aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/noder/stencil.go
blob: b3ff4b8855c7b157b34ae38b1e26671201a93daa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file will evolve, since we plan to do a mix of stenciling and passing
// around dictionaries.

package noder

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/objw"
	"cmd/compile/internal/reflectdata"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"cmd/internal/src"
	"fmt"
	"go/constant"
)

// Enable extra consistency checks.
const doubleCheck = true

func assert(p bool) {
	base.Assert(p)
}

// Temporary - for outputting information on derived types, dictionaries, sub-dictionaries.
// Turn off when running tests.
var infoPrintMode = false

func infoPrint(format string, a ...interface{}) {
	if infoPrintMode {
		fmt.Printf(format, a...)
	}
}

// stencil scans functions for instantiated generic function calls and creates the
// required instantiations for simple generic functions. It also creates
// instantiated methods for all fully-instantiated generic types that have been
// encountered already or new ones that are encountered during the stenciling
// process.
func (g *irgen) stencil() {
	g.instInfoMap = make(map[*types.Sym]*instInfo)
	g.gfInfoMap = make(map[*types.Sym]*gfInfo)

	// Instantiate the methods of instantiated generic types that we have seen so far.
	g.instantiateMethods()

	// Don't use range(g.target.Decls) - we also want to process any new instantiated
	// functions that are created during this loop, in order to handle generic
	// functions calling other generic functions.
	for i := 0; i < len(g.target.Decls); i++ {
		decl := g.target.Decls[i]

		// Look for function instantiations in bodies of non-generic
		// functions or in global assignments (ignore global type and
		// constant declarations).
		switch decl.Op() {
		case ir.ODCLFUNC:
			if decl.Type().HasTParam() {
				// Skip any generic functions
				continue
			}
			// transformCall() below depends on CurFunc being set.
			ir.CurFunc = decl.(*ir.Func)

		case ir.OAS, ir.OAS2, ir.OAS2DOTTYPE, ir.OAS2FUNC, ir.OAS2MAPR, ir.OAS2RECV, ir.OASOP:
			// These are all the various kinds of global assignments,
			// whose right-hand-sides might contain a function
			// instantiation.

		default:
			// The other possible ops at the top level are ODCLCONST
			// and ODCLTYPE, which don't have any function
			// instantiations.
			continue
		}

		// For all non-generic code, search for any function calls using
		// generic function instantiations. Then create the needed
		// instantiated function if it hasn't been created yet, and change
		// to calling that function directly.
		modified := false
		closureRequired := false
		// declInfo will be non-nil exactly if we are scanning an instantiated function
		declInfo := g.instInfoMap[decl.Sym()]

		ir.Visit(decl, func(n ir.Node) {
			if n.Op() == ir.OFUNCINST {
				// generic F, not immediately called
				closureRequired = true
			}
			if (n.Op() == ir.OMETHEXPR || n.Op() == ir.OMETHVALUE) && len(deref(n.(*ir.SelectorExpr).X.Type()).RParams()) > 0 && !types.IsInterfaceMethod(n.(*ir.SelectorExpr).Selection.Type) {
				// T.M or x.M, where T or x is generic, but not immediately
				// called. Not necessary if the method selected is
				// actually for an embedded interface field.
				closureRequired = true
			}
			if n.Op() == ir.OCALL && n.(*ir.CallExpr).X.Op() == ir.OFUNCINST {
				// We have found a function call using a generic function
				// instantiation.
				call := n.(*ir.CallExpr)
				inst := call.X.(*ir.InstExpr)
				nameNode, isMeth := g.getInstNameNode(inst)
				targs := typecheck.TypesOf(inst.Targs)
				st := g.getInstantiation(nameNode, targs, isMeth)
				dictValue, usingSubdict := g.getDictOrSubdict(declInfo, n, nameNode, targs, isMeth)
				if infoPrintMode {
					dictkind := "Main dictionary"
					if usingSubdict {
						dictkind = "Sub-dictionary"
					}
					if inst.X.Op() == ir.OMETHVALUE {
						fmt.Printf("%s in %v at generic method call: %v - %v\n", dictkind, decl, inst.X, call)
					} else {
						fmt.Printf("%s in %v at generic function call: %v - %v\n", dictkind, decl, inst.X, call)
					}
				}

				// Transform the Call now, which changes OCALL to
				// OCALLFUNC and does typecheckaste/assignconvfn. Do
				// it before installing the instantiation, so we are
				// checking against non-shape param types in
				// typecheckaste.
				transformCall(call)

				// Replace the OFUNCINST with a direct reference to the
				// new stenciled function
				call.X = st.Nname
				if inst.X.Op() == ir.OMETHVALUE {
					// When we create an instantiation of a method
					// call, we make it a function. So, move the
					// receiver to be the first arg of the function
					// call.
					call.Args.Prepend(inst.X.(*ir.SelectorExpr).X)
				}

				// Add dictionary to argument list.
				call.Args.Prepend(dictValue)
				modified = true
			}
			if n.Op() == ir.OCALLMETH && n.(*ir.CallExpr).X.Op() == ir.ODOTMETH && len(deref(n.(*ir.CallExpr).X.Type().Recv().Type).RParams()) > 0 {
				// Method call on a generic type, which was instantiated by stenciling.
				// Method calls on explicitly instantiated types will have an OFUNCINST
				// and are handled above.
				call := n.(*ir.CallExpr)
				meth := call.X.(*ir.SelectorExpr)
				targs := deref(meth.Type().Recv().Type).RParams()

				t := meth.X.Type()
				baseSym := deref(t).OrigSym
				baseType := baseSym.Def.(*ir.Name).Type()
				var gf *ir.Name
				for _, m := range baseType.Methods().Slice() {
					if meth.Sel == m.Sym {
						gf = m.Nname.(*ir.Name)
						break
					}
				}

				// Transform the Call now, which changes OCALL
				// to OCALLFUNC and does typecheckaste/assignconvfn.
				transformCall(call)

				st := g.getInstantiation(gf, targs, true)
				dictValue, usingSubdict := g.getDictOrSubdict(declInfo, n, gf, targs, true)
				// We have to be using a subdictionary, since this is
				// a generic method call.
				assert(usingSubdict)

				// Transform to a function call, by appending the
				// dictionary and the receiver to the args.
				call.SetOp(ir.OCALLFUNC)
				call.X = st.Nname
				call.Args.Prepend(dictValue, meth.X)
				modified = true
			}
		})

		// If we found a reference to a generic instantiation that wasn't an
		// immediate call, then traverse the nodes of decl again (with
		// EditChildren rather than Visit), where we actually change the
		// reference to the instantiation to a closure that captures the
		// dictionary, then does a direct call.
		// EditChildren is more expensive than Visit, so we only do this
		// in the infrequent case of an OFUNCINST without a corresponding
		// call.
		if closureRequired {
			modified = true
			var edit func(ir.Node) ir.Node
			var outer *ir.Func
			if f, ok := decl.(*ir.Func); ok {
				outer = f
			}
			edit = func(x ir.Node) ir.Node {
				if x.Op() == ir.OFUNCINST {
					child := x.(*ir.InstExpr).X
					if child.Op() == ir.OMETHEXPR || child.Op() == ir.OMETHVALUE {
						// Call EditChildren on child (x.X),
						// not x, so that we don't do
						// buildClosure() on the
						// METHEXPR/METHVALUE nodes as well.
						ir.EditChildren(child, edit)
						return g.buildClosure(outer, x)
					}
				}
				ir.EditChildren(x, edit)
				switch {
				case x.Op() == ir.OFUNCINST:
					return g.buildClosure(outer, x)
				case (x.Op() == ir.OMETHEXPR || x.Op() == ir.OMETHVALUE) &&
					len(deref(x.(*ir.SelectorExpr).X.Type()).RParams()) > 0 &&
					!types.IsInterfaceMethod(x.(*ir.SelectorExpr).Selection.Type):
					return g.buildClosure(outer, x)
				}
				return x
			}
			edit(decl)
		}
		if base.Flag.W > 1 && modified {
			ir.Dump(fmt.Sprintf("\nmodified %v", decl), decl)
		}
		ir.CurFunc = nil
		// We may have seen new fully-instantiated generic types while
		// instantiating any needed functions/methods in the above
		// function. If so, instantiate all the methods of those types
		// (which will then lead to more function/methods to scan in the loop).
		g.instantiateMethods()
	}

	g.finalizeSyms()
}

// buildClosure makes a closure to implement x, a OFUNCINST or OMETHEXPR
// of generic type. outer is the containing function (or nil if closure is
// in a global assignment instead of a function).
func (g *irgen) buildClosure(outer *ir.Func, x ir.Node) ir.Node {
	pos := x.Pos()
	var target *ir.Func   // target instantiated function/method
	var dictValue ir.Node // dictionary to use
	var rcvrValue ir.Node // receiver, if a method value
	typ := x.Type()       // type of the closure
	var outerInfo *instInfo
	if outer != nil {
		outerInfo = g.instInfoMap[outer.Sym()]
	}
	usingSubdict := false
	valueMethod := false
	if x.Op() == ir.OFUNCINST {
		inst := x.(*ir.InstExpr)

		// Type arguments we're instantiating with.
		targs := typecheck.TypesOf(inst.Targs)

		// Find the generic function/method.
		var gf *ir.Name
		if inst.X.Op() == ir.ONAME {
			// Instantiating a generic function call.
			gf = inst.X.(*ir.Name)
		} else if inst.X.Op() == ir.OMETHVALUE {
			// Instantiating a method value x.M.
			se := inst.X.(*ir.SelectorExpr)
			rcvrValue = se.X
			gf = se.Selection.Nname.(*ir.Name)
		} else {
			panic("unhandled")
		}

		// target is the instantiated function we're trying to call.
		// For functions, the target expects a dictionary as its first argument.
		// For method values, the target expects a dictionary and the receiver
		// as its first two arguments.
		// dictValue is the value to use for the dictionary argument.
		target = g.getInstantiation(gf, targs, rcvrValue != nil)
		dictValue, usingSubdict = g.getDictOrSubdict(outerInfo, x, gf, targs, rcvrValue != nil)
		if infoPrintMode {
			dictkind := "Main dictionary"
			if usingSubdict {
				dictkind = "Sub-dictionary"
			}
			if rcvrValue == nil {
				fmt.Printf("%s in %v for generic function value %v\n", dictkind, outer, inst.X)
			} else {
				fmt.Printf("%s in %v for generic method value %v\n", dictkind, outer, inst.X)
			}
		}
	} else { // ir.OMETHEXPR or ir.METHVALUE
		// Method expression T.M where T is a generic type.
		se := x.(*ir.SelectorExpr)
		targs := deref(se.X.Type()).RParams()
		if len(targs) == 0 {
			panic("bad")
		}
		if x.Op() == ir.OMETHVALUE {
			rcvrValue = se.X
		}

		// se.X.Type() is the top-level type of the method expression. To
		// correctly handle method expressions involving embedded fields,
		// look up the generic method below using the type of the receiver
		// of se.Selection, since that will be the type that actually has
		// the method.
		recv := deref(se.Selection.Type.Recv().Type)
		if len(recv.RParams()) == 0 {
			// The embedded type that actually has the method is not
			// actually generic, so no need to build a closure.
			return x
		}
		baseType := recv.OrigSym.Def.Type()
		var gf *ir.Name
		for _, m := range baseType.Methods().Slice() {
			if se.Sel == m.Sym {
				gf = m.Nname.(*ir.Name)
				break
			}
		}
		if !gf.Type().Recv().Type.IsPtr() {
			// Remember if value method, so we can detect (*T).M case.
			valueMethod = true
		}
		target = g.getInstantiation(gf, targs, true)
		dictValue, usingSubdict = g.getDictOrSubdict(outerInfo, x, gf, targs, true)
		if infoPrintMode {
			dictkind := "Main dictionary"
			if usingSubdict {
				dictkind = "Sub-dictionary"
			}
			fmt.Printf("%s in %v for method expression %v\n", dictkind, outer, x)
		}
	}

	// Build a closure to implement a function instantiation.
	//
	//   func f[T any] (int, int) (int, int) { ...whatever... }
	//
	// Then any reference to f[int] not directly called gets rewritten to
	//
	//   .dictN := ... dictionary to use ...
	//   func(a0, a1 int) (r0, r1 int) {
	//     return .inst.f[int](.dictN, a0, a1)
	//   }
	//
	// Similarly for method expressions,
	//
	//   type g[T any] ....
	//   func (rcvr g[T]) f(a0, a1 int) (r0, r1 int) { ... }
	//
	// Any reference to g[int].f not directly called gets rewritten to
	//
	//   .dictN := ... dictionary to use ...
	//   func(rcvr g[int], a0, a1 int) (r0, r1 int) {
	//     return .inst.g[int].f(.dictN, rcvr, a0, a1)
	//   }
	//
	// Also method values
	//
	//   var x g[int]
	//
	// Any reference to x.f not directly called gets rewritten to
	//
	//   .dictN := ... dictionary to use ...
	//   x2 := x
	//   func(a0, a1 int) (r0, r1 int) {
	//     return .inst.g[int].f(.dictN, x2, a0, a1)
	//   }

	// Make a new internal function.
	fn, formalParams, formalResults := startClosure(pos, outer, typ)

	// This is the dictionary we want to use.
	// It may be a constant, or it may be a dictionary acquired from the outer function's dictionary.
	// For the latter, dictVar is a variable in the outer function's scope, set to the subdictionary
	// read from the outer function's dictionary.
	var dictVar *ir.Name
	var dictAssign *ir.AssignStmt
	if outer != nil {
		// Note: for now this is a compile-time constant, so we don't really need a closure
		// to capture it (a wrapper function would work just as well). But eventually it
		// will be a read of a subdictionary from the parent dictionary.
		dictVar = ir.NewNameAt(pos, typecheck.LookupNum(".dict", g.dnum))
		g.dnum++
		dictVar.Class = ir.PAUTO
		typed(types.Types[types.TUINTPTR], dictVar)
		dictVar.Curfn = outer
		dictAssign = ir.NewAssignStmt(pos, dictVar, dictValue)
		dictAssign.SetTypecheck(1)
		dictVar.Defn = dictAssign
		outer.Dcl = append(outer.Dcl, dictVar)
	}
	// assign the receiver to a temporary.
	var rcvrVar *ir.Name
	var rcvrAssign ir.Node
	if rcvrValue != nil {
		rcvrVar = ir.NewNameAt(pos, typecheck.LookupNum(".rcvr", g.dnum))
		g.dnum++
		rcvrVar.Class = ir.PAUTO
		typed(rcvrValue.Type(), rcvrVar)
		rcvrVar.Curfn = outer
		rcvrAssign = ir.NewAssignStmt(pos, rcvrVar, rcvrValue)
		rcvrAssign.SetTypecheck(1)
		rcvrVar.Defn = rcvrAssign
		outer.Dcl = append(outer.Dcl, rcvrVar)
	}

	// Build body of closure. This involves just calling the wrapped function directly
	// with the additional dictionary argument.

	// First, figure out the dictionary argument.
	var dict2Var ir.Node
	if usingSubdict {
		// Capture sub-dictionary calculated in the outer function
		dict2Var = ir.CaptureName(pos, fn, dictVar)
		typed(types.Types[types.TUINTPTR], dict2Var)
	} else {
		// Static dictionary, so can be used directly in the closure
		dict2Var = dictValue
	}
	// Also capture the receiver variable.
	var rcvr2Var *ir.Name
	if rcvrValue != nil {
		rcvr2Var = ir.CaptureName(pos, fn, rcvrVar)
	}

	// Build arguments to call inside the closure.
	var args []ir.Node

	// First the dictionary argument.
	args = append(args, dict2Var)
	// Then the receiver.
	if rcvrValue != nil {
		args = append(args, rcvr2Var)
	}
	// Then all the other arguments (including receiver for method expressions).
	for i := 0; i < typ.NumParams(); i++ {
		if x.Op() == ir.OMETHEXPR && i == 0 {
			// If we are doing a method expression, we need to
			// explicitly traverse any embedded fields in the receiver
			// argument in order to call the method instantiation.
			arg0 := formalParams[0].Nname.(ir.Node)
			arg0 = typecheck.AddImplicitDots(ir.NewSelectorExpr(base.Pos, ir.OXDOT, arg0, x.(*ir.SelectorExpr).Sel)).X
			if valueMethod && arg0.Type().IsPtr() {
				// For handling the (*T).M case: if we have a pointer
				// receiver after following all the embedded fields,
				// but it's a value method, add a star operator.
				arg0 = ir.NewStarExpr(arg0.Pos(), arg0)
			}
			args = append(args, arg0)
		} else {
			args = append(args, formalParams[i].Nname.(*ir.Name))
		}
	}

	// Build call itself.
	var innerCall ir.Node = ir.NewCallExpr(pos, ir.OCALL, target.Nname, args)
	if len(formalResults) > 0 {
		innerCall = ir.NewReturnStmt(pos, []ir.Node{innerCall})
	}
	// Finish building body of closure.
	ir.CurFunc = fn
	// TODO: set types directly here instead of using typecheck.Stmt
	typecheck.Stmt(innerCall)
	ir.CurFunc = nil
	fn.Body = []ir.Node{innerCall}

	// We're all done with the captured dictionary (and receiver, for method values).
	ir.FinishCaptureNames(pos, outer, fn)

	// Make a closure referencing our new internal function.
	c := ir.UseClosure(fn.OClosure, g.target)
	var init []ir.Node
	if outer != nil {
		init = append(init, dictAssign)
	}
	if rcvrValue != nil {
		init = append(init, rcvrAssign)
	}
	return ir.InitExpr(init, c)
}

// instantiateMethods instantiates all the methods (and associated dictionaries) of
// all fully-instantiated generic types that have been added to g.instTypeList.
func (g *irgen) instantiateMethods() {
	for i := 0; i < len(g.instTypeList); i++ {
		typ := g.instTypeList[i]
		assert(!typ.HasShape())
		// Mark runtime type as needed, since this ensures that the
		// compiler puts out the needed DWARF symbols, when this
		// instantiated type has a different package from the local
		// package.
		typecheck.NeedRuntimeType(typ)
		// Lookup the method on the base generic type, since methods may
		// not be set on imported instantiated types.
		baseSym := typ.OrigSym
		baseType := baseSym.Def.(*ir.Name).Type()
		for j, _ := range typ.Methods().Slice() {
			if baseType.Methods().Slice()[j].Nointerface() {
				typ.Methods().Slice()[j].SetNointerface(true)
			}
			baseNname := baseType.Methods().Slice()[j].Nname.(*ir.Name)
			// Eagerly generate the instantiations and dictionaries that implement these methods.
			// We don't use the instantiations here, just generate them (and any
			// further instantiations those generate, etc.).
			// Note that we don't set the Func for any methods on instantiated
			// types. Their signatures don't match so that would be confusing.
			// Direct method calls go directly to the instantiations, implemented above.
			// Indirect method calls use wrappers generated in reflectcall. Those wrappers
			// will use these instantiations if they are needed (for interface tables or reflection).
			_ = g.getInstantiation(baseNname, typ.RParams(), true)
			_ = g.getDictionarySym(baseNname, typ.RParams(), true)
		}
	}
	g.instTypeList = nil

}

// getInstNameNode returns the name node for the method or function being instantiated, and a bool which is true if a method is being instantiated.
func (g *irgen) getInstNameNode(inst *ir.InstExpr) (*ir.Name, bool) {
	if meth, ok := inst.X.(*ir.SelectorExpr); ok {
		return meth.Selection.Nname.(*ir.Name), true
	} else {
		return inst.X.(*ir.Name), false
	}
}

// getDictOrSubdict returns, for a method/function call or reference (node n) in an
// instantiation (described by instInfo), a node which is accessing a sub-dictionary
// or main/static dictionary, as needed, and also returns a boolean indicating if a
// sub-dictionary was accessed. nameNode is the particular function or method being
// called/referenced, and targs are the type arguments.
func (g *irgen) getDictOrSubdict(declInfo *instInfo, n ir.Node, nameNode *ir.Name, targs []*types.Type, isMeth bool) (ir.Node, bool) {
	var dict ir.Node
	usingSubdict := false
	if declInfo != nil {
		// Get the dictionary arg via sub-dictionary reference
		entry, ok := declInfo.dictEntryMap[n]
		// If the entry is not found, it may be that this node did not have
		// any type args that depend on type params, so we need a main
		// dictionary, not a sub-dictionary.
		if ok {
			dict = getDictionaryEntry(n.Pos(), declInfo.dictParam, entry, declInfo.dictLen)
			usingSubdict = true
		}
	}
	if !usingSubdict {
		dict = g.getDictionaryValue(nameNode, targs, isMeth)
	}
	return dict, usingSubdict
}

// checkFetchBody checks if a generic body can be fetched, but hasn't been loaded
// yet. If so, it imports the body.
func checkFetchBody(nameNode *ir.Name) {
	if nameNode.Func.Body == nil && nameNode.Func.Inl != nil {
		// If there is no body yet but Func.Inl exists, then we can can
		// import the whole generic body.
		assert(nameNode.Func.Inl.Cost == 1 && nameNode.Sym().Pkg != types.LocalPkg)
		typecheck.ImportBody(nameNode.Func)
		assert(nameNode.Func.Inl.Body != nil)
		nameNode.Func.Body = nameNode.Func.Inl.Body
		nameNode.Func.Dcl = nameNode.Func.Inl.Dcl
	}
}

// getInstantiation gets the instantiantion and dictionary of the function or method nameNode
// with the type arguments shapes. If the instantiated function is not already
// cached, then it calls genericSubst to create the new instantiation.
func (g *irgen) getInstantiation(nameNode *ir.Name, shapes []*types.Type, isMeth bool) *ir.Func {
	checkFetchBody(nameNode)

	// Convert any non-shape type arguments to their shape, so we can reduce the
	// number of instantiations we have to generate. You can actually have a mix
	// of shape and non-shape arguments, because of inferred or explicitly
	// specified concrete type args.
	var s1 []*types.Type
	for i, t := range shapes {
		if !t.HasShape() {
			if s1 == nil {
				s1 = make([]*types.Type, len(shapes))
				copy(s1[0:i], shapes[0:i])
			}
			s1[i] = typecheck.Shapify(t)
		} else if s1 != nil {
			s1[i] = shapes[i]
		}
	}
	if s1 != nil {
		shapes = s1
	}

	sym := typecheck.MakeFuncInstSym(nameNode.Sym(), shapes, isMeth)
	info := g.instInfoMap[sym]
	if info == nil {
		// If instantiation doesn't exist yet, create it and add
		// to the list of decls.
		gfInfo := g.getGfInfo(nameNode)
		info = &instInfo{
			gf:            nameNode,
			gfInfo:        gfInfo,
			startSubDict:  len(shapes) + len(gfInfo.derivedTypes),
			startItabConv: len(shapes) + len(gfInfo.derivedTypes) + len(gfInfo.subDictCalls),
			dictLen:       len(shapes) + len(gfInfo.derivedTypes) + len(gfInfo.subDictCalls) + len(gfInfo.itabConvs),
			dictEntryMap:  make(map[ir.Node]int),
		}
		// genericSubst fills in info.dictParam and info.dictEntryMap.
		st := g.genericSubst(sym, nameNode, shapes, isMeth, info)
		info.fun = st
		g.instInfoMap[sym] = info
		// This ensures that the linker drops duplicates of this instantiation.
		// All just works!
		st.SetDupok(true)
		g.target.Decls = append(g.target.Decls, st)
		if base.Flag.W > 1 {
			ir.Dump(fmt.Sprintf("\nstenciled %v", st), st)
		}
	}
	return info.fun
}

// Struct containing info needed for doing the substitution as we create the
// instantiation of a generic function with specified type arguments.
type subster struct {
	g        *irgen
	isMethod bool     // If a method is being instantiated
	newf     *ir.Func // Func node for the new stenciled function
	ts       typecheck.Tsubster
	info     *instInfo // Place to put extra info in the instantiation
}

// genericSubst returns a new function with name newsym. The function is an
// instantiation of a generic function or method specified by namedNode with type
// args shapes. For a method with a generic receiver, it returns an instantiated
// function type where the receiver becomes the first parameter. For either a generic
// method or function, a dictionary parameter is the added as the very first
// parameter. genericSubst fills in info.dictParam and info.dictEntryMap.
func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, shapes []*types.Type, isMethod bool, info *instInfo) *ir.Func {
	var tparams []*types.Type
	if isMethod {
		// Get the type params from the method receiver (after skipping
		// over any pointer)
		recvType := nameNode.Type().Recv().Type
		recvType = deref(recvType)
		tparams = recvType.RParams()
	} else {
		fields := nameNode.Type().TParams().Fields().Slice()
		tparams = make([]*types.Type, len(fields))
		for i, f := range fields {
			tparams[i] = f.Type
		}
	}
	gf := nameNode.Func
	// Pos of the instantiated function is same as the generic function
	newf := ir.NewFunc(gf.Pos())
	newf.Pragma = gf.Pragma // copy over pragmas from generic function to stenciled implementation.
	newf.Nname = ir.NewNameAt(gf.Pos(), newsym)
	newf.Nname.Func = newf
	newf.Nname.Defn = newf
	newsym.Def = newf.Nname
	savef := ir.CurFunc
	// transformCall/transformReturn (called during stenciling of the body)
	// depend on ir.CurFunc being set.
	ir.CurFunc = newf

	assert(len(tparams) == len(shapes))

	subst := &subster{
		g:        g,
		isMethod: isMethod,
		newf:     newf,
		info:     info,
		ts: typecheck.Tsubster{
			Tparams: tparams,
			Targs:   shapes,
			Vars:    make(map[*ir.Name]*ir.Name),
		},
	}

	newf.Dcl = make([]*ir.Name, 0, len(gf.Dcl)+1)

	// Create the needed dictionary param
	dictionarySym := newsym.Pkg.Lookup(".dict")
	dictionaryType := types.Types[types.TUINTPTR]
	dictionaryName := ir.NewNameAt(gf.Pos(), dictionarySym)
	typed(dictionaryType, dictionaryName)
	dictionaryName.Class = ir.PPARAM
	dictionaryName.Curfn = newf
	newf.Dcl = append(newf.Dcl, dictionaryName)
	for _, n := range gf.Dcl {
		if n.Sym().Name == ".dict" {
			panic("already has dictionary")
		}
		newf.Dcl = append(newf.Dcl, subst.localvar(n))
	}
	dictionaryArg := types.NewField(gf.Pos(), dictionarySym, dictionaryType)
	dictionaryArg.Nname = dictionaryName
	info.dictParam = dictionaryName

	// We add the dictionary as the first parameter in the function signature.
	// We also transform a method type to the corresponding function type
	// (make the receiver be the next parameter after the dictionary).
	oldt := nameNode.Type()
	var args []*types.Field
	args = append(args, dictionaryArg)
	args = append(args, oldt.Recvs().FieldSlice()...)
	args = append(args, oldt.Params().FieldSlice()...)

	// Replace the types in the function signature via subst.fields.
	// Ugly: also, we have to insert the Name nodes of the parameters/results into
	// the function type. The current function type has no Nname fields set,
	// because it came via conversion from the types2 type.
	newt := types.NewSignature(oldt.Pkg(), nil, nil,
		subst.fields(ir.PPARAM, args, newf.Dcl),
		subst.fields(ir.PPARAMOUT, oldt.Results().FieldSlice(), newf.Dcl))

	typed(newt, newf.Nname)
	ir.MarkFunc(newf.Nname)
	newf.SetTypecheck(1)

	// Make sure name/type of newf is set before substituting the body.
	newf.Body = subst.list(gf.Body)

	// Add code to check that the dictionary is correct.
	// TODO: must be adjusted to deal with shapes, but will go away soon when we move
	// to many->1 shape to concrete mapping.
	// newf.Body.Prepend(subst.checkDictionary(dictionaryName, shapes)...)

	ir.CurFunc = savef
	// Add any new, fully instantiated types seen during the substitution to
	// g.instTypeList.
	g.instTypeList = append(g.instTypeList, subst.ts.InstTypeList...)

	if doubleCheck {
		ir.Visit(newf, func(n ir.Node) {
			if n.Op() != ir.OCONVIFACE {
				return
			}
			c := n.(*ir.ConvExpr)
			if c.X.Type().HasShape() {
				ir.Dump("BAD FUNCTION", newf)
				ir.Dump("BAD CONVERSION", c)
				base.Fatalf("converting shape type to interface")
			}
		})
	}

	return newf
}

// localvar creates a new name node for the specified local variable and enters it
// in subst.vars. It substitutes type arguments for type parameters in the type of
// name as needed.
func (subst *subster) localvar(name *ir.Name) *ir.Name {
	m := ir.NewNameAt(name.Pos(), name.Sym())
	if name.IsClosureVar() {
		m.SetIsClosureVar(true)
	}
	m.SetType(subst.ts.Typ(name.Type()))
	m.BuiltinOp = name.BuiltinOp
	m.Curfn = subst.newf
	m.Class = name.Class
	assert(name.Class != ir.PEXTERN && name.Class != ir.PFUNC)
	m.Func = name.Func
	subst.ts.Vars[name] = m
	m.SetTypecheck(1)
	return m
}

// checkDictionary returns code that does runtime consistency checks
// between the dictionary and the types it should contain.
func (subst *subster) checkDictionary(name *ir.Name, targs []*types.Type) (code []ir.Node) {
	if false {
		return // checking turned off
	}
	// TODO: when moving to GCshape, this test will become harder. Call into
	// runtime to check the expected shape is correct?
	pos := name.Pos()
	// Convert dictionary to *[N]uintptr
	d := ir.NewConvExpr(pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], name)
	d.SetTypecheck(1)
	d = ir.NewConvExpr(pos, ir.OCONVNOP, types.NewArray(types.Types[types.TUINTPTR], int64(len(targs))).PtrTo(), d)
	d.SetTypecheck(1)
	types.CheckSize(d.Type().Elem())

	// Check that each type entry in the dictionary is correct.
	for i, t := range targs {
		if t.HasShape() {
			// Check the concrete type, not the shape type.
			base.Fatalf("shape type in dictionary %s %+v\n", name.Sym().Name, t)
		}
		want := reflectdata.TypePtr(t)
		typed(types.Types[types.TUINTPTR], want)
		deref := ir.NewStarExpr(pos, d)
		typed(d.Type().Elem(), deref)
		idx := ir.NewConstExpr(constant.MakeUint64(uint64(i)), name) // TODO: what to set orig to?
		typed(types.Types[types.TUINTPTR], idx)
		got := ir.NewIndexExpr(pos, deref, idx)
		typed(types.Types[types.TUINTPTR], got)
		cond := ir.NewBinaryExpr(pos, ir.ONE, want, got)
		typed(types.Types[types.TBOOL], cond)
		panicArg := ir.NewNilExpr(pos)
		typed(types.NewInterface(types.LocalPkg, nil), panicArg)
		then := ir.NewUnaryExpr(pos, ir.OPANIC, panicArg)
		then.SetTypecheck(1)
		x := ir.NewIfStmt(pos, cond, []ir.Node{then}, nil)
		x.SetTypecheck(1)
		code = append(code, x)
	}
	return
}

// getDictionaryEntry gets the i'th entry in the dictionary dict.
func getDictionaryEntry(pos src.XPos, dict *ir.Name, i int, size int) ir.Node {
	// Convert dictionary to *[N]uintptr
	// All entries in the dictionary are pointers. They all point to static data, though, so we
	// treat them as uintptrs so the GC doesn't need to keep track of them.
	d := ir.NewConvExpr(pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], dict)
	d.SetTypecheck(1)
	d = ir.NewConvExpr(pos, ir.OCONVNOP, types.NewArray(types.Types[types.TUINTPTR], int64(size)).PtrTo(), d)
	d.SetTypecheck(1)
	types.CheckSize(d.Type().Elem())

	// Load entry i out of the dictionary.
	deref := ir.NewStarExpr(pos, d)
	typed(d.Type().Elem(), deref)
	idx := ir.NewConstExpr(constant.MakeUint64(uint64(i)), dict) // TODO: what to set orig to?
	typed(types.Types[types.TUINTPTR], idx)
	r := ir.NewIndexExpr(pos, deref, idx)
	typed(types.Types[types.TUINTPTR], r)
	return r
}

// getDictionaryType returns a *runtime._type from the dictionary entry i (which
// refers to a type param or a derived type that uses type params). It uses the
// specified dictionary dictParam, rather than the one in info.dictParam.
func getDictionaryType(info *instInfo, dictParam *ir.Name, pos src.XPos, i int) ir.Node {
	if i < 0 || i >= info.startSubDict {
		base.Fatalf(fmt.Sprintf("bad dict index %d", i))
	}

	r := getDictionaryEntry(pos, info.dictParam, i, info.startSubDict)
	// change type of retrieved dictionary entry to *byte, which is the
	// standard typing of a *runtime._type in the compiler
	typed(types.Types[types.TUINT8].PtrTo(), r)
	return r
}

// node is like DeepCopy(), but substitutes ONAME nodes based on subst.ts.vars, and
// also descends into closures. It substitutes type arguments for type parameters
// in all the new nodes.
func (subst *subster) node(n ir.Node) ir.Node {
	// Use closure to capture all state needed by the ir.EditChildren argument.
	var edit func(ir.Node) ir.Node
	edit = func(x ir.Node) ir.Node {
		switch x.Op() {
		case ir.OTYPE:
			return ir.TypeNode(subst.ts.Typ(x.Type()))

		case ir.ONAME:
			if v := subst.ts.Vars[x.(*ir.Name)]; v != nil {
				return v
			}
			return x
		case ir.ONONAME:
			// This handles the identifier in a type switch guard
			fallthrough
		case ir.OLITERAL, ir.ONIL:
			if x.Sym() != nil {
				return x
			}
		}
		m := ir.Copy(x)
		if _, isExpr := m.(ir.Expr); isExpr {
			t := x.Type()
			if t == nil {
				// t can be nil only if this is a call that has no
				// return values, so allow that and otherwise give
				// an error.
				_, isCallExpr := m.(*ir.CallExpr)
				_, isStructKeyExpr := m.(*ir.StructKeyExpr)
				_, isKeyExpr := m.(*ir.KeyExpr)
				if !isCallExpr && !isStructKeyExpr && !isKeyExpr && x.Op() != ir.OPANIC &&
					x.Op() != ir.OCLOSE {
					base.Fatalf(fmt.Sprintf("Nil type for %v", x))
				}
			} else if x.Op() != ir.OCLOSURE {
				m.SetType(subst.ts.Typ(x.Type()))
			}
		}

		for i, de := range subst.info.gfInfo.subDictCalls {
			if de == x {
				// Remember the dictionary entry associated with this
				// node in the instantiated function
				// TODO: make sure this remains correct with respect to the
				// transformations below.
				subst.info.dictEntryMap[m] = subst.info.startSubDict + i
				break
			}
		}

		ir.EditChildren(m, edit)

		m.SetTypecheck(1)
		if typecheck.IsCmp(x.Op()) {
			transformCompare(m.(*ir.BinaryExpr))
		} else {
			switch x.Op() {
			case ir.OSLICE, ir.OSLICE3:
				transformSlice(m.(*ir.SliceExpr))

			case ir.OADD:
				m = transformAdd(m.(*ir.BinaryExpr))

			case ir.OINDEX:
				transformIndex(m.(*ir.IndexExpr))

			case ir.OAS2:
				as2 := m.(*ir.AssignListStmt)
				transformAssign(as2, as2.Lhs, as2.Rhs)

			case ir.OAS:
				as := m.(*ir.AssignStmt)
				if as.Y != nil {
					// transformAssign doesn't handle the case
					// of zeroing assignment of a dcl (rhs[0] is nil).
					lhs, rhs := []ir.Node{as.X}, []ir.Node{as.Y}
					transformAssign(as, lhs, rhs)
				}

			case ir.OASOP:
				as := m.(*ir.AssignOpStmt)
				transformCheckAssign(as, as.X)

			case ir.ORETURN:
				transformReturn(m.(*ir.ReturnStmt))

			case ir.OSEND:
				transformSend(m.(*ir.SendStmt))

			}
		}

		switch x.Op() {
		case ir.OLITERAL:
			t := m.Type()
			if t != x.Type() {
				// types2 will give us a constant with a type T,
				// if an untyped constant is used with another
				// operand of type T (in a provably correct way).
				// When we substitute in the type args during
				// stenciling, we now know the real type of the
				// constant. We may then need to change the
				// BasicLit.val to be the correct type (e.g.
				// convert an int64Val constant to a floatVal
				// constant).
				m.SetType(types.UntypedInt) // use any untyped type for DefaultLit to work
				m = typecheck.DefaultLit(m, t)
			}

		case ir.OXDOT:
			// A method value/call via a type param will have been
			// left as an OXDOT. When we see this during stenciling,
			// finish the transformation, now that we have the
			// instantiated receiver type. We need to do this now,
			// since the access/selection to the method for the real
			// type is very different from the selection for the type
			// param. m will be transformed to an OMETHVALUE node. It
			// will be transformed to an ODOTMETH or ODOTINTER node if
			// we find in the OCALL case below that the method value
			// is actually called.
			mse := m.(*ir.SelectorExpr)
			if src := mse.X.Type(); src.IsShape() {
				// The only dot on a shape type value are methods.
				if mse.X.Op() == ir.OTYPE {
					// Method expression T.M
					m = subst.g.buildClosure2(subst, m, x)
					// No need for transformDot - buildClosure2 has already
					// transformed to OCALLINTER/ODOTINTER.
				} else {
					// Implement x.M as a conversion-to-bound-interface
					//  1) convert x to the bound interface
					//  2) call M on that interface
					gsrc := x.(*ir.SelectorExpr).X.Type()
					bound := gsrc.Bound()
					dst := bound
					if dst.HasTParam() {
						dst = subst.ts.Typ(dst)
					}
					if src.IsInterface() {
						// If type arg is an interface (unusual case),
						// we do a type assert to the type bound.
						mse.X = assertToBound(subst.info, subst.info.dictParam, m.Pos(), mse.X, bound, dst)
					} else {
						mse.X = convertUsingDictionary(subst.info, subst.info.dictParam, m.Pos(), mse.X, x, dst, gsrc)
					}
					transformDot(mse, false)
				}
			} else {
				transformDot(mse, false)
			}
			m.SetTypecheck(1)

		case ir.OCALL:
			call := m.(*ir.CallExpr)
			switch call.X.Op() {
			case ir.OTYPE:
				// Transform the conversion, now that we know the
				// type argument.
				m = transformConvCall(call)
				// CONVIFACE transformation was already done in node2
				assert(m.Op() != ir.OCONVIFACE)

			case ir.OMETHVALUE, ir.OMETHEXPR:
				// Redo the transformation of OXDOT, now that we
				// know the method value is being called. Then
				// transform the call.
				call.X.(*ir.SelectorExpr).SetOp(ir.OXDOT)
				transformDot(call.X.(*ir.SelectorExpr), true)
				transformCall(call)

			case ir.ODOT, ir.ODOTPTR:
				// An OXDOT for a generic receiver was resolved to
				// an access to a field which has a function
				// value. Transform the call to that function, now
				// that the OXDOT was resolved.
				transformCall(call)

			case ir.ONAME:
				name := call.X.Name()
				if name.BuiltinOp != ir.OXXX {
					switch name.BuiltinOp {
					case ir.OMAKE, ir.OREAL, ir.OIMAG, ir.OAPPEND, ir.ODELETE, ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF:
						// Transform these builtins now that we
						// know the type of the args.
						m = transformBuiltin(call)
					default:
						base.FatalfAt(call.Pos(), "Unexpected builtin op")
					}
				} else {
					// This is the case of a function value that was a
					// type parameter (implied to be a function via a
					// structural constraint) which is now resolved.
					transformCall(call)
				}

			case ir.OCLOSURE:
				transformCall(call)

			case ir.ODEREF, ir.OINDEX, ir.OINDEXMAP, ir.ORECV:
				// Transform a call that was delayed because of the
				// use of typeparam inside an expression that required
				// a pointer dereference, array indexing, map indexing,
				// or channel receive to compute function value.
				transformCall(call)

			case ir.OFUNCINST:
				// A call with an OFUNCINST will get transformed
				// in stencil() once we have created & attached the
				// instantiation to be called.

			default:
				base.FatalfAt(call.Pos(), fmt.Sprintf("Unexpected op with CALL during stenciling: %v", call.X.Op()))
			}

		case ir.OCLOSURE:
			// We're going to create a new closure from scratch, so clear m
			// to avoid using the ir.Copy by accident until we reassign it.
			m = nil

			x := x.(*ir.ClosureExpr)
			// Need to duplicate x.Func.Nname, x.Func.Dcl, x.Func.ClosureVars, and
			// x.Func.Body.
			oldfn := x.Func
			newfn := ir.NewClosureFunc(oldfn.Pos(), subst.newf != nil)
			ir.NameClosure(newfn.OClosure, subst.newf)

			saveNewf := subst.newf
			ir.CurFunc = newfn
			subst.newf = newfn
			newfn.Dcl = subst.namelist(oldfn.Dcl)

			// Make a closure variable for the dictionary of the
			// containing function.
			cdict := ir.CaptureName(oldfn.Pos(), newfn, subst.info.dictParam)
			typed(types.Types[types.TUINTPTR], cdict)
			ir.FinishCaptureNames(oldfn.Pos(), saveNewf, newfn)
			newfn.ClosureVars = append(newfn.ClosureVars, subst.namelist(oldfn.ClosureVars)...)

			// Copy that closure variable to a local one.
			// Note: this allows the dictionary to be captured by child closures.
			// See issue 47723.
			ldict := ir.NewNameAt(x.Pos(), subst.info.gf.Sym().Pkg.Lookup(".dict"))
			typed(types.Types[types.TUINTPTR], ldict)
			ldict.Class = ir.PAUTO
			ldict.Curfn = newfn
			newfn.Dcl = append(newfn.Dcl, ldict)
			as := ir.NewAssignStmt(x.Pos(), ldict, cdict)
			as.SetTypecheck(1)
			newfn.Body.Append(as)

			// Create inst info for the instantiated closure. The dict
			// param is the closure variable for the dictionary of the
			// outer function. Since the dictionary is shared, use the
			// same entries for startSubDict, dictLen, dictEntryMap.
			cinfo := &instInfo{
				fun:           newfn,
				dictParam:     ldict,
				gf:            subst.info.gf,
				gfInfo:        subst.info.gfInfo,
				startSubDict:  subst.info.startSubDict,
				startItabConv: subst.info.startItabConv,
				dictLen:       subst.info.dictLen,
				dictEntryMap:  subst.info.dictEntryMap,
			}
			subst.g.instInfoMap[newfn.Nname.Sym()] = cinfo

			typed(subst.ts.Typ(oldfn.Nname.Type()), newfn.Nname)
			typed(newfn.Nname.Type(), newfn.OClosure)
			newfn.SetTypecheck(1)

			outerinfo := subst.info
			subst.info = cinfo
			// Make sure type of closure function is set before doing body.
			newfn.Body.Append(subst.list(oldfn.Body)...)
			subst.info = outerinfo
			subst.newf = saveNewf
			ir.CurFunc = saveNewf

			m = ir.UseClosure(newfn.OClosure, subst.g.target)
			m.(*ir.ClosureExpr).SetInit(subst.list(x.Init()))

		case ir.OCONVIFACE:
			x := x.(*ir.ConvExpr)
			// Note: x's argument is still typed as a type parameter.
			// m's argument now has an instantiated type.
			if x.X.Type().HasTParam() {
				m = convertUsingDictionary(subst.info, subst.info.dictParam, m.Pos(), m.(*ir.ConvExpr).X, x, m.Type(), x.X.Type())
			}
		case ir.ODOTTYPE, ir.ODOTTYPE2:
			if !x.Type().HasTParam() {
				break
			}
			dt := m.(*ir.TypeAssertExpr)
			var rt ir.Node
			if dt.Type().IsInterface() || dt.X.Type().IsEmptyInterface() {
				ix := findDictType(subst.info, x.Type())
				assert(ix >= 0)
				rt = getDictionaryType(subst.info, subst.info.dictParam, dt.Pos(), ix)
			} else {
				// nonempty interface to noninterface. Need an itab.
				ix := -1
				for i, ic := range subst.info.gfInfo.itabConvs {
					if ic == x {
						ix = subst.info.startItabConv + i
						break
					}
				}
				assert(ix >= 0)
				rt = getDictionaryEntry(dt.Pos(), subst.info.dictParam, ix, subst.info.dictLen)
			}
			op := ir.ODYNAMICDOTTYPE
			if x.Op() == ir.ODOTTYPE2 {
				op = ir.ODYNAMICDOTTYPE2
			}
			m = ir.NewDynamicTypeAssertExpr(dt.Pos(), op, dt.X, rt)
			m.SetType(dt.Type())
			m.SetTypecheck(1)
		case ir.OCASE:
			if _, ok := x.(*ir.CommClause); ok {
				// This is not a type switch. TODO: Should we use an OSWITCH case here instead of OCASE?
				break
			}
			x := x.(*ir.CaseClause)
			m := m.(*ir.CaseClause)
			for i, c := range x.List {
				if c.Op() == ir.OTYPE && c.Type().HasTParam() {
					// Use a *runtime._type for the dynamic type.
					ix := findDictType(subst.info, c.Type())
					assert(ix >= 0)
					dt := ir.NewDynamicType(c.Pos(), getDictionaryEntry(c.Pos(), subst.info.dictParam, ix, subst.info.dictLen))

					// For type switch from nonempty interfaces to non-interfaces, we need an itab as well.
					if !m.List[i].Type().IsInterface() {
						if _, ok := subst.info.gfInfo.type2switchType[c]; ok {
							// Type switch from nonempty interface. We need a *runtime.itab
							// for the dynamic type.
							ix := -1
							for i, ic := range subst.info.gfInfo.itabConvs {
								if ic == c {
									ix = subst.info.startItabConv + i
									break
								}
							}
							assert(ix >= 0)
							dt.ITab = getDictionaryEntry(c.Pos(), subst.info.dictParam, ix, subst.info.dictLen)
						}
					}
					typed(m.List[i].Type(), dt)
					m.List[i] = dt
				}
			}
		}
		return m
	}

	return edit(n)
}

// findDictType looks for type t in the typeparams or derived types in the generic
// function info.gfInfo. This will indicate the dictionary entry with the
// correct concrete type for the associated instantiated function.
func findDictType(info *instInfo, t *types.Type) int {
	for i, dt := range info.gfInfo.tparams {
		if dt == t {
			return i
		}
	}
	for i, dt := range info.gfInfo.derivedTypes {
		if types.Identical(dt, t) {
			return i + len(info.gfInfo.tparams)
		}
	}
	return -1
}

// convertUsingDictionary converts value v from instantiated type src to an interface
// type dst, by returning a new set of nodes that make use of a dictionary entry. src
// is the generic (not shape) type, and gn is the original generic node of the
// CONVIFACE node or XDOT node (for a bound method call) that is causing the
// conversion.
func convertUsingDictionary(info *instInfo, dictParam *ir.Name, pos src.XPos, v ir.Node, gn ir.Node, dst, src *types.Type) ir.Node {
	assert(src.HasTParam())
	assert(dst.IsInterface())

	var rt ir.Node
	if !dst.IsEmptyInterface() {
		// We should have an itab entry in the dictionary. Using this itab
		// will be more efficient than converting to an empty interface first
		// and then type asserting to dst.
		ix := -1
		for i, ic := range info.gfInfo.itabConvs {
			if ic == gn {
				ix = info.startItabConv + i
				break
			}
		}
		assert(ix >= 0)
		rt = getDictionaryEntry(pos, dictParam, ix, info.dictLen)
	} else if v.Type().IsInterface() {
		ta := ir.NewTypeAssertExpr(pos, v, nil)
		ta.SetType(dst)
		ta.SetTypecheck(1)
		return ta
	} else {
		ix := findDictType(info, src)
		assert(ix >= 0)
		// Load the actual runtime._type of the type parameter from the dictionary.
		rt = getDictionaryType(info, dictParam, pos, ix)
	}

	// Figure out what the data field of the interface will be.
	var data ir.Node
	if v.Type().IsInterface() {
		data = ir.NewUnaryExpr(pos, ir.OIDATA, v)
	} else {
		data = ir.NewConvExpr(pos, ir.OCONVIDATA, nil, v)
	}
	typed(types.Types[types.TUNSAFEPTR], data)

	// Build an interface from the type and data parts.
	var i ir.Node = ir.NewBinaryExpr(pos, ir.OEFACE, rt, data)
	typed(dst, i)
	return i

}

func (subst *subster) namelist(l []*ir.Name) []*ir.Name {
	s := make([]*ir.Name, len(l))
	for i, n := range l {
		s[i] = subst.localvar(n)
		if n.Defn != nil {
			s[i].Defn = subst.node(n.Defn)
		}
		if n.Outer != nil {
			s[i].Outer = subst.node(n.Outer).(*ir.Name)
		}
	}
	return s
}

func (subst *subster) list(l []ir.Node) []ir.Node {
	s := make([]ir.Node, len(l))
	for i, n := range l {
		s[i] = subst.node(n)
	}
	return s
}

// fields sets the Nname field for the Field nodes inside a type signature, based
// on the corresponding in/out parameters in dcl. It depends on the in and out
// parameters being in order in dcl.
func (subst *subster) fields(class ir.Class, oldfields []*types.Field, dcl []*ir.Name) []*types.Field {
	// Find the starting index in dcl of declarations of the class (either
	// PPARAM or PPARAMOUT).
	var i int
	for i = range dcl {
		if dcl[i].Class == class {
			break
		}
	}

	// Create newfields nodes that are copies of the oldfields nodes, but
	// with substitution for any type params, and with Nname set to be the node in
	// Dcl for the corresponding PPARAM or PPARAMOUT.
	newfields := make([]*types.Field, len(oldfields))
	for j := range oldfields {
		newfields[j] = oldfields[j].Copy()
		newfields[j].Type = subst.ts.Typ(oldfields[j].Type)
		// A PPARAM field will be missing from dcl if its name is
		// unspecified or specified as "_". So, we compare the dcl sym
		// with the field sym (or sym of the field's Nname node). (Unnamed
		// results still have a name like ~r2 in their Nname node.) If
		// they don't match, this dcl (if there is one left) must apply to
		// a later field.
		if i < len(dcl) && (dcl[i].Sym() == oldfields[j].Sym ||
			(oldfields[j].Nname != nil && dcl[i].Sym() == oldfields[j].Nname.Sym())) {
			newfields[j].Nname = dcl[i]
			i++
		}
	}
	return newfields
}

// deref does a single deref of type t, if it is a pointer type.
func deref(t *types.Type) *types.Type {
	if t.IsPtr() {
		return t.Elem()
	}
	return t
}

// markTypeUsed marks type t as used in order to help avoid dead-code elimination of
// needed methods.
func markTypeUsed(t *types.Type, lsym *obj.LSym) {
	if t.IsInterface() {
		// Mark all the methods of the interface as used.
		// TODO: we should really only mark the interface methods
		// that are actually called in the application.
		for i, _ := range t.AllMethods().Slice() {
			reflectdata.MarkUsedIfaceMethodIndex(lsym, t, i)
		}
	} else {
		// TODO: This is somewhat overkill, we really only need it
		// for types that are put into interfaces.
		reflectdata.MarkTypeUsedInInterface(t, lsym)
	}
}

// getDictionarySym returns the dictionary for the named generic function gf, which
// is instantiated with the type arguments targs.
func (g *irgen) getDictionarySym(gf *ir.Name, targs []*types.Type, isMeth bool) *types.Sym {
	if len(targs) == 0 {
		base.Fatalf("%s should have type arguments", gf.Sym().Name)
	}

	// Enforce that only concrete types can make it to here.
	for _, t := range targs {
		if t.HasShape() {
			panic(fmt.Sprintf("shape %+v in dictionary for %s", t, gf.Sym().Name))
		}
	}

	// Get a symbol representing the dictionary.
	sym := typecheck.MakeDictSym(gf.Sym(), targs, isMeth)

	// Initialize the dictionary, if we haven't yet already.
	lsym := sym.Linksym()
	if len(lsym.P) > 0 {
		// We already started creating this dictionary and its lsym.
		return sym
	}

	info := g.getGfInfo(gf)

	infoPrint("=== Creating dictionary %v\n", sym.Name)
	off := 0
	// Emit an entry for each targ (concrete type or gcshape).
	for _, t := range targs {
		infoPrint(" * %v\n", t)
		s := reflectdata.TypeLinksym(t)
		off = objw.SymPtr(lsym, off, s, 0)
		markTypeUsed(t, lsym)
	}
	subst := typecheck.Tsubster{
		Tparams: info.tparams,
		Targs:   targs,
	}
	// Emit an entry for each derived type (after substituting targs)
	for _, t := range info.derivedTypes {
		ts := subst.Typ(t)
		infoPrint(" - %v\n", ts)
		s := reflectdata.TypeLinksym(ts)
		off = objw.SymPtr(lsym, off, s, 0)
		markTypeUsed(ts, lsym)
	}
	// Emit an entry for each subdictionary (after substituting targs)
	for _, n := range info.subDictCalls {
		var sym *types.Sym
		switch n.Op() {
		case ir.OCALL:
			call := n.(*ir.CallExpr)
			if call.X.Op() == ir.OXDOT {
				var nameNode *ir.Name
				se := call.X.(*ir.SelectorExpr)
				if types.IsInterfaceMethod(se.Selection.Type) {
					// This is a method call enabled by a type bound.
					tmpse := ir.NewSelectorExpr(base.Pos, ir.OXDOT, se.X, se.Sel)
					tmpse = typecheck.AddImplicitDots(tmpse)
					tparam := tmpse.X.Type()
					assert(tparam.IsTypeParam())
					recvType := targs[tparam.Index()]
					if recvType.IsInterface() || len(recvType.RParams()) == 0 {
						// No sub-dictionary entry is
						// actually needed, since the
						// type arg is not an
						// instantiated type that
						// will have generic methods.
						break
					}
					// This is a method call for an
					// instantiated type, so we need a
					// sub-dictionary.
					targs := recvType.RParams()
					genRecvType := recvType.OrigSym.Def.Type()
					nameNode = typecheck.Lookdot1(call.X, se.Sel, genRecvType, genRecvType.Methods(), 1).Nname.(*ir.Name)
					sym = g.getDictionarySym(nameNode, targs, true)
				} else {
					// This is the case of a normal
					// method call on a generic type.
					nameNode = call.X.(*ir.SelectorExpr).Selection.Nname.(*ir.Name)
					subtargs := deref(call.X.(*ir.SelectorExpr).X.Type()).RParams()
					s2targs := make([]*types.Type, len(subtargs))
					for i, t := range subtargs {
						s2targs[i] = subst.Typ(t)
					}
					sym = g.getDictionarySym(nameNode, s2targs, true)
				}
			} else {
				inst := call.X.(*ir.InstExpr)
				var nameNode *ir.Name
				var meth *ir.SelectorExpr
				var isMeth bool
				if meth, isMeth = inst.X.(*ir.SelectorExpr); isMeth {
					nameNode = meth.Selection.Nname.(*ir.Name)
				} else {
					nameNode = inst.X.(*ir.Name)
				}
				subtargs := typecheck.TypesOf(inst.Targs)
				for i, t := range subtargs {
					subtargs[i] = subst.Typ(t)
				}
				sym = g.getDictionarySym(nameNode, subtargs, isMeth)
			}

		case ir.OFUNCINST:
			inst := n.(*ir.InstExpr)
			nameNode := inst.X.(*ir.Name)
			subtargs := typecheck.TypesOf(inst.Targs)
			for i, t := range subtargs {
				subtargs[i] = subst.Typ(t)
			}
			sym = g.getDictionarySym(nameNode, subtargs, false)

		case ir.OXDOT:
			selExpr := n.(*ir.SelectorExpr)
			subtargs := deref(selExpr.X.Type()).RParams()
			s2targs := make([]*types.Type, len(subtargs))
			for i, t := range subtargs {
				s2targs[i] = subst.Typ(t)
			}
			nameNode := selExpr.Selection.Nname.(*ir.Name)
			sym = g.getDictionarySym(nameNode, s2targs, true)

		default:
			assert(false)
		}

		if sym == nil {
			// Unused sub-dictionary entry, just emit 0.
			off = objw.Uintptr(lsym, off, 0)
			infoPrint(" - Unused subdict entry\n")
		} else {
			off = objw.SymPtr(lsym, off, sym.Linksym(), 0)
			infoPrint(" - Subdict %v\n", sym.Name)
		}
	}

	delay := &delayInfo{
		gf:    gf,
		targs: targs,
		sym:   sym,
		off:   off,
	}
	g.dictSymsToFinalize = append(g.dictSymsToFinalize, delay)
	g.instTypeList = append(g.instTypeList, subst.InstTypeList...)
	return sym
}

// finalizeSyms finishes up all dictionaries on g.dictSymsToFinalize, by writing out
// any needed LSyms for itabs. The itab lsyms create wrappers which need various
// dictionaries and method instantiations to be complete, so, to avoid recursive
// dependencies, we finalize the itab lsyms only after all dictionaries syms and
// instantiations have been created.
func (g *irgen) finalizeSyms() {
	for _, d := range g.dictSymsToFinalize {
		infoPrint("=== Finalizing dictionary %s\n", d.sym.Name)

		lsym := d.sym.Linksym()
		info := g.getGfInfo(d.gf)

		subst := typecheck.Tsubster{
			Tparams: info.tparams,
			Targs:   d.targs,
		}

		// Emit an entry for each itab
		for _, n := range info.itabConvs {
			var srctype, dsttype *types.Type
			switch n.Op() {
			case ir.OXDOT:
				se := n.(*ir.SelectorExpr)
				srctype = subst.Typ(se.X.Type())
				dsttype = subst.Typ(se.X.Type().Bound())
				found := false
				for i, m := range dsttype.AllMethods().Slice() {
					if se.Sel == m.Sym {
						// Mark that this method se.Sel is
						// used for the dsttype interface, so
						// it won't get deadcoded.
						reflectdata.MarkUsedIfaceMethodIndex(lsym, dsttype, i)
						found = true
						break
					}
				}
				assert(found)
			case ir.ODOTTYPE, ir.ODOTTYPE2:
				srctype = subst.Typ(n.(*ir.TypeAssertExpr).Type())
				dsttype = subst.Typ(n.(*ir.TypeAssertExpr).X.Type())
			case ir.OCONVIFACE:
				srctype = subst.Typ(n.(*ir.ConvExpr).X.Type())
				dsttype = subst.Typ(n.Type())
			case ir.OTYPE:
				srctype = subst.Typ(n.Type())
				dsttype = subst.Typ(info.type2switchType[n])
			default:
				base.Fatalf("itab entry with unknown op %s", n.Op())
			}
			if srctype.IsInterface() {
				// No itab is wanted if src type is an interface. We
				// will use a type assert instead.
				d.off = objw.Uintptr(lsym, d.off, 0)
				infoPrint(" + Unused itab entry for %v\n", srctype)
			} else {
				itabLsym := reflectdata.ITabLsym(srctype, dsttype)
				d.off = objw.SymPtr(lsym, d.off, itabLsym, 0)
				infoPrint(" + Itab for (%v,%v)\n", srctype, dsttype)
			}
		}

		objw.Global(lsym, int32(d.off), obj.DUPOK|obj.RODATA)
		infoPrint("=== Finalized dictionary %s\n", d.sym.Name)

		g.instTypeList = append(g.instTypeList, subst.InstTypeList...)
	}
	g.dictSymsToFinalize = nil
}

func (g *irgen) getDictionaryValue(gf *ir.Name, targs []*types.Type, isMeth bool) ir.Node {
	sym := g.getDictionarySym(gf, targs, isMeth)

	// Make (or reuse) a node referencing the dictionary symbol.
	var n *ir.Name
	if sym.Def != nil {
		n = sym.Def.(*ir.Name)
	} else {
		n = typecheck.NewName(sym)
		n.SetType(types.Types[types.TUINTPTR]) // should probably be [...]uintptr, but doesn't really matter
		n.SetTypecheck(1)
		n.Class = ir.PEXTERN
		sym.Def = n
	}

	// Return the address of the dictionary.
	np := typecheck.NodAddr(n)
	// Note: treat dictionary pointers as uintptrs, so they aren't pointers
	// with respect to GC. That saves on stack scanning work, write barriers, etc.
	// We can get away with it because dictionaries are global variables.
	// TODO: use a cast, or is typing directly ok?
	np.SetType(types.Types[types.TUINTPTR])
	np.SetTypecheck(1)
	return np
}

// hasTParamNodes returns true if the type of any node in targs has a typeparam.
func hasTParamNodes(targs []ir.Node) bool {
	for _, n := range targs {
		if n.Type().HasTParam() {
			return true
		}
	}
	return false
}

// hasTParamNodes returns true if any type in targs has a typeparam.
func hasTParamTypes(targs []*types.Type) bool {
	for _, t := range targs {
		if t.HasTParam() {
			return true
		}
	}
	return false
}

// getGfInfo get information for a generic function - type params, derived generic
// types, and subdictionaries.
func (g *irgen) getGfInfo(gn *ir.Name) *gfInfo {
	infop := g.gfInfoMap[gn.Sym()]
	if infop != nil {
		return infop
	}

	checkFetchBody(gn)
	var info gfInfo
	gf := gn.Func
	recv := gf.Type().Recv()
	if recv != nil {
		info.tparams = deref(recv.Type).RParams()
	} else {
		tparams := gn.Type().TParams().FieldSlice()
		info.tparams = make([]*types.Type, len(tparams))
		for i, f := range tparams {
			info.tparams[i] = f.Type
		}
	}

	for _, t := range info.tparams {
		b := t.Bound()
		if b.HasTParam() {
			// If a type bound is parameterized (unusual case), then we
			// may need its derived type to do a type assert when doing a
			// bound call for a type arg that is an interface.
			addType(&info, nil, b)
		}
	}

	for _, n := range gf.Dcl {
		addType(&info, n, n.Type())
	}

	if infoPrintMode {
		fmt.Printf(">>> GfInfo for %v\n", gn)
		for _, t := range info.tparams {
			fmt.Printf("  Typeparam %v\n", t)
		}
	}

	var visitFunc func(ir.Node)
	visitFunc = func(n ir.Node) {
		if n.Op() == ir.OFUNCINST && !n.(*ir.InstExpr).Implicit() {
			if hasTParamNodes(n.(*ir.InstExpr).Targs) {
				infoPrint("  Closure&subdictionary required at generic function value %v\n", n.(*ir.InstExpr).X)
				info.subDictCalls = append(info.subDictCalls, n)
			}
		} else if n.Op() == ir.OXDOT && !n.(*ir.SelectorExpr).Implicit() &&
			n.(*ir.SelectorExpr).Selection != nil &&
			len(deref(n.(*ir.SelectorExpr).X.Type()).RParams()) > 0 {
			if hasTParamTypes(deref(n.(*ir.SelectorExpr).X.Type()).RParams()) {
				if n.(*ir.SelectorExpr).X.Op() == ir.OTYPE {
					infoPrint("  Closure&subdictionary required at generic meth expr %v\n", n)
				} else {
					infoPrint("  Closure&subdictionary required at generic meth value %v\n", n)
				}
				info.subDictCalls = append(info.subDictCalls, n)
			}
		}
		if n.Op() == ir.OCALL && n.(*ir.CallExpr).X.Op() == ir.OFUNCINST {
			n.(*ir.CallExpr).X.(*ir.InstExpr).SetImplicit(true)
			if hasTParamNodes(n.(*ir.CallExpr).X.(*ir.InstExpr).Targs) {
				infoPrint("  Subdictionary at generic function/method call: %v - %v\n", n.(*ir.CallExpr).X.(*ir.InstExpr).X, n)
				info.subDictCalls = append(info.subDictCalls, n)
			}
		}
		if n.Op() == ir.OCALL && n.(*ir.CallExpr).X.Op() == ir.OXDOT &&
			n.(*ir.CallExpr).X.(*ir.SelectorExpr).Selection != nil &&
			len(deref(n.(*ir.CallExpr).X.(*ir.SelectorExpr).X.Type()).RParams()) > 0 {
			n.(*ir.CallExpr).X.(*ir.SelectorExpr).SetImplicit(true)
			if hasTParamTypes(deref(n.(*ir.CallExpr).X.(*ir.SelectorExpr).X.Type()).RParams()) {
				infoPrint("  Subdictionary at generic method call: %v\n", n)
				info.subDictCalls = append(info.subDictCalls, n)
			}
		}
		if n.Op() == ir.OCALL && n.(*ir.CallExpr).X.Op() == ir.OXDOT &&
			n.(*ir.CallExpr).X.(*ir.SelectorExpr).Selection != nil &&
			deref(n.(*ir.CallExpr).X.(*ir.SelectorExpr).X.Type()).IsTypeParam() {
			n.(*ir.CallExpr).X.(*ir.SelectorExpr).SetImplicit(true)
			infoPrint("  Optional subdictionary at generic bound call: %v\n", n)
			info.subDictCalls = append(info.subDictCalls, n)
		}
		if n.Op() == ir.OCONVIFACE && n.Type().IsInterface() &&
			!n.Type().IsEmptyInterface() &&
			n.(*ir.ConvExpr).X.Type().HasTParam() {
			infoPrint("  Itab for interface conv: %v\n", n)
			info.itabConvs = append(info.itabConvs, n)
		}
		if n.Op() == ir.OXDOT && n.(*ir.SelectorExpr).X.Type().IsTypeParam() {
			infoPrint("  Itab for bound call: %v\n", n)
			info.itabConvs = append(info.itabConvs, n)
		}
		if (n.Op() == ir.ODOTTYPE || n.Op() == ir.ODOTTYPE2) && !n.(*ir.TypeAssertExpr).Type().IsInterface() && !n.(*ir.TypeAssertExpr).X.Type().IsEmptyInterface() {
			infoPrint("  Itab for dot type: %v\n", n)
			info.itabConvs = append(info.itabConvs, n)
		}
		if n.Op() == ir.OCLOSURE {
			// Visit the closure body and add all relevant entries to the
			// dictionary of the outer function (closure will just use
			// the dictionary of the outer function).
			for _, n1 := range n.(*ir.ClosureExpr).Func.Body {
				ir.Visit(n1, visitFunc)
			}
		}
		if n.Op() == ir.OSWITCH && n.(*ir.SwitchStmt).Tag != nil && n.(*ir.SwitchStmt).Tag.Op() == ir.OTYPESW && !n.(*ir.SwitchStmt).Tag.(*ir.TypeSwitchGuard).X.Type().IsEmptyInterface() {
			for _, cc := range n.(*ir.SwitchStmt).Cases {
				for _, c := range cc.List {
					if c.Op() == ir.OTYPE && c.Type().HasTParam() {
						// Type switch from a non-empty interface - might need an itab.
						infoPrint("  Itab for type switch: %v\n", c)
						info.itabConvs = append(info.itabConvs, c)
						if info.type2switchType == nil {
							info.type2switchType = map[ir.Node]*types.Type{}
						}
						info.type2switchType[c] = n.(*ir.SwitchStmt).Tag.(*ir.TypeSwitchGuard).X.Type()
					}
				}
			}
		}
		addType(&info, n, n.Type())
	}

	for _, stmt := range gf.Body {
		ir.Visit(stmt, visitFunc)
	}
	if infoPrintMode {
		for _, t := range info.derivedTypes {
			fmt.Printf("  Derived type %v\n", t)
		}
		fmt.Printf(">>> Done Gfinfo\n")
	}
	g.gfInfoMap[gn.Sym()] = &info
	return &info
}

// addType adds t to info.derivedTypes if it is parameterized type (which is not
// just a simple type param) that is different from any existing type on
// info.derivedTypes.
func addType(info *gfInfo, n ir.Node, t *types.Type) {
	if t == nil || !t.HasTParam() {
		return
	}
	if t.IsTypeParam() && t.Underlying() == t {
		return
	}
	if t.Kind() == types.TFUNC && n != nil &&
		(t.Recv() != nil ||
			n.Op() == ir.ONAME && n.Name().Class == ir.PFUNC) {
		// Don't use the type of a named generic function or method,
		// since that is parameterized by other typeparams.
		// (They all come from arguments of a FUNCINST node.)
		return
	}
	if doubleCheck && !parameterizedBy(t, info.tparams) {
		base.Fatalf("adding type with invalid parameters %+v", t)
	}
	if t.Kind() == types.TSTRUCT && t.IsFuncArgStruct() {
		// Multiple return values are not a relevant new type (?).
		return
	}
	// Ignore a derived type we've already added.
	for _, et := range info.derivedTypes {
		if types.Identical(t, et) {
			return
		}
	}
	info.derivedTypes = append(info.derivedTypes, t)
}

// parameterizedBy returns true if t is parameterized by (at most) params.
func parameterizedBy(t *types.Type, params []*types.Type) bool {
	return parameterizedBy1(t, params, map[*types.Type]bool{})
}
func parameterizedBy1(t *types.Type, params []*types.Type, visited map[*types.Type]bool) bool {
	if visited[t] {
		return true
	}
	visited[t] = true

	if t.Sym() != nil && len(t.RParams()) > 0 {
		// This defined type is instantiated. Check the instantiating types.
		for _, r := range t.RParams() {
			if !parameterizedBy1(r, params, visited) {
				return false
			}
		}
		return true
	}
	switch t.Kind() {
	case types.TTYPEPARAM:
		// Check if t is one of the allowed parameters in scope.
		for _, p := range params {
			if p == t {
				return true
			}
		}
		// Couldn't find t in the list of allowed parameters.
		return false

	case types.TARRAY, types.TPTR, types.TSLICE, types.TCHAN:
		return parameterizedBy1(t.Elem(), params, visited)

	case types.TMAP:
		return parameterizedBy1(t.Key(), params, visited) && parameterizedBy1(t.Elem(), params, visited)

	case types.TFUNC:
		return parameterizedBy1(t.TParams(), params, visited) && parameterizedBy1(t.Recvs(), params, visited) && parameterizedBy1(t.Params(), params, visited) && parameterizedBy1(t.Results(), params, visited)

	case types.TSTRUCT:
		for _, f := range t.Fields().Slice() {
			if !parameterizedBy1(f.Type, params, visited) {
				return false
			}
		}
		return true

	case types.TINTER:
		for _, f := range t.Methods().Slice() {
			if !parameterizedBy1(f.Type, params, visited) {
				return false
			}
		}
		return true

	case types.TINT, types.TINT8, types.TINT16, types.TINT32, types.TINT64,
		types.TUINT, types.TUINT8, types.TUINT16, types.TUINT32, types.TUINT64,
		types.TUINTPTR, types.TBOOL, types.TSTRING, types.TFLOAT32, types.TFLOAT64, types.TCOMPLEX64, types.TCOMPLEX128:
		return true

	case types.TUNION:
		for i := 0; i < t.NumTerms(); i++ {
			tt, _ := t.Term(i)
			if !parameterizedBy1(tt, params, visited) {
				return false
			}
		}
		return true

	default:
		base.Fatalf("bad type kind %+v", t)
		return true
	}
}

// startClosures starts creation of a closure that has the function type typ. It
// creates all the formal params and results according to the type typ. On return,
// the body and closure variables of the closure must still be filled in, and
// ir.UseClosure() called.
func startClosure(pos src.XPos, outer *ir.Func, typ *types.Type) (*ir.Func, []*types.Field, []*types.Field) {
	// Make a new internal function.
	fn := ir.NewClosureFunc(pos, outer != nil)
	ir.NameClosure(fn.OClosure, outer)

	// Build formal argument and return lists.
	var formalParams []*types.Field  // arguments of closure
	var formalResults []*types.Field // returns of closure
	for i := 0; i < typ.NumParams(); i++ {
		t := typ.Params().Field(i).Type
		arg := ir.NewNameAt(pos, typecheck.LookupNum("a", i))
		arg.Class = ir.PPARAM
		typed(t, arg)
		arg.Curfn = fn
		fn.Dcl = append(fn.Dcl, arg)
		f := types.NewField(pos, arg.Sym(), t)
		f.Nname = arg
		formalParams = append(formalParams, f)
	}
	for i := 0; i < typ.NumResults(); i++ {
		t := typ.Results().Field(i).Type
		result := ir.NewNameAt(pos, typecheck.LookupNum("r", i)) // TODO: names not needed?
		result.Class = ir.PPARAMOUT
		typed(t, result)
		result.Curfn = fn
		fn.Dcl = append(fn.Dcl, result)
		f := types.NewField(pos, result.Sym(), t)
		f.Nname = result
		formalResults = append(formalResults, f)
	}

	// Build an internal function with the right signature.
	closureType := types.NewSignature(typ.Pkg(), nil, nil, formalParams, formalResults)
	typed(closureType, fn.Nname)
	typed(typ, fn.OClosure)
	fn.SetTypecheck(1)
	return fn, formalParams, formalResults

}

// assertToBound returns a new node that converts a node rcvr with interface type to
// the 'dst' interface type.  bound is the unsubstituted form of dst.
func assertToBound(info *instInfo, dictVar *ir.Name, pos src.XPos, rcvr ir.Node, bound, dst *types.Type) ir.Node {
	if bound.HasTParam() {
		ix := findDictType(info, bound)
		assert(ix >= 0)
		rt := getDictionaryType(info, dictVar, pos, ix)
		rcvr = ir.NewDynamicTypeAssertExpr(pos, ir.ODYNAMICDOTTYPE, rcvr, rt)
		typed(dst, rcvr)
	} else {
		rcvr = ir.NewTypeAssertExpr(pos, rcvr, nil)
		typed(bound, rcvr)
	}
	return rcvr
}

// buildClosure2 makes a closure to implement a method expression m (generic form x)
// which has a shape type as receiver. If the receiver is exactly a shape (i.e. from
// a typeparam), then the body of the closure converts m.X (the receiver) to the
// interface bound type, and makes an interface call with the remaining arguments.
//
// The returned closure is fully substituted and has already had any needed
// transformations done.
func (g *irgen) buildClosure2(subst *subster, m, x ir.Node) ir.Node {
	outer := subst.newf
	info := subst.info
	pos := m.Pos()
	typ := m.Type() // type of the closure

	fn, formalParams, formalResults := startClosure(pos, outer, typ)

	// Capture dictionary calculated in the outer function
	dictVar := ir.CaptureName(pos, fn, info.dictParam)
	typed(types.Types[types.TUINTPTR], dictVar)

	// Build arguments to call inside the closure.
	var args []ir.Node
	for i := 0; i < typ.NumParams(); i++ {
		args = append(args, formalParams[i].Nname.(*ir.Name))
	}

	// Build call itself. This involves converting the first argument to the
	// bound type (an interface) using the dictionary, and then making an
	// interface call with the remaining arguments.
	var innerCall ir.Node
	rcvr := args[0]
	args = args[1:]
	assert(m.(*ir.SelectorExpr).X.Type().IsShape())
	gsrc := x.(*ir.SelectorExpr).X.Type()
	bound := gsrc.Bound()
	dst := bound
	if dst.HasTParam() {
		dst = subst.ts.Typ(bound)
	}
	if m.(*ir.SelectorExpr).X.Type().IsInterface() {
		// If type arg is an interface (unusual case), we do a type assert to
		// the type bound.
		rcvr = assertToBound(info, dictVar, pos, rcvr, bound, dst)
	} else {
		rcvr = convertUsingDictionary(info, dictVar, pos, rcvr, x, dst, gsrc)
	}
	dot := ir.NewSelectorExpr(pos, ir.ODOTINTER, rcvr, x.(*ir.SelectorExpr).Sel)
	dot.Selection = typecheck.Lookdot1(dot, dot.Sel, dot.X.Type(), dot.X.Type().AllMethods(), 1)

	// Do a type substitution on the generic bound, in case it is parameterized.
	typed(subst.ts.Typ(x.(*ir.SelectorExpr).Selection.Type), dot)
	innerCall = ir.NewCallExpr(pos, ir.OCALLINTER, dot, args)
	t := m.Type()
	if t.NumResults() == 0 {
		innerCall.SetTypecheck(1)
	} else if t.NumResults() == 1 {
		typed(t.Results().Field(0).Type, innerCall)
	} else {
		typed(t.Results(), innerCall)
	}
	if len(formalResults) > 0 {
		innerCall = ir.NewReturnStmt(pos, []ir.Node{innerCall})
		innerCall.SetTypecheck(1)
	}
	fn.Body = []ir.Node{innerCall}

	// We're all done with the captured dictionary
	ir.FinishCaptureNames(pos, outer, fn)

	// Do final checks on closure and return it.
	return ir.UseClosure(fn.OClosure, g.target)
}