size: size, offsetOrIndex: offset, typ: typ}
		dupe := x.commonSelectors[sk]
		if dupe == nil {
			x.commonSelectors[sk] = v
		} else if x.sdom.IsAncestorEq(dupe.Block, v.Block) {
			if x.debug {
				x.Printf("Duplicate, make %s copy of %s\n", v, dupe)
			}
			v.copyOf(dupe)
		} else {
			// Because values are processed in dominator order, the old common[s] will never dominate after a miss is seen.
			// Installing the new value might match some future values.
			x.commonSelectors[sk] = v
		}
	}

	// Indices of entries in f.Names that need to be deleted.
	var toDelete []namedVal

	// Rewrite selectors.
	for i, v := range allOrdered {
		if x.debug {
			b := v.Block
			x.Printf("allOrdered[%d] = b%d, %s, uses=%d\n", i, b.ID, v.LongString(), v.Uses)
		}
		if v.Uses == 0 {
			v.invalidateRecursively()
			continue
		}
		if v.Op == OpCopy {
			continue
		}
		locs := x.rewriteSelect(v, v, 0, 0)
		// Install new names.
		if v.Type.IsMemory() {
			continue
		}
		// Leaf types may have debug locations
		if !x.isAlreadyExpandedAggregateType(v.Type) {
			for _, l := range locs {
				if _, ok := f.NamedValues[*l]; !ok {
					f.Names = append(f.Names, l)
				}
				f.NamedValues[*l] = append(f.NamedValues[*l], v)
			}
			continue
		}
		if ns, ok := x.namedSelects[v]; ok {
			// Not-leaf types that had debug locations need to lose them.

			toDelete = append(toDelete, ns...)
		}
	}

	deleteNamedVals(f, toDelete)

	// Step 4: rewrite the calls themselves, correcting the type.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			switch v.Op {
			case OpArg:
				x.rewriteArgToMemOrRegs(v)
			case OpStaticLECall:
				v.Op = OpStaticCall
				rts := abi.RegisterTypes(v.Aux.(*AuxCall).abiInfo.OutParams())
				v.Type = types.NewResults(append(rts, types.TypeMem))
			case OpClosureLECall:
				v.Op = OpClosureCall
				rts := abi.RegisterTypes(v.Aux.(*AuxCall).abiInfo.OutParams())
				v.Type = types.NewResults(append(rts, types.TypeMem))
			case OpInterLECall:
				v.Op = OpInterCall
				rts := abi.RegisterTypes(v.Aux.(*AuxCall).abiInfo.OutParams())
				v.Type = types.NewResults(append(rts, types.TypeMem))
			}
		}
	}

	// Step 5: dedup OpArgXXXReg values. Mostly it is already dedup'd by commonArgs,
	// but there are cases that we have same OpArgXXXReg values with different types.
	// E.g. string is sometimes decomposed as { *int8, int }, sometimes as { unsafe.Pointer, uintptr }.
	// (Can we avoid that?)
	var IArg, FArg [32]*Value
	for _, v := range f.Entry.Values {
		switch v.Op {
		case OpArgIntReg:
			i := v.AuxInt
			if w := IArg[i]; w != nil {
				if w.Type.Size() != v.Type.Size() {
					f.Fatalf("incompatible OpArgIntReg [%d]: %s and %s", i, v.LongString(), w.LongString())
				}
				if w.Type.IsUnsafePtr() && !v.Type.IsUnsafePtr() {
					// Update unsafe.Pointer type if we know the actual pointer type.
					w.Type = v.Type
				}
				// TODO: don't dedup pointer and scalar? Rewrite to OpConvert? Can it happen?
				v.copyOf(w)
			} else {
				IArg[i] = v
			}
		case OpArgFloatReg:
			i := v.AuxInt
			if w := FArg[i]; w != nil {
				if w.Type.Size() != v.Type.Size() {
					f.Fatalf("incompatible OpArgFloatReg [%d]: %v and %v", i, v, w)
				}
				v.copyOf(w)
			} else {
				FArg[i] = v
			}
		}
	}

	// Step 6: elide any copies introduced.
	// Update named values.
	for _, name := range f.Names {
		values := f.NamedValues[*name]
		for i, v := range values {
			if v.Op == OpCopy {
				a := v.Args[0]
				for a.Op == OpCopy {
					a = a.Args[0]
				}
				values[i] = a
			}
		}
	}
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			for i, a := range v.Args {
				if a.Op != OpCopy {
					continue
				}
				aa := copySource(a)
				v.SetArg(i, aa)
				for a.Uses == 0 {
					b := a.Args[0]
					a.invalidateRecursively()
					a = b
				}
			}
		}
	}

	// Rewriting can attach lines to values that are unlikely to survive code generation, so move them to a use.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			for _, a := range v.Args {
				if a.Pos.IsStmt() != src.PosIsStmt {
					continue
				}
				if a.Type.IsMemory() {
					continue
				}
				if a.Pos.Line() != v.Pos.Line() {
					continue
				}
				if !a.Pos.SameFile(v.Pos) {
					continue
				}
				switch a.Op {
				case OpArgIntReg, OpArgFloatReg, OpSelectN:
					v.Pos = v.Pos.WithIsStmt()
					a.Pos = a.Pos.WithDefaultStmt()
				}
			}
		}
	}
}

// rewriteArgToMemOrRegs converts OpArg v in-place into the register version of v,
// if that is appropriate.
func (x *expandState) rewriteArgToMemOrRegs(v *Value) *Value {
	if x.debug {
		x.indent(3)
		defer x.indent(-3)
		x.Printf("rewriteArgToMemOrRegs(%s)\n", v.LongString())
	}
	pa := x.prAssignForArg(v)
	switch len(pa.Registers) {
	case 0:
		frameOff := v.Aux.(*ir.Name).FrameOffset()
		if pa.Offset() != int32(frameOff+x.f.ABISelf.LocalsOffset()) {
			panic(fmt.Errorf("Parameter assignment %d and OpArg.Aux frameOffset %d disagree, op=%s",
				pa.Offset(), frameOff, v.LongString()))
		}
	case 1:
		t := v.Type
		key := selKey{v, 0, t.Size(), t}
		w := x.commonArgs[key]
		if w != nil {
			v.copyOf(w)
			break
		}
		r := pa.Registers[0]
		var i int64
		v.Op, i = ArgOpAndRegisterFor(r, x.f.ABISelf)
		v.Aux = &AuxNameOffset{v.Aux.(*ir.Name), 0}
		v.AuxInt = i
		x.commonArgs[key] = v

	default:
		panic(badVal("Saw unexpanded OpArg", v))
	}
	if x.debug {
		x.Printf("-->%s\n", v.LongString())
	}
	return v
}

// newArgToMemOrRegs either rewrites toReplace into an OpArg referencing memory or into an OpArgXXXReg to a register,
// or rewrites it into a copy of the appropriate OpArgXXX.  The actual OpArgXXX is determined by combining baseArg (an OpArg)
// with offset, regOffset, and t to determine which portion of it to reference (either all or a part, in memory or in registers).
func (x *expandState) newArgToMemOrRegs(baseArg, toReplace *Value, offset int64, regOffset Abi1RO, t *types.Type, pos src.XPos) *Value {
	if x.debug {
		x.indent(3)
		defer x.indent(-3)
		x.Printf("newArgToMemOrRegs(base=%s; toReplace=%s; t=%s; memOff=%d; regOff=%d)\n", baseArg.String(), toReplace.LongString(), t.String(), offset, regOffset)
	}
	key := selKey{baseArg, offset, t.Size(), t}
	w := x.commonArgs[key]
	if w != nil {
		if toReplace != nil {
			toReplace.copyOf(w)
		}
		return w
	}

	pa := x.prAssignForArg(baseArg)
	if len(pa.Registers) == 0 { // Arg is on stack
		frameOff := baseArg.Aux.(*ir.Name).FrameOffset()
		if pa.Offset() != int32(frameOff+x.f.ABISelf.LocalsOffset()) {
			panic(fmt.Errorf("Parameter assignment %d and OpArg.Aux frameOffset %d disagree, op=%s",
				pa.Offset(), frameOff, baseArg.LongString()))
		}
		aux := baseArg.Aux
		auxInt := baseArg.AuxInt + offset
		if toReplace != nil && toReplace.Block == baseArg.Block {
			toReplace.reset(OpArg)
			toReplace.Aux = aux
			toReplace.AuxInt = auxInt
			toReplace.Type = t
			w = toReplace
		} else {
			w = baseArg.Block.NewValue0IA(pos, OpArg, t, auxInt, aux)
		}
		x.commonArgs[key] = w
		if toReplace != nil {
			toReplace.copyOf(w)
		}
		if x.debug {
			x.Printf("-->%s\n", w.LongString())
		}
		return w
	}
	// Arg is in registers
	r := pa.Registers[regOffset]
	op, auxInt := ArgOpAndRegisterFor(r, x.f.ABISelf)
	if op == OpArgIntReg && t.IsFloat() || op == OpArgFloatReg && t.IsInteger() {
		fmt.Printf("pa=%v\nx.f.OwnAux.abiInfo=%s\n",
			pa.ToString(x.f.ABISelf, true),
			x.f.OwnAux.abiInfo.String())
		panic(fmt.Errorf("Op/Type mismatch, op=%s, type=%s", op.String(), t.String()))
	}
	if baseArg.AuxInt != 0 {
		base.Fatalf("BaseArg %s bound to registers has non-zero AuxInt", baseArg.LongString())
	}
	aux := &AuxNameOffset{baseArg.Aux.(*ir.Name), offset}
	if toReplace != nil && toReplace.Block == baseArg.Block {
		toReplace.reset(op)
		toReplace.Aux = aux
		toReplace.AuxInt = auxInt
		toReplace.Type = t
		w = toReplace
	} else {
		w = baseArg.Block.NewValue0IA(pos, op, t, auxInt, aux)
	}
	x.commonArgs[key] = w
	if toReplace != nil {
		toReplace.copyOf(w)
	}
	if x.debug {
		x.Printf("-->%s\n", w.LongString())
	}
	return w

}

// argOpAndRegisterFor converts an abi register index into an ssa Op and corresponding
// arg register index.
func ArgOpAndRegisterFor(r abi.RegIndex, abiConfig *abi.ABIConfig) (Op, int64) {
	i := abiConfig.FloatIndexFor(r)
	if i >= 0 { // float PR
		return OpArgFloatReg, i
	}
	return OpArgIntReg, int64(r)
}