aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ssa/debug.go
blob: 8e2872363b6edbceaa5a3c1c00c396569092b9bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"cmd/compile/internal/abi"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/types"
	"cmd/internal/dwarf"
	"cmd/internal/obj"
	"cmd/internal/src"
	"encoding/hex"
	"fmt"
	"internal/buildcfg"
	"math/bits"
	"sort"
	"strings"
)

type SlotID int32
type VarID int32

// A FuncDebug contains all the debug information for the variables in a
// function. Variables are identified by their LocalSlot, which may be the
// result of decomposing a larger variable.
type FuncDebug struct {
	// Slots is all the slots used in the debug info, indexed by their SlotID.
	Slots []LocalSlot
	// The user variables, indexed by VarID.
	Vars []*ir.Name
	// The slots that make up each variable, indexed by VarID.
	VarSlots [][]SlotID
	// The location list data, indexed by VarID. Must be processed by PutLocationList.
	LocationLists [][]byte

	// Filled in by the user. Translates Block and Value ID to PC.
	GetPC func(ID, ID) int64
}

type BlockDebug struct {
	// Whether the block had any changes to user variables at all.
	relevant bool
	// State at the end of the block if it's fully processed. Immutable once initialized.
	endState []liveSlot
}

// A liveSlot is a slot that's live in loc at entry/exit of a block.
type liveSlot struct {
	// An inlined VarLoc, so it packs into 16 bytes instead of 20.
	Registers RegisterSet
	StackOffset

	slot SlotID
}

func (loc liveSlot) absent() bool {
	return loc.Registers == 0 && !loc.onStack()
}

// StackOffset encodes whether a value is on the stack and if so, where. It is
// a 31-bit integer followed by a presence flag at the low-order bit.
type StackOffset int32

func (s StackOffset) onStack() bool {
	return s != 0
}

func (s StackOffset) stackOffsetValue() int32 {
	return int32(s) >> 1
}

// stateAtPC is the current state of all variables at some point.
type stateAtPC struct {
	// The location of each known slot, indexed by SlotID.
	slots []VarLoc
	// The slots present in each register, indexed by register number.
	registers [][]SlotID
}

// reset fills state with the live variables from live.
func (state *stateAtPC) reset(live []liveSlot) {
	slots, registers := state.slots, state.registers
	for i := range slots {
		slots[i] = VarLoc{}
	}
	for i := range registers {
		registers[i] = registers[i][:0]
	}
	for _, live := range live {
		slots[live.slot] = VarLoc{live.Registers, live.StackOffset}
		if live.Registers == 0 {
			continue
		}

		mask := uint64(live.Registers)
		for {
			if mask == 0 {
				break
			}
			reg := uint8(bits.TrailingZeros64(mask))
			mask &^= 1 << reg

			registers[reg] = append(registers[reg], live.slot)
		}
	}
	state.slots, state.registers = slots, registers
}

func (s *debugState) LocString(loc VarLoc) string {
	if loc.absent() {
		return "<nil>"
	}

	var storage []string
	if loc.onStack() {
		storage = append(storage, "stack")
	}

	mask := uint64(loc.Registers)
	for {
		if mask == 0 {
			break
		}
		reg := uint8(bits.TrailingZeros64(mask))
		mask &^= 1 << reg

		storage = append(storage, s.registers[reg].String())
	}
	return strings.Join(storage, ",")
}

// A VarLoc describes the storage for part of a user variable.
type VarLoc struct {
	// The registers this variable is available in. There can be more than
	// one in various situations, e.g. it's being moved between registers.
	Registers RegisterSet

	StackOffset
}

func (loc VarLoc) absent() bool {
	return loc.Registers == 0 && !loc.onStack()
}

var BlockStart = &Value{
	ID:  -10000,
	Op:  OpInvalid,
	Aux: StringToAux("BlockStart"),
}

var BlockEnd = &Value{
	ID:  -20000,
	Op:  OpInvalid,
	Aux: StringToAux("BlockEnd"),
}

var FuncEnd = &Value{
	ID:  -30000,
	Op:  OpInvalid,
	Aux: StringToAux("FuncEnd"),
}

// RegisterSet is a bitmap of registers, indexed by Register.num.
type RegisterSet uint64

// logf prints debug-specific logging to stdout (always stdout) if the current
// function is tagged by GOSSAFUNC (for ssa output directed either to stdout or html).
func (s *debugState) logf(msg string, args ...interface{}) {
	if s.f.PrintOrHtmlSSA {
		fmt.Printf(msg, args...)
	}
}

type debugState struct {
	// See FuncDebug.
	slots    []LocalSlot
	vars     []*ir.Name
	varSlots [][]SlotID
	lists    [][]byte

	// The user variable that each slot rolls up to, indexed by SlotID.
	slotVars []VarID

	f              *Func
	loggingEnabled bool
	registers      []Register
	stackOffset    func(LocalSlot) int32
	ctxt           *obj.Link

	// The names (slots) associated with each value, indexed by Value ID.
	valueNames [][]SlotID

	// The current state of whatever analysis is running.
	currentState stateAtPC
	liveCount    []int
	changedVars  *sparseSet

	// The pending location list entry for each user variable, indexed by VarID.
	pendingEntries []pendingEntry

	varParts           map[*ir.Name][]SlotID
	blockDebug         []BlockDebug
	pendingSlotLocs    []VarLoc
	liveSlots          []liveSlot
	liveSlotSliceBegin int
	partsByVarOffset   sort.Interface
}

func (state *debugState) initializeCache(f *Func, numVars, numSlots int) {
	// One blockDebug per block. Initialized in allocBlock.
	if cap(state.blockDebug) < f.NumBlocks() {
		state.blockDebug = make([]BlockDebug, f.NumBlocks())
	} else {
		// This local variable, and the ones like it below, enable compiler
		// optimizations. Don't inline them.
		b := state.blockDebug[:f.NumBlocks()]
		for i := range b {
			b[i] = BlockDebug{}
		}
	}

	// A list of slots per Value. Reuse the previous child slices.
	if cap(state.valueNames) < f.NumValues() {
		old := state.valueNames
		state.valueNames = make([][]SlotID, f.NumValues())
		copy(state.valueNames, old)
	}
	vn := state.valueNames[:f.NumValues()]
	for i := range vn {
		vn[i] = vn[i][:0]
	}

	// Slot and register contents for currentState. Cleared by reset().
	if cap(state.currentState.slots) < numSlots {
		state.currentState.slots = make([]VarLoc, numSlots)
	} else {
		state.currentState.slots = state.currentState.slots[:numSlots]
	}
	if cap(state.currentState.registers) < len(state.registers) {
		state.currentState.registers = make([][]SlotID, len(state.registers))
	} else {
		state.currentState.registers = state.currentState.registers[:len(state.registers)]
	}

	// Used many times by mergePredecessors.
	if cap(state.liveCount) < numSlots {
		state.liveCount = make([]int, numSlots)
	} else {
		state.liveCount = state.liveCount[:numSlots]
	}

	// A relatively small slice, but used many times as the return from processValue.
	state.changedVars = newSparseSet(numVars)

	// A pending entry per user variable, with space to track each of its pieces.
	numPieces := 0
	for i := range state.varSlots {
		numPieces += len(state.varSlots[i])
	}
	if cap(state.pendingSlotLocs) < numPieces {
		state.pendingSlotLocs = make([]VarLoc, numPieces)
	} else {
		psl := state.pendingSlotLocs[:numPieces]
		for i := range psl {
			psl[i] = VarLoc{}
		}
	}
	if cap(state.pendingEntries) < numVars {
		state.pendingEntries = make([]pendingEntry, numVars)
	}
	pe := state.pendingEntries[:numVars]
	freePieceIdx := 0
	for varID, slots := range state.varSlots {
		pe[varID] = pendingEntry{
			pieces: state.pendingSlotLocs[freePieceIdx : freePieceIdx+len(slots)],
		}
		freePieceIdx += len(slots)
	}
	state.pendingEntries = pe

	if cap(state.lists) < numVars {
		state.lists = make([][]byte, numVars)
	} else {
		state.lists = state.lists[:numVars]
		for i := range state.lists {
			state.lists[i] = nil
		}
	}

	state.liveSlots = state.liveSlots[:0]
	state.liveSlotSliceBegin = 0
}

func (state *debugState) allocBlock(b *Block) *BlockDebug {
	return &state.blockDebug[b.ID]
}

func (state *debugState) appendLiveSlot(ls liveSlot) {
	state.liveSlots = append(state.liveSlots, ls)
}

func (state *debugState) getLiveSlotSlice() []liveSlot {
	s := state.liveSlots[state.liveSlotSliceBegin:]
	state.liveSlotSliceBegin = len(state.liveSlots)
	return s
}

func (s *debugState) blockEndStateString(b *BlockDebug) string {
	endState := stateAtPC{slots: make([]VarLoc, len(s.slots)), registers: make([][]SlotID, len(s.registers))}
	endState.reset(b.endState)
	return s.stateString(endState)
}

func (s *debugState) stateString(state stateAtPC) string {
	var strs []string
	for slotID, loc := range state.slots {
		if !loc.absent() {
			strs = append(strs, fmt.Sprintf("\t%v = %v\n", s.slots[slotID], s.LocString(loc)))
		}
	}

	strs = append(strs, "\n")
	for reg, slots := range state.registers {
		if len(slots) != 0 {
			var slotStrs []string
			for _, slot := range slots {
				slotStrs = append(slotStrs, s.slots[slot].String())
			}
			strs = append(strs, fmt.Sprintf("\t%v = %v\n", &s.registers[reg], slotStrs))
		}
	}

	if len(strs) == 1 {
		return "(no vars)\n"
	}
	return strings.Join(strs, "")
}

// slotCanonicalizer is a table used to lookup and canonicalize
// LocalSlot's in a type insensitive way (e.g. taking into account the
// base name, offset, and width of the slot, but ignoring the slot
// type).
type slotCanonicalizer struct {
	slmap  map[slotKey]SlKeyIdx
	slkeys []LocalSlot
}

func newSlotCanonicalizer() *slotCanonicalizer {
	return &slotCanonicalizer{
		slmap:  make(map[slotKey]SlKeyIdx),
		slkeys: []LocalSlot{LocalSlot{N: nil}},
	}
}

type SlKeyIdx uint32

const noSlot = SlKeyIdx(0)

// slotKey is a type-insensitive encapsulation of a LocalSlot; it
// is used to key a map within slotCanonicalizer.
type slotKey struct {
	name        *ir.Name
	offset      int64
	width       int64
	splitOf     SlKeyIdx // idx in slkeys slice in slotCanonicalizer
	splitOffset int64
}

// lookup looks up a LocalSlot in the slot canonicalizer "sc", returning
// a canonical index for the slot, and adding it to the table if need
// be. Return value is the canonical slot index, and a boolean indicating
// whether the slot was found in the table already (TRUE => found).
func (sc *slotCanonicalizer) lookup(ls LocalSlot) (SlKeyIdx, bool) {
	split := noSlot
	if ls.SplitOf != nil {
		split, _ = sc.lookup(*ls.SplitOf)
	}
	k := slotKey{
		name: ls.N, offset: ls.Off, width: ls.Type.Width,
		splitOf: split, splitOffset: ls.SplitOffset,
	}
	if idx, ok := sc.slmap[k]; ok {
		return idx, true
	}
	rv := SlKeyIdx(len(sc.slkeys))
	sc.slkeys = append(sc.slkeys, ls)
	sc.slmap[k] = rv
	return rv, false
}

func (sc *slotCanonicalizer) canonSlot(idx SlKeyIdx) LocalSlot {
	return sc.slkeys[idx]
}

// PopulateABIInRegArgOps examines the entry block of the function
// and looks for incoming parameters that have missing or partial
// OpArg{Int,Float}Reg values, inserting additional values in
// cases where they are missing. Example:
//
//      func foo(s string, used int, notused int) int {
//        return len(s) + used
//      }
//
// In the function above, the incoming parameter "used" is fully live,
// "notused" is not live, and "s" is partially live (only the length
// field of the string is used). At the point where debug value
// analysis runs, we might expect to see an entry block with:
//
//   b1:
//     v4 = ArgIntReg <uintptr> {s+8} [0] : BX
//     v5 = ArgIntReg <int> {used} [0] : CX
//
// While this is an accurate picture of the live incoming params,
// we also want to have debug locations for non-live params (or
// their non-live pieces), e.g. something like
//
//   b1:
//     v9 = ArgIntReg <*uint8> {s+0} [0] : AX
//     v4 = ArgIntReg <uintptr> {s+8} [0] : BX
//     v5 = ArgIntReg <int> {used} [0] : CX
//     v10 = ArgIntReg <int> {unused} [0] : DI
//
// This function examines the live OpArg{Int,Float}Reg values and
// synthesizes new (dead) values for the non-live params or the
// non-live pieces of partially live params.
//
func PopulateABIInRegArgOps(f *Func) {
	pri := f.ABISelf.ABIAnalyzeFuncType(f.Type.FuncType())

	// When manufacturing new slots that correspond to splits of
	// composite parameters, we want to avoid creating a new sub-slot
	// that differs from some existing sub-slot only by type, since
	// the debug location analysis will treat that slot as a separate
	// entity. To achieve this, create a lookup table of existing
	// slots that is type-insenstitive.
	sc := newSlotCanonicalizer()
	for _, sl := range f.Names {
		sc.lookup(*sl)
	}

	// Add slot -> value entry to f.NamedValues if not already present.
	addToNV := func(v *Value, sl LocalSlot) {
		values, ok := f.NamedValues[sl]
		if !ok {
			// Haven't seen this slot yet.
			sla := f.localSlotAddr(sl)
			f.Names = append(f.Names, sla)
		} else {
			for _, ev := range values {
				if v == ev {
					return
				}
			}
		}
		values = append(values, v)
		f.NamedValues[sl] = values
	}

	newValues := []*Value{}

	abiRegIndexToRegister := func(reg abi.RegIndex) int8 {
		i := f.ABISelf.FloatIndexFor(reg)
		if i >= 0 { // float PR
			return f.Config.floatParamRegs[i]
		} else {
			return f.Config.intParamRegs[reg]
		}
	}

	// Helper to construct a new OpArg{Float,Int}Reg op value.
	var pos src.XPos
	if len(f.Entry.Values) != 0 {
		pos = f.Entry.Values[0].Pos
	}
	synthesizeOpIntFloatArg := func(n *ir.Name, t *types.Type, reg abi.RegIndex, sl LocalSlot) *Value {
		aux := &AuxNameOffset{n, sl.Off}
		op, auxInt := ArgOpAndRegisterFor(reg, f.ABISelf)
		v := f.newValueNoBlock(op, t, pos)
		v.AuxInt = auxInt
		v.Aux = aux
		v.Args = nil
		v.Block = f.Entry
		newValues = append(newValues, v)
		addToNV(v, sl)
		f.setHome(v, &f.Config.registers[abiRegIndexToRegister(reg)])
		return v
	}

	// Make a pass through the entry block looking for
	// OpArg{Int,Float}Reg ops. Record the slots they use in a table
	// ("sc"). We use a type-insensitive lookup for the slot table,
	// since the type we get from the ABI analyzer won't always match
	// what the compiler uses when creating OpArg{Int,Float}Reg ops.
	for _, v := range f.Entry.Values {
		if v.Op == OpArgIntReg || v.Op == OpArgFloatReg {
			aux := v.Aux.(*AuxNameOffset)
			sl := LocalSlot{N: aux.Name, Type: v.Type, Off: aux.Offset}
			// install slot in lookup table
			idx, _ := sc.lookup(sl)
			// add to f.NamedValues if not already present
			addToNV(v, sc.canonSlot(idx))
		} else if v.Op.IsCall() {
			// if we hit a call, we've gone too far.
			break
		}
	}

	// Now make a pass through the ABI in-params, looking for params
	// or pieces of params that we didn't encounter in the loop above.
	for _, inp := range pri.InParams() {
		if !isNamedRegParam(inp) {
			continue
		}
		n := inp.Name.(*ir.Name)

		// Param is spread across one or more registers. Walk through
		// each piece to see whether we've seen an arg reg op for it.
		types, offsets := inp.RegisterTypesAndOffsets()
		for k, t := range types {
			// Note: this recipe for creating a LocalSlot is designed
			// to be compatible with the one used in expand_calls.go
			// as opposed to decompose.go. The expand calls code just
			// takes the base name and creates an offset into it,
			// without using the SplitOf/SplitOffset fields. The code
			// in decompose.go does the opposite -- it creates a
			// LocalSlot object with "Off" set to zero, but with
			// SplitOf pointing to a parent slot, and SplitOffset
			// holding the offset into the parent object.
			pieceSlot := LocalSlot{N: n, Type: t, Off: offsets[k]}

			// Look up this piece to see if we've seen a reg op
			// for it. If not, create one.
			_, found := sc.lookup(pieceSlot)
			if !found {
				// This slot doesn't appear in the map, meaning it
				// corresponds to an in-param that is not live, or
				// a portion of an in-param that is not live/used.
				// Add a new dummy OpArg{Int,Float}Reg for it.
				synthesizeOpIntFloatArg(n, t, inp.Registers[k],
					pieceSlot)
			}
		}
	}

	// Insert the new values into the head of the block.
	f.Entry.Values = append(newValues, f.Entry.Values...)
}

// BuildFuncDebug returns debug information for f.
// f must be fully processed, so that each Value is where it will be when
// machine code is emitted.
func BuildFuncDebug(ctxt *obj.Link, f *Func, loggingEnabled bool, stackOffset func(LocalSlot) int32) *FuncDebug {
	if f.RegAlloc == nil {
		f.Fatalf("BuildFuncDebug on func %v that has not been fully processed", f)
	}
	state := &f.Cache.debugState
	state.loggingEnabled = loggingEnabled
	state.f = f
	state.registers = f.Config.registers
	state.stackOffset = stackOffset
	state.ctxt = ctxt

	if buildcfg.Experiment.RegabiArgs {
		PopulateABIInRegArgOps(f)
	}

	if state.loggingEnabled {
		state.logf("Generating location lists for function %q\n", f.Name)
	}

	if state.varParts == nil {
		state.varParts = make(map[*ir.Name][]SlotID)
	} else {
		for n := range state.varParts {
			delete(state.varParts, n)
		}
	}

	// Recompose any decomposed variables, and establish the canonical
	// IDs for each var and slot by filling out state.vars and state.slots.

	state.slots = state.slots[:0]
	state.vars = state.vars[:0]
	for i, slot := range f.Names {
		state.slots = append(state.slots, *slot)
		if ir.IsSynthetic(slot.N) {
			continue
		}

		topSlot := slot
		for topSlot.SplitOf != nil {
			topSlot = topSlot.SplitOf
		}
		if _, ok := state.varParts[topSlot.N]; !ok {
			state.vars = append(state.vars, topSlot.N)
		}
		state.varParts[topSlot.N] = append(state.varParts[topSlot.N], SlotID(i))
	}

	// Recreate the LocalSlot for each stack-only variable.
	// This would probably be better as an output from stackframe.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			if v.Op == OpVarDef || v.Op == OpVarKill {
				n := v.Aux.(*ir.Name)
				if ir.IsSynthetic(n) {
					continue
				}

				if _, ok := state.varParts[n]; !ok {
					slot := LocalSlot{N: n, Type: v.Type, Off: 0}
					state.slots = append(state.slots, slot)
					state.varParts[n] = []SlotID{SlotID(len(state.slots) - 1)}
					state.vars = append(state.vars, n)
				}
			}
		}
	}

	// Fill in the var<->slot mappings.
	if cap(state.varSlots) < len(state.vars) {
		state.varSlots = make([][]SlotID, len(state.vars))
	} else {
		state.varSlots = state.varSlots[:len(state.vars)]
		for i := range state.varSlots {
			state.varSlots[i] = state.varSlots[i][:0]
		}
	}
	if cap(state.slotVars) < len(state.slots) {
		state.slotVars = make([]VarID, len(state.slots))
	} else {
		state.slotVars = state.slotVars[:len(state.slots)]
	}

	if state.partsByVarOffset == nil {
		state.partsByVarOffset = &partsByVarOffset{}
	}
	for varID, n := range state.vars {
		parts := state.varParts[n]
		state.varSlots[varID] = parts
		for _, slotID := range parts {
			state.slotVars[slotID] = VarID(varID)
		}
		*state.partsByVarOffset.(*partsByVarOffset) = partsByVarOffset{parts, state.slots}
		sort.Sort(state.partsByVarOffset)
	}

	state.initializeCache(f, len(state.varParts), len(state.slots))

	for i, slot := range f.Names {
		if ir.IsSynthetic(slot.N) {
			continue
		}
		for _, value := range f.NamedValues[*slot] {
			state.valueNames[value.ID] = append(state.valueNames[value.ID], SlotID(i))
		}
	}

	blockLocs := state.liveness()
	state.buildLocationLists(blockLocs)

	return &FuncDebug{
		Slots:         state.slots,
		VarSlots:      state.varSlots,
		Vars:          state.vars,
		LocationLists: state.lists,
	}
}

// liveness walks the function in control flow order, calculating the start
// and end state of each block.
func (state *debugState) liveness() []*BlockDebug {
	blockLocs := make([]*BlockDebug, state.f.NumBlocks())

	// Reverse postorder: visit a block after as many as possible of its
	// predecessors have been visited.
	po := state.f.Postorder()
	for i := len(po) - 1; i >= 0; i-- {
		b := po[i]

		// Build the starting state for the block from the final
		// state of its predecessors.
		startState, startValid := state.mergePredecessors(b, blockLocs, nil)
		changed := false
		if state.loggingEnabled {
			state.logf("Processing %v, initial state:\n%v", b, state.stateString(state.currentState))
		}

		// Update locs/registers with the effects of each Value.
		for _, v := range b.Values {
			slots := state.valueNames[v.ID]

			// Loads and stores inherit the names of their sources.
			var source *Value
			switch v.Op {
			case OpStoreReg:
				source = v.Args[0]
			case OpLoadReg:
				switch a := v.Args[0]; a.Op {
				case OpArg, OpPhi:
					source = a
				case OpStoreReg:
					source = a.Args[0]
				default:
					if state.loggingEnabled {
						state.logf("at %v: load with unexpected source op: %v (%v)\n", v, a.Op, a)
					}
				}
			}
			// Update valueNames with the source so that later steps
			// don't need special handling.
			if source != nil {
				slots = append(slots, state.valueNames[source.ID]...)
				state.valueNames[v.ID] = slots
			}

			reg, _ := state.f.getHome(v.ID).(*Register)
			c := state.processValue(v, slots, reg)
			changed = changed || c
		}

		if state.loggingEnabled {
			state.f.Logf("Block %v done, locs:\n%v", b, state.stateString(state.currentState))
		}

		locs := state.allocBlock(b)
		locs.relevant = changed
		if !changed && startValid {
			locs.endState = startState
		} else {
			for slotID, slotLoc := range state.currentState.slots {
				if slotLoc.absent() {
					continue
				}
				state.appendLiveSlot(liveSlot{slot: SlotID(slotID), Registers: slotLoc.Registers, StackOffset: slotLoc.StackOffset})
			}
			locs.endState = state.getLiveSlotSlice()
		}
		blockLocs[b.ID] = locs
	}
	return blockLocs
}

// mergePredecessors takes the end state of each of b's predecessors and
// intersects them to form the starting state for b. It puts that state in
// blockLocs, and fills state.currentState with it. If convenient, it returns
// a reused []liveSlot, true that represents the starting state.
// If previousBlock is non-nil, it registers changes vs. that block's end
// state in state.changedVars. Note that previousBlock will often not be a
// predecessor.
func (state *debugState) mergePredecessors(b *Block, blockLocs []*BlockDebug, previousBlock *Block) ([]liveSlot, bool) {
	// Filter out back branches.
	var predsBuf [10]*Block
	preds := predsBuf[:0]
	for _, pred := range b.Preds {
		if blockLocs[pred.b.ID] != nil {
			preds = append(preds, pred.b)
		}
	}

	if state.loggingEnabled {
		// The logf below would cause preds to be heap-allocated if
		// it were passed directly.
		preds2 := make([]*Block, len(preds))
		copy(preds2, preds)
		state.logf("Merging %v into %v\n", preds2, b)
	}

	// TODO all the calls to this are overkill; only need to do this for slots that are not present in the merge.
	markChangedVars := func(slots []liveSlot) {
		for _, live := range slots {
			state.changedVars.add(ID(state.slotVars[live.slot]))
		}
	}

	if len(preds) == 0 {
		if previousBlock != nil {
			// Mark everything in previous block as changed because it is not a predecessor.
			markChangedVars(blockLocs[previousBlock.ID].endState)
		}
		state.currentState.reset(nil)
		return nil, true
	}

	p0 := blockLocs[preds[0].ID].endState
	if len(preds) == 1 {
		if previousBlock != nil && preds[0].ID != previousBlock.ID {
			// Mark everything in previous block as changed because it is not a predecessor.
			markChangedVars(blockLocs[previousBlock.ID].endState)
		}
		state.currentState.reset(p0)
		return p0, true
	}

	baseID := preds[0].ID
	baseState := p0

	// If previous block is not a predecessor, its location information changes at boundary with this block.
	previousBlockIsNotPredecessor := previousBlock != nil // If it's nil, no info to change.

	if previousBlock != nil {
		// Try to use previousBlock as the base state
		// if possible.
		for _, pred := range preds[1:] {
			if pred.ID == previousBlock.ID {
				baseID = pred.ID
				baseState = blockLocs[pred.ID].endState
				previousBlockIsNotPredecessor = false
				break
			}
		}
	}

	if state.loggingEnabled {
		state.logf("Starting %v with state from b%v:\n%v", b, baseID, state.blockEndStateString(blockLocs[baseID]))
	}

	slotLocs := state.currentState.slots
	for _, predSlot := range baseState {
		slotLocs[predSlot.slot] = VarLoc{predSlot.Registers, predSlot.StackOffset}
		state.liveCount[predSlot.slot] = 1
	}
	for _, pred := range preds {
		if pred.ID == baseID {
			continue
		}
		if state.loggingEnabled {
			state.logf("Merging in state from %v:\n%v", pred, state.blockEndStateString(blockLocs[pred.ID]))
		}
		for _, predSlot := range blockLocs[pred.ID].endState {
			state.liveCount[predSlot.slot]++
			liveLoc := slotLocs[predSlot.slot]
			if !liveLoc.onStack() || !predSlot.onStack() || liveLoc.StackOffset != predSlot.StackOffset {
				liveLoc.StackOffset = 0
			}
			liveLoc.Registers &= predSlot.Registers
			slotLocs[predSlot.slot] = liveLoc
		}
	}

	// Check if the final state is the same as the first predecessor's
	// final state, and reuse it if so. In principle it could match any,
	// but it's probably not worth checking more than the first.
	unchanged := true
	for _, predSlot := range baseState {
		if state.liveCount[predSlot.slot] != len(preds) ||
			slotLocs[predSlot.slot].Registers != predSlot.Registers ||
			slotLocs[predSlot.slot].StackOffset != predSlot.StackOffset {
			unchanged = false
			break
		}
	}
	if unchanged {
		if state.loggingEnabled {
			state.logf("After merge, %v matches b%v exactly.\n", b, baseID)
		}
		if previousBlockIsNotPredecessor {
			// Mark everything in previous block as changed because it is not a predecessor.
			markChangedVars(blockLocs[previousBlock.ID].endState)
		}
		state.currentState.reset(baseState)
		return baseState, true
	}

	for reg := range state.currentState.registers {
		state.currentState.registers[reg] = state.currentState.registers[reg][:0]
	}

	// A slot is live if it was seen in all predecessors, and they all had
	// some storage in common.
	for _, predSlot := range baseState {
		slotLoc := slotLocs[predSlot.slot]

		if state.liveCount[predSlot.slot] != len(preds) {
			// Seen in only some predecessors. Clear it out.
			slotLocs[predSlot.slot] = VarLoc{}
			continue
		}

		// Present in all predecessors.
		mask := uint64(slotLoc.Registers)
		for {
			if mask == 0 {
				break
			}
			reg := uint8(bits.TrailingZeros64(mask))
			mask &^= 1 << reg
			state.currentState.registers[reg] = append(state.currentState.registers[reg], predSlot.slot)
		}
	}

	if previousBlockIsNotPredecessor {
		// Mark everything in previous block as changed because it is not a predecessor.
		markChangedVars(blockLocs[previousBlock.ID].endState)

	}
	return nil, false
}

// processValue updates locs and state.registerContents to reflect v, a value with
// the names in vSlots and homed in vReg.  "v" becomes visible after execution of
// the instructions evaluating it. It returns which VarIDs were modified by the
// Value's execution.
func (state *debugState) processValue(v *Value, vSlots []SlotID, vReg *Register) bool {
	locs := state.currentState
	changed := false
	setSlot := func(slot SlotID, loc VarLoc) {
		changed = true
		state.changedVars.add(ID(state.slotVars[slot]))
		state.currentState.slots[slot] = loc
	}

	// Handle any register clobbering. Call operations, for example,
	// clobber all registers even though they don't explicitly write to
	// them.
	clobbers := uint64(opcodeTable[v.Op].reg.clobbers)
	for {
		if clobbers == 0 {
			break
		}
		reg := uint8(bits.TrailingZeros64(clobbers))
		clobbers &^= 1 << reg

		for _, slot := range locs.registers[reg] {
			if state.loggingEnabled {
				state.logf("at %v: %v clobbered out of %v\n", v, state.slots[slot], &state.registers[reg])
			}

			last := locs.slots[slot]
			if last.absent() {
				state.f.Fatalf("at %v: slot %v in register %v with no location entry", v, state.slots[slot], &state.registers[reg])
				continue
			}
			regs := last.Registers &^ (1 << reg)
			setSlot(slot, VarLoc{regs, last.StackOffset})
		}

		locs.registers[reg] = locs.registers[reg][:0]
	}

	switch {
	case v.Op == OpVarDef, v.Op == OpVarKill:
		n := v.Aux.(*ir.Name)
		if ir.IsSynthetic(n) {
			break
		}

		slotID := state.varParts[n][0]
		var stackOffset StackOffset
		if v.Op == OpVarDef {
			stackOffset = StackOffset(state.stackOffset(state.slots[slotID])<<1 | 1)
		}
		setSlot(slotID, VarLoc{0, stackOffset})
		if state.loggingEnabled {
			if v.Op == OpVarDef {
				state.logf("at %v: stack-only var %v now live\n", v, state.slots[slotID])
			} else {
				state.logf("at %v: stack-only var %v now dead\n", v, state.slots[slotID])
			}
		}

	case v.Op == OpArg:
		home := state.f.getHome(v.ID).(LocalSlot)
		stackOffset := state.stackOffset(home)<<1 | 1
		for _, slot := range vSlots {
			if state.loggingEnabled {
				state.logf("at %v: arg %v now on stack in location %v\n", v, state.slots[slot], home)
				if last := locs.slots[slot]; !last.absent() {
					state.logf("at %v: unexpected arg op on already-live slot %v\n", v, state.slots[slot])
				}
			}

			setSlot(slot, VarLoc{0, StackOffset(stackOffset)})
		}

	case v.Op == OpStoreReg:
		home := state.f.getHome(v.ID).(LocalSlot)
		stackOffset := state.stackOffset(home)<<1 | 1
		for _, slot := range vSlots {
			last := locs.slots[slot]
			if last.absent() {
				if state.loggingEnabled {
					state.logf("at %v: unexpected spill of unnamed register %s\n", v, vReg)
				}
				break
			}

			setSlot(slot, VarLoc{last.Registers, StackOffset(stackOffset)})
			if state.loggingEnabled {
				state.logf("at %v: %v spilled to stack location %v\n", v, state.slots[slot], home)
			}
		}

	case vReg != nil:
		if state.loggingEnabled {
			newSlots := make([]bool, len(state.slots))
			for _, slot := range vSlots {
				newSlots[slot] = true
			}

			for _, slot := range locs.registers[vReg.num] {
				if !newSlots[slot] {
					state.logf("at %v: overwrote %v in register %v\n", v, state.slots[slot], vReg)
				}
			}
		}

		for _, slot := range locs.registers[vReg.num] {
			last := locs.slots[slot]
			setSlot(slot, VarLoc{last.Registers &^ (1 << uint8(vReg.num)), last.StackOffset})
		}
		locs.registers[vReg.num] = locs.registers[vReg.num][:0]
		locs.registers[vReg.num] = append(locs.registers[vReg.num], vSlots...)
		for _, slot := range vSlots {
			if state.loggingEnabled {
				state.logf("at %v: %v now in %s\n", v, state.slots[slot], vReg)
			}

			last := locs.slots[slot]
			setSlot(slot, VarLoc{1<<uint8(vReg.num) | last.Registers, last.StackOffset})
		}
	}
	return changed
}

// varOffset returns the offset of slot within the user variable it was
// decomposed from. This has nothing to do with its stack offset.
func varOffset(slot LocalSlot) int64 {
	offset := slot.Off
	s := &slot
	for ; s.SplitOf != nil; s = s.SplitOf {
		offset += s.SplitOffset
	}
	return offset
}

type partsByVarOffset struct {
	slotIDs []SlotID
	slots   []LocalSlot
}

func (a partsByVarOffset) Len() int { return len(a.slotIDs) }
func (a partsByVarOffset) Less(i, j int) bool {
	return varOffset(a.slots[a.slotIDs[i]]) < varOffset(a.slots[a.slotIDs[j]])
}
func (a partsByVarOffset) Swap(i, j int) { a.slotIDs[i], a.slotIDs[j] = a.slotIDs[j], a.slotIDs[i] }

// A pendingEntry represents the beginning of a location list entry, missing
// only its end coordinate.
type pendingEntry struct {
	present                bool
	startBlock, startValue ID
	// The location of each piece of the variable, in the same order as the
	// SlotIDs in varParts.
	pieces []VarLoc
}

func (e *pendingEntry) clear() {
	e.present = false
	e.startBlock = 0
	e.startValue = 0
	for i := range e.pieces {
		e.pieces[i] = VarLoc{}
	}
}

// canMerge reports whether the location description for new is the same as
// pending.
func canMerge(pending, new VarLoc) bool {
	if pending.absent() && new.absent() {
		return true
	}
	if pending.absent() || new.absent() {
		return false
	}
	if pending.onStack() {
		return pending.StackOffset == new.StackOffset
	}
	if pending.Registers != 0 && new.Registers != 0 {
		return firstReg(pending.Registers) == firstReg(new.Registers)
	}
	return false
}

// firstReg returns the first register in set that is present.
func firstReg(set RegisterSet) uint8 {
	if set == 0 {
		// This is wrong, but there seem to be some situations where we
		// produce locations with no storage.
		return 0
	}
	return uint8(bits.TrailingZeros64(uint64(set)))
}

// buildLocationLists builds location lists for all the user variables in
// state.f, using the information about block state in blockLocs.
// The returned location lists are not fully complete. They are in terms of
// SSA values rather than PCs, and have no base address/end entries. They will
// be finished by PutLocationList.
func (state *debugState) buildLocationLists(blockLocs []*BlockDebug) {
	// Run through the function in program text order, building up location
	// lists as we go. The heavy lifting has mostly already been done.

	var prevBlock *Block
	for _, b := range state.f.Blocks {
		state.mergePredecessors(b, blockLocs, prevBlock)

		if !blockLocs[b.ID].relevant {
			// Handle any differences among predecessor blocks and previous block (perhaps not a predecessor)
			for _, varID := range state.changedVars.contents() {
				state.updateVar(VarID(varID), b, BlockStart)
			}
			continue
		}

		mustBeFirst := func(v *Value) bool {
			return v.Op == OpPhi || v.Op.isLoweredGetClosurePtr() ||
				v.Op == OpArgIntReg || v.Op == OpArgFloatReg
		}

		zeroWidthPending := false
		blockPrologComplete := false // set to true at first non-zero-width op
		apcChangedSize := 0          // size of changedVars for leading Args, Phi, ClosurePtr
		// expect to see values in pattern (apc)* (zerowidth|real)*
		for _, v := range b.Values {
			slots := state.valueNames[v.ID]
			reg, _ := state.f.getHome(v.ID).(*Register)
			changed := state.processValue(v, slots, reg) // changed == added to state.changedVars

			if opcodeTable[v.Op].zeroWidth {
				if changed {
					if mustBeFirst(v) || v.Op == OpArg {
						// These ranges begin at true beginning of block, not after first instruction
						if blockPrologComplete && mustBeFirst(v) {
							panic(fmt.Errorf("Unexpected placement of op '%s' appearing after non-pseudo-op at beginning of block %s in %s\n%s", v.LongString(), b, b.Func.Name, b.Func))
						}
						apcChangedSize = len(state.changedVars.contents())
						// Other zero-width ops must wait on a "real" op.
						zeroWidthPending = true
						continue
					}
				}
				continue
			}

			if !changed && !zeroWidthPending {
				continue
			}
			// Not zero-width; i.e., a "real" instruction.

			zeroWidthPending = false
			blockPrologComplete = true
			for i, varID := range state.changedVars.contents() {
				if i < apcChangedSize { // buffered true start-of-block changes
					state.updateVar(VarID(varID), v.Block, BlockStart)
				} else {
					state.updateVar(VarID(varID), v.Block, v)
				}
			}
			state.changedVars.clear()
			apcChangedSize = 0
		}
		for i, varID := range state.changedVars.contents() {
			if i < apcChangedSize { // buffered true start-of-block changes
				state.updateVar(VarID(varID), b, BlockStart)
			} else {
				state.updateVar(VarID(varID), b, BlockEnd)
			}
		}

		prevBlock = b
	}

	if state.loggingEnabled {
		state.logf("location lists:\n")
	}

	// Flush any leftover entries live at the end of the last block.
	for varID := range state.lists {
		state.writePendingEntry(VarID(varID), state.f.Blocks[len(state.f.Blocks)-1].ID, FuncEnd.ID)
		list := state.lists[varID]
		if state.loggingEnabled {
			if len(list) == 0 {
				state.logf("\t%v : empty list\n", state.vars[varID])
			} else {
				state.logf("\t%v : %q\n", state.vars[varID], hex.EncodeToString(state.lists[varID]))
			}
		}
	}
}

// updateVar updates the pending location list entry for varID to
// reflect the new locations in curLoc, beginning at v in block b.
// v may be one of the special values indicating block start or end.
func (state *debugState) updateVar(varID VarID, b *Block, v *Value) {
	curLoc := state.currentState.slots
	// Assemble the location list entry with whatever's live.
	empty := true
	for _, slotID := range state.varSlots[varID] {
		if !curLoc[slotID].absent() {
			empty = false
			break
		}
	}
	pending := &state.pendingEntries[varID]
	if empty {
		state.writePendingEntry(varID, b.ID, v.ID)
		pending.clear()
		return
	}

	// Extend the previous entry if possible.
	if pending.present {
		merge := true
		for i, slotID := range state.varSlots[varID] {
			if !canMerge(pending.pieces[i], curLoc[slotID]) {
				merge = false
				break
			}
		}
		if merge {
			return
		}
	}

	state.writePendingEntry(varID, b.ID, v.ID)
	pending.present = true
	pending.startBlock = b.ID
	pending.startValue = v.ID
	for i, slot := range state.varSlots[varID] {
		pending.pieces[i] = curLoc[slot]
	}
}

// writePendingEntry writes out the pending entry for varID, if any,
// terminated at endBlock/Value.
func (state *debugState) writePendingEntry(varID VarID, endBlock, endValue ID) {
	pending := state.pendingEntries[varID]
	if !pending.present {
		return
	}

	// Pack the start/end coordinates into the start/end addresses
	// of the entry, for decoding by PutLocationList.
	start, startOK := encodeValue(state.ctxt, pending.startBlock, pending.startValue)
	end, endOK := encodeValue(state.ctxt, endBlock, endValue)
	if !startOK || !endOK {
		// If someone writes a function that uses >65K values,
		// they get incomplete debug info on 32-bit platforms.
		return
	}
	if start == end {
		if state.loggingEnabled {
			// Printf not logf so not gated by GOSSAFUNC; this should fire very rarely.
			fmt.Printf("Skipping empty location list for %v in %s\n", state.vars[varID], state.f.Name)
		}
		return
	}

	list := state.lists[varID]
	list = appendPtr(state.ctxt, list, start)
	list = appendPtr(state.ctxt, list, end)
	// Where to write the length of the location description once
	// we know how big it is.
	sizeIdx := len(list)
	list = list[:len(list)+2]

	if state.loggingEnabled {
		var partStrs []string
		for i, slot := range state.varSlots[varID] {
			partStrs = append(partStrs, fmt.Sprintf("%v@%v", state.slots[slot], state.LocString(pending.pieces[i])))
		}
		state.logf("Add entry for %v: \tb%vv%v-b%vv%v = \t%v\n", state.vars[varID], pending.startBlock, pending.startValue, endBlock, endValue, strings.Join(partStrs, " "))
	}

	for i, slotID := range state.varSlots[varID] {
		loc := pending.pieces[i]
		slot := state.slots[slotID]

		if !loc.absent() {
			if loc.onStack() {
				if loc.stackOffsetValue() == 0 {
					list = append(list, dwarf.DW_OP_call_frame_cfa)
				} else {
					list = append(list, dwarf.DW_OP_fbreg)
					list = dwarf.AppendSleb128(list, int64(loc.stackOffsetValue()))
				}
			} else {
				regnum := state.ctxt.Arch.DWARFRegisters[state.registers[firstReg(loc.Registers)].ObjNum()]
				if regnum < 32 {
					list = append(list, dwarf.DW_OP_reg0+byte(regnum))
				} else {
					list = append(list, dwarf.DW_OP_regx)
					list = dwarf.AppendUleb128(list, uint64(regnum))
				}
			}
		}

		if len(state.varSlots[varID]) > 1 {
			list = append(list, dwarf.DW_OP_piece)
			list = dwarf.AppendUleb128(list, uint64(slot.Type.Size()))
		}
	}
	state.ctxt.Arch.ByteOrder.PutUint16(list[sizeIdx:], uint16(len(list)-sizeIdx-2))
	state.lists[varID] = list
}

// PutLocationList adds list (a location list in its intermediate representation) to listSym.
func (debugInfo *FuncDebug) PutLocationList(list []byte, ctxt *obj.Link, listSym, startPC *obj.LSym) {
	getPC := debugInfo.GetPC

	if ctxt.UseBASEntries {
		listSym.WriteInt(ctxt, listSym.Size, ctxt.Arch.PtrSize, ^0)
		listSym.WriteAddr(ctxt, listSym.Size, ctxt.Arch.PtrSize, startPC, 0)
	}

	// Re-read list, translating its address from block/value ID to PC.
	for i := 0; i < len(list); {
		begin := getPC(decodeValue(ctxt, readPtr(ctxt, list[i:])))
		end := getPC(decodeValue(ctxt, readPtr(ctxt, list[i+ctxt.Arch.PtrSize:])))

		// Horrible hack. If a range contains only zero-width
		// instructions, e.g. an Arg, and it's at the beginning of the
		// function, this would be indistinguishable from an
		// end entry. Fudge it.
		if begin == 0 && end == 0 {
			end = 1
		}

		if ctxt.UseBASEntries {
			listSym.WriteInt(ctxt, listSym.Size, ctxt.Arch.PtrSize, int64(begin))
			listSym.WriteInt(ctxt, listSym.Size, ctxt.Arch.PtrSize, int64(end))
		} else {
			listSym.WriteCURelativeAddr(ctxt, listSym.Size, startPC, int64(begin))
			listSym.WriteCURelativeAddr(ctxt, listSym.Size, startPC, int64(end))
		}

		i += 2 * ctxt.Arch.PtrSize
		datalen := 2 + int(ctxt.Arch.ByteOrder.Uint16(list[i:]))
		listSym.WriteBytes(ctxt, listSym.Size, list[i:i+datalen]) // copy datalen and location encoding
		i += datalen
	}

	// Location list contents, now with real PCs.
	// End entry.
	listSym.WriteInt(ctxt, listSym.Size, ctxt.Arch.PtrSize, 0)
	listSym.WriteInt(ctxt, listSym.Size, ctxt.Arch.PtrSize, 0)
}

// Pack a value and block ID into an address-sized uint, returning encoded
// value and boolean indicating whether the encoding succeeded.  For
// 32-bit architectures the process may fail for very large procedures
// (the theory being that it's ok to have degraded debug quality in
// this case).
func encodeValue(ctxt *obj.Link, b, v ID) (uint64, bool) {
	if ctxt.Arch.PtrSize == 8 {
		result := uint64(b)<<32 | uint64(uint32(v))
		//ctxt.Logf("b %#x (%d) v %#x (%d) -> %#x\n", b, b, v, v, result)
		return result, true
	}
	if ctxt.Arch.PtrSize != 4 {
		panic("unexpected pointer size")
	}
	if ID(int16(b)) != b || ID(int16(v)) != v {
		return 0, false
	}
	return uint64(b)<<16 | uint64(uint16(v)), true
}

// Unpack a value and block ID encoded by encodeValue.
func decodeValue(ctxt *obj.Link, word uint64) (ID, ID) {
	if ctxt.Arch.PtrSize == 8 {
		b, v := ID(word>>32), ID(word)
		//ctxt.Logf("%#x -> b %#x (%d) v %#x (%d)\n", word, b, b, v, v)
		return b, v
	}
	if ctxt.Arch.PtrSize != 4 {
		panic("unexpected pointer size")
	}
	return ID(word >> 16), ID(int16(word))
}

// Append a pointer-sized uint to buf.
func appendPtr(ctxt *obj.Link, buf []byte, word uint64) []byte {
	if cap(buf) < len(buf)+20 {
		b := make([]byte, len(buf), 20+cap(buf)*2)
		copy(b, buf)
		buf = b
	}
	writeAt := len(buf)
	buf = buf[0 : len(buf)+ctxt.Arch.PtrSize]
	writePtr(ctxt, buf[writeAt:], word)
	return buf
}

// Write a pointer-sized uint to the beginning of buf.
func writePtr(ctxt *obj.Link, buf []byte, word uint64) {
	switch ctxt.Arch.PtrSize {
	case 4:
		ctxt.Arch.ByteOrder.PutUint32(buf, uint32(word))
	case 8:
		ctxt.Arch.ByteOrder.PutUint64(buf, word)
	default:
		panic("unexpected pointer size")
	}

}

// Read a pointer-sized uint from the beginning of buf.
func readPtr(ctxt *obj.Link, buf []byte) uint64 {
	switch ctxt.Arch.PtrSize {
	case 4:
		return uint64(ctxt.Arch.ByteOrder.Uint32(buf))
	case 8:
		return ctxt.Arch.ByteOrder.Uint64(buf)
	default:
		panic("unexpected pointer size")
	}

}

// setupLocList creates the initial portion of a location list for a
// user variable. It emits the encoded start/end of the range and a
// placeholder for the size. Return value is the new list plus the
// slot in the list holding the size (to be updated later).
func setupLocList(ctxt *obj.Link, f *Func, list []byte, st, en ID) ([]byte, int) {
	start, startOK := encodeValue(ctxt, f.Entry.ID, st)
	end, endOK := encodeValue(ctxt, f.Entry.ID, en)
	if !startOK || !endOK {
		// This could happen if someone writes a function that uses
		// >65K values on a 32-bit platform. Hopefully a degraded debugging
		// experience is ok in that case.
		return nil, 0
	}
	list = appendPtr(ctxt, list, start)
	list = appendPtr(ctxt, list, end)

	// Where to write the length of the location description once
	// we know how big it is.
	sizeIdx := len(list)
	list = list[:len(list)+2]
	return list, sizeIdx
}

// locatePrologEnd walks the entry block of a function with incoming
// register arguments and locates the last instruction in the prolog
// that spills a register arg. It returns the ID of that instruction
// Example:
//
//   b1:
//       v3 = ArgIntReg <int> {p1+0} [0] : AX
//       ... more arg regs ..
//       v4 = ArgFloatReg <float32> {f1+0} [0] : X0
//       v52 = MOVQstore <mem> {p1} v2 v3 v1
//       ... more stores ...
//       v68 = MOVSSstore <mem> {f4} v2 v67 v66
//       v38 = MOVQstoreconst <mem> {blob} [val=0,off=0] v2 v32
//
// Important: locatePrologEnd is expected to work properly only with
// optimization turned off (e.g. "-N"). If optimization is enabled
// we can't be assured of finding all input arguments spilled in the
// entry block prolog.
func locatePrologEnd(f *Func) ID {

	// returns true if this instruction looks like it moves an ABI
	// register to the stack, along with the value being stored.
	isRegMoveLike := func(v *Value) (bool, ID) {
		n, ok := v.Aux.(*ir.Name)
		var r ID
		if !ok || n.Class != ir.PPARAM {
			return false, r
		}
		regInputs, memInputs, spInputs := 0, 0, 0
		for _, a := range v.Args {
			if a.Op == OpArgIntReg || a.Op == OpArgFloatReg {
				regInputs++
				r = a.ID
			} else if a.Type.IsMemory() {
				memInputs++
			} else if a.Op == OpSP {
				spInputs++
			} else {
				return false, r
			}
		}
		return v.Type.IsMemory() && memInputs == 1 &&
			regInputs == 1 && spInputs == 1, r
	}

	// OpArg*Reg values we've seen so far on our forward walk,
	// for which we have not yet seen a corresponding spill.
	regArgs := make([]ID, 0, 32)

	// removeReg tries to remove a value from regArgs, returning true
	// if found and removed, or false otherwise.
	removeReg := func(r ID) bool {
		for i := 0; i < len(regArgs); i++ {
			if regArgs[i] == r {
				regArgs = append(regArgs[:i], regArgs[i+1:]...)
				return true
			}
		}
		return false
	}

	// Walk forwards through the block. When we see OpArg*Reg, record
	// the value it produces in the regArgs list. When see a store that uses
	// the value, remove the entry. When we hit the last store (use)
	// then we've arrived at the end of the prolog.
	for k, v := range f.Entry.Values {
		if v.Op == OpArgIntReg || v.Op == OpArgFloatReg {
			regArgs = append(regArgs, v.ID)
			continue
		}
		if ok, r := isRegMoveLike(v); ok {
			if removed := removeReg(r); removed {
				if len(regArgs) == 0 {
					// Found our last spill; return the value after
					// it. Note that it is possible that this spill is
					// the last instruction in the block. If so, then
					// return the "end of block" sentinel.
					if k < len(f.Entry.Values)-1 {
						return f.Entry.Values[k+1].ID
					}
					return BlockEnd.ID
				}
			}
		}
		if v.Op.IsCall() {
			// if we hit a call, we've gone too far.
			return v.ID
		}
	}
	// nothing found
	return ID(-1)
}

// isNamedRegParam returns true if the param corresponding to "p"
// is a named, non-blank input parameter assigned to one or more
// registers.
func isNamedRegParam(p abi.ABIParamAssignment) bool {
	if p.Name == nil {
		return false
	}
	n := p.Name.(*ir.Name)
	if n.Sym() == nil || n.Sym().IsBlank() {
		return false
	}
	if len(p.Registers) == 0 {
		return false
	}
	return true
}

// BuildFuncDebugNoOptimized constructs a FuncDebug object with
// entries corresponding to the register-resident input parameters for
// the function "f"; it is used when we are compiling without
// optimization but the register ABI is enabled. For each reg param,
// it constructs a 2-element location list: the first element holds
// the input register, and the second element holds the stack location
// of the param (the assumption being that when optimization is off,
// each input param reg will be spilled in the prolog.
func BuildFuncDebugNoOptimized(ctxt *obj.Link, f *Func, loggingEnabled bool, stackOffset func(LocalSlot) int32) *FuncDebug {
	fd := FuncDebug{}

	pri := f.ABISelf.ABIAnalyzeFuncType(f.Type.FuncType())

	// Look to see if we have any named register-promoted parameters.
	// If there are none, bail early and let the caller sort things
	// out for the remainder of the params/locals.
	numRegParams := 0
	for _, inp := range pri.InParams() {
		if isNamedRegParam(inp) {
			numRegParams++
		}
	}
	if numRegParams == 0 {
		return &fd
	}

	state := debugState{f: f}

	if loggingEnabled {
		state.logf("generating -N reg param loc lists for func %q\n", f.Name)
	}

	// Allocate location lists.
	fd.LocationLists = make([][]byte, numRegParams)

	// Locate the value corresponding to the last spill of
	// an input register.
	afterPrologVal := locatePrologEnd(f)

	// Walk the input params again and process the register-resident elements.
	pidx := 0
	for _, inp := range pri.InParams() {
		if !isNamedRegParam(inp) {
			// will be sorted out elsewhere
			continue
		}

		n := inp.Name.(*ir.Name)
		sl := LocalSlot{N: n, Type: inp.Type, Off: 0}
		fd.Vars = append(fd.Vars, n)
		fd.Slots = append(fd.Slots, sl)
		slid := len(fd.VarSlots)
		fd.VarSlots = append(fd.VarSlots, []SlotID{SlotID(slid)})

		if afterPrologVal == ID(-1) {
			// This can happen for degenerate functions with infinite
			// loops such as that in issue 45948. In such cases, leave
			// the var/slot set up for the param, but don't try to
			// emit a location list.
			if loggingEnabled {
				state.logf("locatePrologEnd failed, skipping %v\n", n)
			}
			pidx++
			continue
		}

		// Param is arriving in one or more registers. We need a 2-element
		// location expression for it. First entry in location list
		// will correspond to lifetime in input registers.
		list, sizeIdx := setupLocList(ctxt, f, fd.LocationLists[pidx],
			BlockStart.ID, afterPrologVal)
		if list == nil {
			pidx++
			continue
		}
		if loggingEnabled {
			state.logf("param %v:\n  [<entry>, %d]:\n", n, afterPrologVal)
		}
		rtypes, _ := inp.RegisterTypesAndOffsets()
		padding := make([]uint64, 0, 32)
		padding = inp.ComputePadding(padding)
		for k, r := range inp.Registers {
			reg := ObjRegForAbiReg(r, f.Config)
			dwreg := ctxt.Arch.DWARFRegisters[reg]
			if dwreg < 32 {
				list = append(list, dwarf.DW_OP_reg0+byte(dwreg))
			} else {
				list = append(list, dwarf.DW_OP_regx)
				list = dwarf.AppendUleb128(list, uint64(dwreg))
			}
			if loggingEnabled {
				state.logf("    piece %d -> dwreg %d", k, dwreg)
			}
			if len(inp.Registers) > 1 {
				list = append(list, dwarf.DW_OP_piece)
				ts := rtypes[k].Width
				list = dwarf.AppendUleb128(list, uint64(ts))
				if padding[k] > 0 {
					if loggingEnabled {
						state.logf(" [pad %d bytes]", padding[k])
					}
					list = append(list, dwarf.DW_OP_piece)
					list = dwarf.AppendUleb128(list, padding[k])
				}
			}
			if loggingEnabled {
				state.logf("\n")
			}
		}
		// fill in length of location expression element
		ctxt.Arch.ByteOrder.PutUint16(list[sizeIdx:], uint16(len(list)-sizeIdx-2))

		// Second entry in the location list will be the stack home
		// of the param, once it has been spilled.  Emit that now.
		list, sizeIdx = setupLocList(ctxt, f, list,
			afterPrologVal, FuncEnd.ID)
		if list == nil {
			pidx++
			continue
		}
		soff := stackOffset(sl)
		if soff == 0 {
			list = append(list, dwarf.DW_OP_call_frame_cfa)
		} else {
			list = append(list, dwarf.DW_OP_fbreg)
			list = dwarf.AppendSleb128(list, int64(soff))
		}
		if loggingEnabled {
			state.logf("  [%d, <end>): stackOffset=%d\n", afterPrologVal, soff)
		}

		// fill in size
		ctxt.Arch.ByteOrder.PutUint16(list[sizeIdx:], uint16(len(list)-sizeIdx-2))

		fd.LocationLists[pidx] = list
		pidx++
	}
	return &fd
}