aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/ssa/check.go
blob: 969fd96dbf573cf67483a1f740f5880fb5d8940e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"cmd/internal/obj/s390x"
	"math"
	"math/bits"
)

// checkFunc checks invariants of f.
func checkFunc(f *Func) {
	blockMark := make([]bool, f.NumBlocks())
	valueMark := make([]bool, f.NumValues())

	for _, b := range f.Blocks {
		if blockMark[b.ID] {
			f.Fatalf("block %s appears twice in %s!", b, f.Name)
		}
		blockMark[b.ID] = true
		if b.Func != f {
			f.Fatalf("%s.Func=%s, want %s", b, b.Func.Name, f.Name)
		}

		for i, e := range b.Preds {
			if se := e.b.Succs[e.i]; se.b != b || se.i != i {
				f.Fatalf("block pred/succ not crosslinked correctly %d:%s %d:%s", i, b, se.i, se.b)
			}
		}
		for i, e := range b.Succs {
			if pe := e.b.Preds[e.i]; pe.b != b || pe.i != i {
				f.Fatalf("block succ/pred not crosslinked correctly %d:%s %d:%s", i, b, pe.i, pe.b)
			}
		}

		switch b.Kind {
		case BlockExit:
			if len(b.Succs) != 0 {
				f.Fatalf("exit block %s has successors", b)
			}
			if b.NumControls() != 1 {
				f.Fatalf("exit block %s has no control value", b)
			}
			if !b.Controls[0].Type.IsMemory() {
				f.Fatalf("exit block %s has non-memory control value %s", b, b.Controls[0].LongString())
			}
		case BlockRet:
			if len(b.Succs) != 0 {
				f.Fatalf("ret block %s has successors", b)
			}
			if b.NumControls() != 1 {
				f.Fatalf("ret block %s has nil control", b)
			}
			if !b.Controls[0].Type.IsMemory() {
				f.Fatalf("ret block %s has non-memory control value %s", b, b.Controls[0].LongString())
			}
		case BlockRetJmp:
			if len(b.Succs) != 0 {
				f.Fatalf("retjmp block %s len(Succs)==%d, want 0", b, len(b.Succs))
			}
			if b.NumControls() != 1 {
				f.Fatalf("retjmp block %s has nil control", b)
			}
			if !b.Controls[0].Type.IsMemory() {
				f.Fatalf("retjmp block %s has non-memory control value %s", b, b.Controls[0].LongString())
			}
			if b.Aux == nil {
				f.Fatalf("retjmp block %s has nil Aux field", b)
			}
		case BlockPlain:
			if len(b.Succs) != 1 {
				f.Fatalf("plain block %s len(Succs)==%d, want 1", b, len(b.Succs))
			}
			if b.NumControls() != 0 {
				f.Fatalf("plain block %s has non-nil control %s", b, b.Controls[0].LongString())
			}
		case BlockIf:
			if len(b.Succs) != 2 {
				f.Fatalf("if block %s len(Succs)==%d, want 2", b, len(b.Succs))
			}
			if b.NumControls() != 1 {
				f.Fatalf("if block %s has no control value", b)
			}
			if !b.Controls[0].Type.IsBoolean() {
				f.Fatalf("if block %s has non-bool control value %s", b, b.Controls[0].LongString())
			}
		case BlockDefer:
			if len(b.Succs) != 2 {
				f.Fatalf("defer block %s len(Succs)==%d, want 2", b, len(b.Succs))
			}
			if b.NumControls() != 1 {
				f.Fatalf("defer block %s has no control value", b)
			}
			if !b.Controls[0].Type.IsMemory() {
				f.Fatalf("defer block %s has non-memory control value %s", b, b.Controls[0].LongString())
			}
		case BlockFirst:
			if len(b.Succs) != 2 {
				f.Fatalf("plain/dead block %s len(Succs)==%d, want 2", b, len(b.Succs))
			}
			if b.NumControls() != 0 {
				f.Fatalf("plain/dead block %s has a control value", b)
			}
		}
		if len(b.Succs) != 2 && b.Likely != BranchUnknown {
			f.Fatalf("likeliness prediction %d for block %s with %d successors", b.Likely, b, len(b.Succs))
		}

		for _, v := range b.Values {
			// Check to make sure argument count makes sense (argLen of -1 indicates
			// variable length args)
			nArgs := opcodeTable[v.Op].argLen
			if nArgs != -1 && int32(len(v.Args)) != nArgs {
				f.Fatalf("value %s has %d args, expected %d", v.LongString(),
					len(v.Args), nArgs)
			}

			// Check to make sure aux values make sense.
			canHaveAux := false
			canHaveAuxInt := false
			// TODO: enforce types of Aux in this switch (like auxString does below)
			switch opcodeTable[v.Op].auxType {
			case auxNone:
			case auxBool:
				if v.AuxInt < 0 || v.AuxInt > 1 {
					f.Fatalf("bad bool AuxInt value for %v", v)
				}
				canHaveAuxInt = true
			case auxInt8:
				if v.AuxInt != int64(int8(v.AuxInt)) {
					f.Fatalf("bad int8 AuxInt value for %v", v)
				}
				canHaveAuxInt = true
			case auxInt16:
				if v.AuxInt != int64(int16(v.AuxInt)) {
					f.Fatalf("bad int16 AuxInt value for %v", v)
				}
				canHaveAuxInt = true
			case auxInt32:
				if v.AuxInt != int64(int32(v.AuxInt)) {
					f.Fatalf("bad int32 AuxInt value for %v", v)
				}
				canHaveAuxInt = true
			case auxInt64, auxARM64BitField:
				canHaveAuxInt = true
			case auxInt128:
				// AuxInt must be zero, so leave canHaveAuxInt set to false.
			case auxUInt8:
				if v.AuxInt != int64(uint8(v.AuxInt)) {
					f.Fatalf("bad uint8 AuxInt value for %v", v)
				}
				canHaveAuxInt = true
			case auxFloat32:
				canHaveAuxInt = true
				if math.IsNaN(v.AuxFloat()) {
					f.Fatalf("value %v has an AuxInt that encodes a NaN", v)
				}
				if !isExactFloat32(v.AuxFloat()) {
					f.Fatalf("value %v has an AuxInt value that is not an exact float32", v)
				}
			case auxFloat64:
				canHaveAuxInt = true
				if math.IsNaN(v.AuxFloat()) {
					f.Fatalf("value %v has an AuxInt that encodes a NaN", v)
				}
			case auxString:
				if _, ok := v.Aux.(stringAux); !ok {
					f.Fatalf("value %v has Aux type %T, want string", v, v.Aux)
				}
				canHaveAux = true
			case auxCallOff:
				canHaveAuxInt = true
				fallthrough
			case auxCall:
				if ac, ok := v.Aux.(*AuxCall); ok {
					if v.Op == OpStaticCall && ac.Fn == nil {
						f.Fatalf("value %v has *AuxCall with nil Fn", v)
					}
				} else {
					f.Fatalf("value %v has Aux type %T, want *AuxCall", v, v.Aux)
				}
				canHaveAux = true
			case auxNameOffsetInt8:
				if _, ok := v.Aux.(*AuxNameOffset); !ok {
					f.Fatalf("value %v has Aux type %T, want *AuxNameOffset", v, v.Aux)
				}
				canHaveAux = true
				canHaveAuxInt = true
			case auxSym, auxTyp:
				canHaveAux = true
			case auxSymOff, auxSymValAndOff, auxTypSize:
				canHaveAuxInt = true
				canHaveAux = true
			case auxCCop:
				if opcodeTable[Op(v.AuxInt)].name == "OpInvalid" {
					f.Fatalf("value %v has an AuxInt value that is a valid opcode", v)
				}
				canHaveAuxInt = true
			case auxS390XCCMask:
				if _, ok := v.Aux.(s390x.CCMask); !ok {
					f.Fatalf("bad type %T for S390XCCMask in %v", v.Aux, v)
				}
				canHaveAux = true
			case auxS390XRotateParams:
				if _, ok := v.Aux.(s390x.RotateParams); !ok {
					f.Fatalf("bad type %T for S390XRotateParams in %v", v.Aux, v)
				}
				canHaveAux = true
			case auxFlagConstant:
				if v.AuxInt < 0 || v.AuxInt > 15 {
					f.Fatalf("bad FlagConstant AuxInt value for %v", v)
				}
				canHaveAuxInt = true
			default:
				f.Fatalf("unknown aux type for %s", v.Op)
			}
			if !canHaveAux && v.Aux != nil {
				f.Fatalf("value %s has an Aux value %v but shouldn't", v.LongString(), v.Aux)
			}
			if !canHaveAuxInt && v.AuxInt != 0 {
				f.Fatalf("value %s has an AuxInt value %d but shouldn't", v.LongString(), v.AuxInt)
			}

			for i, arg := range v.Args {
				if arg == nil {
					f.Fatalf("value %s has nil arg", v.LongString())
				}
				if v.Op != OpPhi {
					// For non-Phi ops, memory args must be last, if present
					if arg.Type.IsMemory() && i != len(v.Args)-1 {
						f.Fatalf("value %s has non-final memory arg (%d < %d)", v.LongString(), i, len(v.Args)-1)
					}
				}
			}

			if valueMark[v.ID] {
				f.Fatalf("value %s appears twice!", v.LongString())
			}
			valueMark[v.ID] = true

			if v.Block != b {
				f.Fatalf("%s.block != %s", v, b)
			}
			if v.Op == OpPhi && len(v.Args) != len(b.Preds) {
				f.Fatalf("phi length %s does not match pred length %d for block %s", v.LongString(), len(b.Preds), b)
			}

			if v.Op == OpAddr {
				if len(v.Args) == 0 {
					f.Fatalf("no args for OpAddr %s", v.LongString())
				}
				if v.Args[0].Op != OpSB {
					f.Fatalf("bad arg to OpAddr %v", v)
				}
			}

			if v.Op == OpLocalAddr {
				if len(v.Args) != 2 {
					f.Fatalf("wrong # of args for OpLocalAddr %s", v.LongString())
				}
				if v.Args[0].Op != OpSP {
					f.Fatalf("bad arg 0 to OpLocalAddr %v", v)
				}
				if !v.Args[1].Type.IsMemory() {
					f.Fatalf("bad arg 1 to OpLocalAddr %v", v)
				}
			}

			if f.RegAlloc != nil && f.Config.SoftFloat && v.Type.IsFloat() {
				f.Fatalf("unexpected floating-point type %v", v.LongString())
			}

			// Check types.
			// TODO: more type checks?
			switch c := f.Config; v.Op {
			case OpSP, OpSB:
				if v.Type != c.Types.Uintptr {
					f.Fatalf("bad %s type: want uintptr, have %s",
						v.Op, v.Type.String())
				}
			case OpStringLen:
				if v.Type != c.Types.Int {
					f.Fatalf("bad %s type: want int, have %s",
						v.Op, v.Type.String())
				}
			case OpLoad:
				if !v.Args[1].Type.IsMemory() {
					f.Fatalf("bad arg 1 type to %s: want mem, have %s",
						v.Op, v.Args[1].Type.String())
				}
			case OpStore:
				if !v.Type.IsMemory() {
					f.Fatalf("bad %s type: want mem, have %s",
						v.Op, v.Type.String())
				}
				if !v.Args[2].Type.IsMemory() {
					f.Fatalf("bad arg 2 type to %s: want mem, have %s",
						v.Op, v.Args[2].Type.String())
				}
			case OpCondSelect:
				if !v.Args[2].Type.IsBoolean() {
					f.Fatalf("bad arg 2 type to %s: want boolean, have %s",
						v.Op, v.Args[2].Type.String())
				}
			case OpAddPtr:
				if !v.Args[0].Type.IsPtrShaped() && v.Args[0].Type != c.Types.Uintptr {
					f.Fatalf("bad arg 0 type to %s: want ptr, have %s", v.Op, v.Args[0].LongString())
				}
				if !v.Args[1].Type.IsInteger() {
					f.Fatalf("bad arg 1 type to %s: want integer, have %s", v.Op, v.Args[1].LongString())
				}

			}

			// TODO: check for cycles in values
		}
	}

	// Check to make sure all Blocks referenced are in the function.
	if !blockMark[f.Entry.ID] {
		f.Fatalf("entry block %v is missing", f.Entry)
	}
	for _, b := range f.Blocks {
		for _, c := range b.Preds {
			if !blockMark[c.b.ID] {
				f.Fatalf("predecessor block %v for %v is missing", c, b)
			}
		}
		for _, c := range b.Succs {
			if !blockMark[c.b.ID] {
				f.Fatalf("successor block %v for %v is missing", c, b)
			}
		}
	}

	if len(f.Entry.Preds) > 0 {
		f.Fatalf("entry block %s of %s has predecessor(s) %v", f.Entry, f.Name, f.Entry.Preds)
	}

	// Check to make sure all Values referenced are in the function.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			for i, a := range v.Args {
				if !valueMark[a.ID] {
					f.Fatalf("%v, arg %d of %s, is missing", a, i, v.LongString())
				}
			}
		}
		for _, c := range b.ControlValues() {
			if !valueMark[c.ID] {
				f.Fatalf("control value for %s is missing: %v", b, c)
			}
		}
	}
	for b := f.freeBlocks; b != nil; b = b.succstorage[0].b {
		if blockMark[b.ID] {
			f.Fatalf("used block b%d in free list", b.ID)
		}
	}
	for v := f.freeValues; v != nil; v = v.argstorage[0] {
		if valueMark[v.ID] {
			f.Fatalf("used value v%d in free list", v.ID)
		}
	}

	// Check to make sure all args dominate uses.
	if f.RegAlloc == nil {
		// Note: regalloc introduces non-dominating args.
		// See TODO in regalloc.go.
		sdom := f.Sdom()
		for _, b := range f.Blocks {
			for _, v := range b.Values {
				for i, arg := range v.Args {
					x := arg.Block
					y := b
					if v.Op == OpPhi {
						y = b.Preds[i].b
					}
					if !domCheck(f, sdom, x, y) {
						f.Fatalf("arg %d of value %s does not dominate, arg=%s", i, v.LongString(), arg.LongString())
					}
				}
			}
			for _, c := range b.ControlValues() {
				if !domCheck(f, sdom, c.Block, b) {
					f.Fatalf("control value %s for %s doesn't dominate", c, b)
				}
			}
		}
	}

	// Check loop construction
	if f.RegAlloc == nil && f.pass != nil { // non-nil pass allows better-targeted debug printing
		ln := f.loopnest()
		if !ln.hasIrreducible {
			po := f.postorder() // use po to avoid unreachable blocks.
			for _, b := range po {
				for _, s := range b.Succs {
					bb := s.Block()
					if ln.b2l[b.ID] == nil && ln.b2l[bb.ID] != nil && bb != ln.b2l[bb.ID].header {
						f.Fatalf("block %s not in loop branches to non-header block %s in loop", b.String(), bb.String())
					}
					if ln.b2l[b.ID] != nil && ln.b2l[bb.ID] != nil && bb != ln.b2l[bb.ID].header && !ln.b2l[b.ID].isWithinOrEq(ln.b2l[bb.ID]) {
						f.Fatalf("block %s in loop branches to non-header block %s in non-containing loop", b.String(), bb.String())
					}
				}
			}
		}
	}

	// Check use counts
	uses := make([]int32, f.NumValues())
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			for _, a := range v.Args {
				uses[a.ID]++
			}
		}
		for _, c := range b.ControlValues() {
			uses[c.ID]++
		}
	}
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			if v.Uses != uses[v.ID] {
				f.Fatalf("%s has %d uses, but has Uses=%d", v, uses[v.ID], v.Uses)
			}
		}
	}

	memCheck(f)
}

func memCheck(f *Func) {
	// Check that if a tuple has a memory type, it is second.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			if v.Type.IsTuple() && v.Type.FieldType(0).IsMemory() {
				f.Fatalf("memory is first in a tuple: %s\n", v.LongString())
			}
		}
	}

	// Single live memory checks.
	// These checks only work if there are no memory copies.
	// (Memory copies introduce ambiguity about which mem value is really live.
	// probably fixable, but it's easier to avoid the problem.)
	// For the same reason, disable this check if some memory ops are unused.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			if (v.Op == OpCopy || v.Uses == 0) && v.Type.IsMemory() {
				return
			}
		}
		if b != f.Entry && len(b.Preds) == 0 {
			return
		}
	}

	// Compute live memory at the end of each block.
	lastmem := make([]*Value, f.NumBlocks())
	ss := newSparseSet(f.NumValues())
	for _, b := range f.Blocks {
		// Mark overwritten memory values. Those are args of other
		// ops that generate memory values.
		ss.clear()
		for _, v := range b.Values {
			if v.Op == OpPhi || !v.Type.IsMemory() {
				continue
			}
			if m := v.MemoryArg(); m != nil {
				ss.add(m.ID)
			}
		}
		// There should be at most one remaining unoverwritten memory value.
		for _, v := range b.Values {
			if !v.Type.IsMemory() {
				continue
			}
			if ss.contains(v.ID) {
				continue
			}
			if lastmem[b.ID] != nil {
				f.Fatalf("two live memory values in %s: %s and %s", b, lastmem[b.ID], v)
			}
			lastmem[b.ID] = v
		}
		// If there is no remaining memory value, that means there was no memory update.
		// Take any memory arg.
		if lastmem[b.ID] == nil {
			for _, v := range b.Values {
				if v.Op == OpPhi {
					continue
				}
				m := v.MemoryArg()
				if m == nil {
					continue
				}
				if lastmem[b.ID] != nil && lastmem[b.ID] != m {
					f.Fatalf("two live memory values in %s: %s and %s", b, lastmem[b.ID], m)
				}
				lastmem[b.ID] = m
			}
		}
	}
	// Propagate last live memory through storeless blocks.
	for {
		changed := false
		for _, b := range f.Blocks {
			if lastmem[b.ID] != nil {
				continue
			}
			for _, e := range b.Preds {
				p := e.b
				if lastmem[p.ID] != nil {
					lastmem[b.ID] = lastmem[p.ID]
					changed = true
					break
				}
			}
		}
		if !changed {
			break
		}
	}
	// Check merge points.
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			if v.Op == OpPhi && v.Type.IsMemory() {
				for i, a := range v.Args {
					if a != lastmem[b.Preds[i].b.ID] {
						f.Fatalf("inconsistent memory phi %s %d %s %s", v.LongString(), i, a, lastmem[b.Preds[i].b.ID])
					}
				}
			}
		}
	}

	// Check that only one memory is live at any point.
	if f.scheduled {
		for _, b := range f.Blocks {
			var mem *Value // the current live memory in the block
			for _, v := range b.Values {
				if v.Op == OpPhi {
					if v.Type.IsMemory() {
						mem = v
					}
					continue
				}
				if mem == nil && len(b.Preds) > 0 {
					// If no mem phi, take mem of any predecessor.
					mem = lastmem[b.Preds[0].b.ID]
				}
				for _, a := range v.Args {
					if a.Type.IsMemory() && a != mem {
						f.Fatalf("two live mems @ %s: %s and %s", v, mem, a)
					}
				}
				if v.Type.IsMemory() {
					mem = v
				}
			}
		}
	}

	// Check that after scheduling, phis are always first in the block.
	if f.scheduled {
		for _, b := range f.Blocks {
			seenNonPhi := false
			for _, v := range b.Values {
				switch v.Op {
				case OpPhi:
					if seenNonPhi {
						f.Fatalf("phi after non-phi @ %s: %s", b, v)
					}
				default:
					seenNonPhi = true
				}
			}
		}
	}
}

// domCheck reports whether x dominates y (including x==y).
func domCheck(f *Func, sdom SparseTree, x, y *Block) bool {
	if !sdom.IsAncestorEq(f.Entry, y) {
		// unreachable - ignore
		return true
	}
	return sdom.IsAncestorEq(x, y)
}

// isExactFloat32 reports whether x can be exactly represented as a float32.
func isExactFloat32(x float64) bool {
	// Check the mantissa is in range.
	if bits.TrailingZeros64(math.Float64bits(x)) < 52-23 {
		return false
	}
	// Check the exponent is in range. The mantissa check above is sufficient for NaN values.
	return math.IsNaN(x) || x == float64(float32(x))
}