aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/noder/helpers.go
blob: 636b5d64cd7dbdc7f1e588f3963de5973556dfe6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package noder

import (
	"go/constant"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/src"
)

// Helpers for constructing typed IR nodes.
//
// TODO(mdempsky): Move into their own package so they can be easily
// reused by iimport and frontend optimizations.

type ImplicitNode interface {
	ir.Node
	SetImplicit(x bool)
}

// Implicit returns n after marking it as Implicit.
func Implicit(n ImplicitNode) ImplicitNode {
	n.SetImplicit(true)
	return n
}

// typed returns n after setting its type to typ.
func typed(typ *types.Type, n ir.Node) ir.Node {
	n.SetType(typ)
	n.SetTypecheck(1)
	return n
}

// Values

func Const(pos src.XPos, typ *types.Type, val constant.Value) ir.Node {
	return typed(typ, ir.NewBasicLit(pos, val))
}

func OrigConst(pos src.XPos, typ *types.Type, val constant.Value, op ir.Op, raw string) ir.Node {
	orig := ir.NewRawOrigExpr(pos, op, raw)
	return ir.NewConstExpr(val, typed(typ, orig))
}

// FixValue returns val after converting and truncating it as
// appropriate for typ.
func FixValue(typ *types.Type, val constant.Value) constant.Value {
	assert(typ.Kind() != types.TFORW)
	switch {
	case typ.IsInteger():
		val = constant.ToInt(val)
	case typ.IsFloat():
		val = constant.ToFloat(val)
	case typ.IsComplex():
		val = constant.ToComplex(val)
	}
	if !typ.IsUntyped() {
		val = typecheck.DefaultLit(ir.NewBasicLit(src.NoXPos, val), typ).Val()
	}
	if !typ.IsTypeParam() {
		ir.AssertValidTypeForConst(typ, val)
	}
	return val
}

func Nil(pos src.XPos, typ *types.Type) ir.Node {
	return typed(typ, ir.NewNilExpr(pos))
}

// Expressions

func Addr(pos src.XPos, x ir.Node) *ir.AddrExpr {
	n := typecheck.NodAddrAt(pos, x)
	switch x.Op() {
	case ir.OARRAYLIT, ir.OMAPLIT, ir.OSLICELIT, ir.OSTRUCTLIT:
		n.SetOp(ir.OPTRLIT)
	}
	typed(types.NewPtr(x.Type()), n)
	return n
}

func Assert(pos src.XPos, x ir.Node, typ *types.Type) ir.Node {
	return typed(typ, ir.NewTypeAssertExpr(pos, x, nil))
}

func Binary(pos src.XPos, op ir.Op, typ *types.Type, x, y ir.Node) ir.Node {
	switch op {
	case ir.OANDAND, ir.OOROR:
		return typed(x.Type(), ir.NewLogicalExpr(pos, op, x, y))
	case ir.OADD:
		n := ir.NewBinaryExpr(pos, op, x, y)
		typed(typ, n)
		r := ir.Node(n)
		if !delayTransform() {
			r = transformAdd(n)
		}
		return r
	default:
		return typed(x.Type(), ir.NewBinaryExpr(pos, op, x, y))
	}
}

func Call(pos src.XPos, typ *types.Type, fun ir.Node, args []ir.Node, dots bool) ir.Node {
	n := ir.NewCallExpr(pos, ir.OCALL, fun, args)
	n.IsDDD = dots

	if fun.Op() == ir.OTYPE {
		// Actually a type conversion, not a function call.
		if !fun.Type().IsInterface() &&
			(fun.Type().HasTParam() || args[0].Type().HasTParam()) {
			// For type params, we can transform if fun.Type() is known
			// to be an interface (in which case a CONVIFACE node will be
			// inserted). Otherwise, don't typecheck until we actually
			// know the type.
			return typed(typ, n)
		}
		typed(typ, n)
		return transformConvCall(n)
	}

	if fun, ok := fun.(*ir.Name); ok && fun.BuiltinOp != 0 {
		// For most Builtin ops, we delay doing transformBuiltin if any of the
		// args have type params, for a variety of reasons:
		//
		// OMAKE: transformMake can't choose specific ops OMAKESLICE, etc.
		//    until arg type is known
		// OREAL/OIMAG: transformRealImag can't determine type float32/float64
		//    until arg type known
		// OAPPEND: transformAppend requires that the arg is a slice
		// ODELETE: transformDelete requires that the arg is a map
		// OALIGNOF, OSIZEOF: can be eval'ed to a constant until types known.
		switch fun.BuiltinOp {
		case ir.OMAKE, ir.OREAL, ir.OIMAG, ir.OAPPEND, ir.ODELETE, ir.OALIGNOF, ir.OOFFSETOF, ir.OSIZEOF:
			hasTParam := false
			for _, arg := range args {
				if fun.BuiltinOp == ir.OOFFSETOF {
					// It's the type of left operand of the
					// selection that matters, not the type of
					// the field itself (which is irrelevant for
					// offsetof).
					arg = arg.(*ir.SelectorExpr).X
				}
				if arg.Type().HasTParam() {
					hasTParam = true
					break
				}
			}
			if hasTParam {
				return typed(typ, n)
			}
		}

		typed(typ, n)
		return transformBuiltin(n)
	}

	// Add information, now that we know that fun is actually being called.
	switch fun := fun.(type) {
	case *ir.SelectorExpr:
		if fun.Op() == ir.OMETHVALUE {
			op := ir.ODOTMETH
			if fun.X.Type().IsInterface() {
				op = ir.ODOTINTER
			}
			fun.SetOp(op)
			// Set the type to include the receiver, since that's what
			// later parts of the compiler expect
			fun.SetType(fun.Selection.Type)
		}
	}

	if fun.Type().HasTParam() || fun.Op() == ir.OXDOT || fun.Op() == ir.OFUNCINST {
		// If the fun arg is or has a type param, we can't do all the
		// transformations, since we may not have needed properties yet
		// (e.g. number of return values, etc). The same applies if a fun
		// which is an XDOT could not be transformed yet because of a generic
		// type in the X of the selector expression.
		//
		// A function instantiation (even if fully concrete) shouldn't be
		// transformed yet, because we need to add the dictionary during the
		// transformation.
		return typed(typ, n)
	}

	// If no type params, do the normal call transformations. This
	// will convert OCALL to OCALLFUNC.
	typed(typ, n)
	transformCall(n)
	return n
}

func Compare(pos src.XPos, typ *types.Type, op ir.Op, x, y ir.Node) ir.Node {
	n := ir.NewBinaryExpr(pos, op, x, y)
	typed(typ, n)
	if !delayTransform() {
		transformCompare(n)
	}
	return n
}

func Deref(pos src.XPos, typ *types.Type, x ir.Node) *ir.StarExpr {
	n := ir.NewStarExpr(pos, x)
	typed(typ, n)
	return n
}

func DotField(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
	op, typ := ir.ODOT, x.Type()
	if typ.IsPtr() {
		op, typ = ir.ODOTPTR, typ.Elem()
	}
	if !typ.IsStruct() {
		base.FatalfAt(pos, "DotField of non-struct: %L", x)
	}

	// TODO(mdempsky): This is the backend's responsibility.
	types.CalcSize(typ)

	field := typ.Field(index)
	return dot(pos, field.Type, op, x, field)
}

func DotMethod(pos src.XPos, x ir.Node, index int) *ir.SelectorExpr {
	method := method(x.Type(), index)

	// Method value.
	typ := typecheck.NewMethodType(method.Type, nil)
	return dot(pos, typ, ir.OMETHVALUE, x, method)
}

// MethodExpr returns a OMETHEXPR node with the indicated index into the methods
// of typ. The receiver type is set from recv, which is different from typ if the
// method was accessed via embedded fields. Similarly, the X value of the
// ir.SelectorExpr is recv, the original OTYPE node before passing through the
// embedded fields.
func MethodExpr(pos src.XPos, recv ir.Node, embed *types.Type, index int) *ir.SelectorExpr {
	method := method(embed, index)
	typ := typecheck.NewMethodType(method.Type, recv.Type())
	// The method expression T.m requires a wrapper when T
	// is different from m's declared receiver type. We
	// normally generate these wrappers while writing out
	// runtime type descriptors, which is always done for
	// types declared at package scope. However, we need
	// to make sure to generate wrappers for anonymous
	// receiver types too.
	if recv.Sym() == nil {
		typecheck.NeedRuntimeType(recv.Type())
	}
	return dot(pos, typ, ir.OMETHEXPR, recv, method)
}

func dot(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node, selection *types.Field) *ir.SelectorExpr {
	n := ir.NewSelectorExpr(pos, op, x, selection.Sym)
	n.Selection = selection
	typed(typ, n)
	return n
}

// TODO(mdempsky): Move to package types.
func method(typ *types.Type, index int) *types.Field {
	if typ.IsInterface() {
		return typ.AllMethods().Index(index)
	}
	return types.ReceiverBaseType(typ).Methods().Index(index)
}

func Index(pos src.XPos, typ *types.Type, x, index ir.Node) ir.Node {
	n := ir.NewIndexExpr(pos, x, index)
	typed(typ, n)
	if !delayTransform() {
		// transformIndex will modify n.Type() for OINDEXMAP.
		transformIndex(n)
	}
	return n
}

func Slice(pos src.XPos, typ *types.Type, x, low, high, max ir.Node) ir.Node {
	op := ir.OSLICE
	if max != nil {
		op = ir.OSLICE3
	}
	n := ir.NewSliceExpr(pos, op, x, low, high, max)
	typed(typ, n)
	if !delayTransform() {
		transformSlice(n)
	}
	return n
}

func Unary(pos src.XPos, typ *types.Type, op ir.Op, x ir.Node) ir.Node {
	switch op {
	case ir.OADDR:
		return Addr(pos, x)
	case ir.ODEREF:
		return Deref(pos, typ, x)
	}

	if op == ir.ORECV {
		if typ.IsFuncArgStruct() && typ.NumFields() == 2 {
			// Remove the second boolean type (if provided by type2),
			// since that works better with the rest of the compiler
			// (which will add it back in later).
			assert(typ.Field(1).Type.Kind() == types.TBOOL)
			typ = typ.Field(0).Type
		}
	}
	return typed(typ, ir.NewUnaryExpr(pos, op, x))
}

// Statements

var one = constant.MakeInt64(1)

func IncDec(pos src.XPos, op ir.Op, x ir.Node) *ir.AssignOpStmt {
	assert(x.Type() != nil)
	bl := ir.NewBasicLit(pos, one)
	if x.Type().HasTParam() {
		// If the operand is generic, then types2 will have proved it must be
		// a type that fits with increment/decrement, so just set the type of
		// "one" to n.Type(). This works even for types that are eventually
		// float or complex.
		typed(x.Type(), bl)
	} else {
		bl = typecheck.DefaultLit(bl, x.Type())
	}
	return ir.NewAssignOpStmt(pos, op, x, bl)
}

// delayTransform returns true if we should delay all transforms, because we are
// creating the nodes for a generic function/method.
func delayTransform() bool {
	return ir.CurFunc != nil && ir.CurFunc.Type().HasTParam()
}