aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/noder/expr.go
blob: 7dbbc88f8fbee49ed477385bdda45cf91c3bd24b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package noder

import (
	"fmt"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/syntax"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/compile/internal/types2"
	"cmd/internal/src"
)

func (g *irgen) expr(expr syntax.Expr) ir.Node {
	expr = unparen(expr) // skip parens; unneeded after parse+typecheck

	if expr == nil {
		return nil
	}

	if expr, ok := expr.(*syntax.Name); ok && expr.Value == "_" {
		return ir.BlankNode
	}

	tv, ok := g.info.Types[expr]
	if !ok {
		base.FatalfAt(g.pos(expr), "missing type for %v (%T)", expr, expr)
	}
	switch {
	case tv.IsBuiltin():
		// Qualified builtins, such as unsafe.Add and unsafe.Slice.
		if expr, ok := expr.(*syntax.SelectorExpr); ok {
			if name, ok := expr.X.(*syntax.Name); ok {
				if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
					return g.use(expr.Sel)
				}
			}
		}
		return g.use(expr.(*syntax.Name))
	case tv.IsType():
		return ir.TypeNode(g.typ(tv.Type))
	case tv.IsValue(), tv.IsVoid():
		// ok
	default:
		base.FatalfAt(g.pos(expr), "unrecognized type-checker result")
	}

	base.Assert(g.exprStmtOK)

	// The gc backend expects all expressions to have a concrete type, and
	// types2 mostly satisfies this expectation already. But there are a few
	// cases where the Go spec doesn't require converting to concrete type,
	// and so types2 leaves them untyped. So we need to fix those up here.
	typ := tv.Type
	if basic, ok := typ.(*types2.Basic); ok && basic.Info()&types2.IsUntyped != 0 {
		switch basic.Kind() {
		case types2.UntypedNil:
			// ok; can appear in type switch case clauses
			// TODO(mdempsky): Handle as part of type switches instead?
		case types2.UntypedBool:
			typ = types2.Typ[types2.Bool] // expression in "if" or "for" condition
		case types2.UntypedString:
			typ = types2.Typ[types2.String] // argument to "append" or "copy" calls
		default:
			base.FatalfAt(g.pos(expr), "unexpected untyped type: %v", basic)
		}
	}

	// Constant expression.
	if tv.Value != nil {
		typ := g.typ(typ)
		value := FixValue(typ, tv.Value)
		return OrigConst(g.pos(expr), typ, value, constExprOp(expr), syntax.String(expr))
	}

	n := g.expr0(typ, expr)
	if n.Typecheck() != 1 && n.Typecheck() != 3 {
		base.FatalfAt(g.pos(expr), "missed typecheck: %+v", n)
	}
	if n.Op() != ir.OFUNCINST && !g.match(n.Type(), typ, tv.HasOk()) {
		base.FatalfAt(g.pos(expr), "expected %L to have type %v", n, typ)
	}
	return n
}

func (g *irgen) expr0(typ types2.Type, expr syntax.Expr) ir.Node {
	pos := g.pos(expr)
	assert(pos.IsKnown())

	// Set base.Pos for transformation code that still uses base.Pos, rather than
	// the pos of the node being converted.
	base.Pos = pos

	switch expr := expr.(type) {
	case *syntax.Name:
		if _, isNil := g.info.Uses[expr].(*types2.Nil); isNil {
			return Nil(pos, g.typ(typ))
		}
		return g.use(expr)

	case *syntax.CompositeLit:
		return g.compLit(typ, expr)

	case *syntax.FuncLit:
		return g.funcLit(typ, expr)

	case *syntax.AssertExpr:
		return Assert(pos, g.expr(expr.X), g.typeExpr(expr.Type))

	case *syntax.CallExpr:
		fun := g.expr(expr.Fun)

		// The key for the Inferred map is the CallExpr (if inferring
		// types required the function arguments) or the IndexExpr below
		// (if types could be inferred without the function arguments).
		if inferred, ok := g.info.Inferred[expr]; ok && inferred.TArgs.Len() > 0 {
			// This is the case where inferring types required the
			// types of the function arguments.
			targs := make([]ir.Node, inferred.TArgs.Len())
			for i := range targs {
				targs[i] = ir.TypeNode(g.typ(inferred.TArgs.At(i)))
			}
			if fun.Op() == ir.OFUNCINST {
				if len(fun.(*ir.InstExpr).Targs) < len(targs) {
					// Replace explicit type args with the full list that
					// includes the additional inferred type args.
					// Substitute the type args for the type params in
					// the generic function's type.
					fun.(*ir.InstExpr).Targs = targs
					newt := g.substType(fun.(*ir.InstExpr).X.Type(), fun.(*ir.InstExpr).X.Type().TParams(), targs)
					typed(newt, fun)
				}
			} else {
				// Create a function instantiation here, given there
				// are only inferred type args (e.g. min(5,6), where
				// min is a generic function). Substitute the type
				// args for the type params in the generic function's
				// type.
				inst := ir.NewInstExpr(pos, ir.OFUNCINST, fun, targs)
				newt := g.substType(fun.Type(), fun.Type().TParams(), targs)
				typed(newt, inst)
				fun = inst
			}

		}
		return Call(pos, g.typ(typ), fun, g.exprs(expr.ArgList), expr.HasDots)

	case *syntax.IndexExpr:
		var targs []ir.Node

		if inferred, ok := g.info.Inferred[expr]; ok && inferred.TArgs.Len() > 0 {
			// This is the partial type inference case where the types
			// can be inferred from other type arguments without using
			// the types of the function arguments.
			targs = make([]ir.Node, inferred.TArgs.Len())
			for i := range targs {
				targs[i] = ir.TypeNode(g.typ(inferred.TArgs.At(i)))
			}
		} else if _, ok := expr.Index.(*syntax.ListExpr); ok {
			targs = g.exprList(expr.Index)
		} else {
			index := g.expr(expr.Index)
			if index.Op() != ir.OTYPE {
				// This is just a normal index expression
				return Index(pos, g.typ(typ), g.expr(expr.X), index)
			}
			// This is generic function instantiation with a single type
			targs = []ir.Node{index}
		}
		// This is a generic function instantiation (e.g. min[int]).
		// Generic type instantiation is handled in the type
		// section of expr() above (using g.typ).
		x := g.expr(expr.X)
		if x.Op() != ir.ONAME || x.Type().Kind() != types.TFUNC {
			panic("Incorrect argument for generic func instantiation")
		}
		n := ir.NewInstExpr(pos, ir.OFUNCINST, x, targs)
		newt := g.typ(typ)
		// Substitute the type args for the type params in the uninstantiated
		// function's type. If there aren't enough type args, then the rest
		// will be inferred at the call node, so don't try the substitution yet.
		if x.Type().TParams().NumFields() == len(targs) {
			newt = g.substType(g.typ(typ), x.Type().TParams(), targs)
		}
		typed(newt, n)
		return n

	case *syntax.SelectorExpr:
		// Qualified identifier.
		if name, ok := expr.X.(*syntax.Name); ok {
			if _, ok := g.info.Uses[name].(*types2.PkgName); ok {
				return g.use(expr.Sel)
			}
		}
		return g.selectorExpr(pos, typ, expr)

	case *syntax.SliceExpr:
		return Slice(pos, g.typ(typ), g.expr(expr.X), g.expr(expr.Index[0]), g.expr(expr.Index[1]), g.expr(expr.Index[2]))

	case *syntax.Operation:
		if expr.Y == nil {
			return Unary(pos, g.typ(typ), g.op(expr.Op, unOps[:]), g.expr(expr.X))
		}
		switch op := g.op(expr.Op, binOps[:]); op {
		case ir.OEQ, ir.ONE, ir.OLT, ir.OLE, ir.OGT, ir.OGE:
			return Compare(pos, g.typ(typ), op, g.expr(expr.X), g.expr(expr.Y))
		default:
			return Binary(pos, op, g.typ(typ), g.expr(expr.X), g.expr(expr.Y))
		}

	default:
		g.unhandled("expression", expr)
		panic("unreachable")
	}
}

// substType does a normal type substition, but tparams is in the form of a field
// list, and targs is in terms of a slice of type nodes. substType records any newly
// instantiated types into g.instTypeList.
func (g *irgen) substType(typ *types.Type, tparams *types.Type, targs []ir.Node) *types.Type {
	fields := tparams.FieldSlice()
	tparams1 := make([]*types.Type, len(fields))
	for i, f := range fields {
		tparams1[i] = f.Type
	}
	targs1 := make([]*types.Type, len(targs))
	for i, n := range targs {
		targs1[i] = n.Type()
	}
	ts := typecheck.Tsubster{
		Tparams: tparams1,
		Targs:   targs1,
	}
	newt := ts.Typ(typ)
	return newt
}

// selectorExpr resolves the choice of ODOT, ODOTPTR, OMETHVALUE (eventually
// ODOTMETH & ODOTINTER), and OMETHEXPR and deals with embedded fields here rather
// than in typecheck.go.
func (g *irgen) selectorExpr(pos src.XPos, typ types2.Type, expr *syntax.SelectorExpr) ir.Node {
	x := g.expr(expr.X)
	if x.Type().HasTParam() {
		// Leave a method call on a type param as an OXDOT, since it can
		// only be fully transformed once it has an instantiated type.
		n := ir.NewSelectorExpr(pos, ir.OXDOT, x, typecheck.Lookup(expr.Sel.Value))
		typed(g.typ(typ), n)

		// Fill in n.Selection for a generic method reference or a bound
		// interface method, even though we won't use it directly, since it
		// is useful for analysis. Specifically do not fill in for fields or
		// other interfaces methods (method call on an interface value), so
		// n.Selection being non-nil means a method reference for a generic
		// type or a method reference due to a bound.
		obj2 := g.info.Selections[expr].Obj()
		sig := types2.AsSignature(obj2.Type())
		if sig == nil || sig.Recv() == nil {
			return n
		}
		index := g.info.Selections[expr].Index()
		last := index[len(index)-1]
		// recvType is the receiver of the method being called.  Because of the
		// way methods are imported, g.obj(obj2) doesn't work across
		// packages, so we have to lookup the method via the receiver type.
		recvType := deref2(sig.Recv().Type())
		if types2.AsInterface(recvType.Underlying()) != nil {
			fieldType := n.X.Type()
			for _, ix := range index[:len(index)-1] {
				fieldType = deref(fieldType).Field(ix).Type
			}
			if fieldType.Kind() == types.TTYPEPARAM {
				n.Selection = fieldType.Bound().AllMethods().Index(last)
				//fmt.Printf(">>>>> %v: Bound call %v\n", base.FmtPos(pos), n.Sel)
			} else {
				assert(fieldType.Kind() == types.TINTER)
				//fmt.Printf(">>>>> %v: Interface call %v\n", base.FmtPos(pos), n.Sel)
			}
			return n
		}

		recvObj := types2.AsNamed(recvType).Obj()
		recv := g.pkg(recvObj.Pkg()).Lookup(recvObj.Name()).Def
		n.Selection = recv.Type().Methods().Index(last)
		//fmt.Printf(">>>>> %v: Method call %v\n", base.FmtPos(pos), n.Sel)

		return n
	}

	selinfo := g.info.Selections[expr]
	// Everything up to the last selection is an implicit embedded field access,
	// and the last selection is determined by selinfo.Kind().
	index := selinfo.Index()
	embeds, last := index[:len(index)-1], index[len(index)-1]

	origx := x
	for _, ix := range embeds {
		x = Implicit(DotField(pos, x, ix))
	}

	kind := selinfo.Kind()
	if kind == types2.FieldVal {
		return DotField(pos, x, last)
	}

	// TODO(danscales,mdempsky): Interface method sets are not sorted the
	// same between types and types2. In particular, using "last" here
	// without conversion will likely fail if an interface contains
	// unexported methods from two different packages (due to cross-package
	// interface embedding).

	var n ir.Node
	method2 := selinfo.Obj().(*types2.Func)

	if kind == types2.MethodExpr {
		// OMETHEXPR is unusual in using directly the node and type of the
		// original OTYPE node (origx) before passing through embedded
		// fields, even though the method is selected from the type
		// (x.Type()) reached after following the embedded fields. We will
		// actually drop any ODOT nodes we created due to the embedded
		// fields.
		n = MethodExpr(pos, origx, x.Type(), last)
	} else {
		// Add implicit addr/deref for method values, if needed.
		if x.Type().IsInterface() {
			n = DotMethod(pos, x, last)
		} else {
			recvType2 := method2.Type().(*types2.Signature).Recv().Type()
			_, wantPtr := recvType2.(*types2.Pointer)
			havePtr := x.Type().IsPtr()

			if havePtr != wantPtr {
				if havePtr {
					x = Implicit(Deref(pos, x.Type().Elem(), x))
				} else {
					x = Implicit(Addr(pos, x))
				}
			}
			recvType2Base := recvType2
			if wantPtr {
				recvType2Base = types2.AsPointer(recvType2).Elem()
			}
			if types2.AsNamed(recvType2Base).TParams().Len() > 0 {
				// recvType2 is the original generic type that is
				// instantiated for this method call.
				// selinfo.Recv() is the instantiated type
				recvType2 = recvType2Base
				recvTypeSym := g.pkg(method2.Pkg()).Lookup(recvType2.(*types2.Named).Obj().Name())
				recvType := recvTypeSym.Def.(*ir.Name).Type()
				// method is the generic method associated with
				// the base generic type. The instantiated type may not
				// have method bodies filled in, if it was imported.
				method := recvType.Methods().Index(last).Nname.(*ir.Name)
				n = ir.NewSelectorExpr(pos, ir.OMETHVALUE, x, typecheck.Lookup(expr.Sel.Value))
				n.(*ir.SelectorExpr).Selection = types.NewField(pos, method.Sym(), method.Type())
				n.(*ir.SelectorExpr).Selection.Nname = method
				typed(method.Type(), n)

				// selinfo.Targs() are the types used to
				// instantiate the type of receiver
				targs2 := getTargs(selinfo)
				targs := make([]ir.Node, targs2.Len())
				for i := range targs {
					targs[i] = ir.TypeNode(g.typ(targs2.At(i)))
				}

				// Create function instantiation with the type
				// args for the receiver type for the method call.
				n = ir.NewInstExpr(pos, ir.OFUNCINST, n, targs)
				typed(g.typ(typ), n)
				return n
			}

			if !g.match(x.Type(), recvType2, false) {
				base.FatalfAt(pos, "expected %L to have type %v", x, recvType2)
			} else {
				n = DotMethod(pos, x, last)
			}
		}
	}
	if have, want := n.Sym(), g.selector(method2); have != want {
		base.FatalfAt(pos, "bad Sym: have %v, want %v", have, want)
	}
	return n
}

// getTargs gets the targs associated with the receiver of a selected method
func getTargs(selinfo *types2.Selection) *types2.TypeList {
	r := deref2(selinfo.Recv())
	n := types2.AsNamed(r)
	if n == nil {
		base.Fatalf("Incorrect type for selinfo %v", selinfo)
	}
	return n.TArgs()
}

func (g *irgen) exprList(expr syntax.Expr) []ir.Node {
	return g.exprs(unpackListExpr(expr))
}

func unpackListExpr(expr syntax.Expr) []syntax.Expr {
	switch expr := expr.(type) {
	case nil:
		return nil
	case *syntax.ListExpr:
		return expr.ElemList
	default:
		return []syntax.Expr{expr}
	}
}

func (g *irgen) exprs(exprs []syntax.Expr) []ir.Node {
	nodes := make([]ir.Node, len(exprs))
	for i, expr := range exprs {
		nodes[i] = g.expr(expr)
	}
	return nodes
}

func (g *irgen) compLit(typ types2.Type, lit *syntax.CompositeLit) ir.Node {
	if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
		n := ir.NewAddrExpr(g.pos(lit), g.compLit(ptr.Elem(), lit))
		n.SetOp(ir.OPTRLIT)
		return typed(g.typ(typ), n)
	}

	_, isStruct := typ.Underlying().(*types2.Struct)

	exprs := make([]ir.Node, len(lit.ElemList))
	for i, elem := range lit.ElemList {
		switch elem := elem.(type) {
		case *syntax.KeyValueExpr:
			var key ir.Node
			if isStruct {
				key = ir.NewIdent(g.pos(elem.Key), g.name(elem.Key.(*syntax.Name)))
			} else {
				key = g.expr(elem.Key)
			}
			exprs[i] = ir.NewKeyExpr(g.pos(elem), key, g.expr(elem.Value))
		default:
			exprs[i] = g.expr(elem)
		}
	}

	n := ir.NewCompLitExpr(g.pos(lit), ir.OCOMPLIT, nil, exprs)
	typed(g.typ(typ), n)
	return transformCompLit(n)
}

func (g *irgen) funcLit(typ2 types2.Type, expr *syntax.FuncLit) ir.Node {
	fn := ir.NewClosureFunc(g.pos(expr), ir.CurFunc != nil)
	ir.NameClosure(fn.OClosure, ir.CurFunc)

	typ := g.typ(typ2)
	typed(typ, fn.Nname)
	typed(typ, fn.OClosure)
	fn.SetTypecheck(1)

	g.funcBody(fn, nil, expr.Type, expr.Body)

	ir.FinishCaptureNames(fn.Pos(), ir.CurFunc, fn)

	// TODO(mdempsky): ir.CaptureName should probably handle
	// copying these fields from the canonical variable.
	for _, cv := range fn.ClosureVars {
		cv.SetType(cv.Canonical().Type())
		cv.SetTypecheck(1)
		cv.SetWalkdef(1)
	}

	if g.topFuncIsGeneric {
		// Don't add any closure inside a generic function/method to the
		// g.target.Decls list, even though it may not be generic itself.
		// See issue #47514.
		return ir.UseClosure(fn.OClosure, nil)
	} else {
		return ir.UseClosure(fn.OClosure, g.target)
	}
}

func (g *irgen) typeExpr(typ syntax.Expr) *types.Type {
	n := g.expr(typ)
	if n.Op() != ir.OTYPE {
		base.FatalfAt(g.pos(typ), "expected type: %L", n)
	}
	return n.Type()
}

// constExprOp returns an ir.Op that represents the outermost
// operation of the given constant expression. It's intended for use
// with ir.RawOrigExpr.
func constExprOp(expr syntax.Expr) ir.Op {
	switch expr := expr.(type) {
	default:
		panic(fmt.Sprintf("%s: unexpected expression: %T", expr.Pos(), expr))

	case *syntax.BasicLit:
		return ir.OLITERAL
	case *syntax.Name, *syntax.SelectorExpr:
		return ir.ONAME
	case *syntax.CallExpr:
		return ir.OCALL
	case *syntax.Operation:
		if expr.Y == nil {
			return unOps[expr.Op]
		}
		return binOps[expr.Op]
	}
}

func unparen(expr syntax.Expr) syntax.Expr {
	for {
		paren, ok := expr.(*syntax.ParenExpr)
		if !ok {
			return expr
		}
		expr = paren.X
	}
}