aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/noder/decl.go
blob: 54a13b498b959c7eaf211d38954efdfeb14c8084 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package noder

import (
	"go/constant"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/syntax"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/compile/internal/types2"
)

// TODO(mdempsky): Skip blank declarations? Probably only safe
// for declarations without pragmas.

func (g *irgen) decls(res *ir.Nodes, decls []syntax.Decl) {
	for _, decl := range decls {
		switch decl := decl.(type) {
		case *syntax.ConstDecl:
			g.constDecl(res, decl)
		case *syntax.FuncDecl:
			g.funcDecl(res, decl)
		case *syntax.TypeDecl:
			if ir.CurFunc == nil {
				continue // already handled in irgen.generate
			}
			g.typeDecl(res, decl)
		case *syntax.VarDecl:
			g.varDecl(res, decl)
		default:
			g.unhandled("declaration", decl)
		}
	}
}

func (g *irgen) importDecl(p *noder, decl *syntax.ImportDecl) {
	g.pragmaFlags(decl.Pragma, 0)

	// Get the imported package's path, as resolved already by types2
	// and gcimporter. This is the same path as would be computed by
	// parseImportPath.
	switch pkgNameOf(g.info, decl).Imported().Path() {
	case "unsafe":
		p.importedUnsafe = true
	case "embed":
		p.importedEmbed = true
	}
}

// pkgNameOf returns the PkgName associated with the given ImportDecl.
func pkgNameOf(info *types2.Info, decl *syntax.ImportDecl) *types2.PkgName {
	if name := decl.LocalPkgName; name != nil {
		return info.Defs[name].(*types2.PkgName)
	}
	return info.Implicits[decl].(*types2.PkgName)
}

func (g *irgen) constDecl(out *ir.Nodes, decl *syntax.ConstDecl) {
	g.pragmaFlags(decl.Pragma, 0)

	for _, name := range decl.NameList {
		name, obj := g.def(name)

		// For untyped numeric constants, make sure the value
		// representation matches what the rest of the
		// compiler (really just iexport) expects.
		// TODO(mdempsky): Revisit after #43891 is resolved.
		val := obj.(*types2.Const).Val()
		switch name.Type() {
		case types.UntypedInt, types.UntypedRune:
			val = constant.ToInt(val)
		case types.UntypedFloat:
			val = constant.ToFloat(val)
		case types.UntypedComplex:
			val = constant.ToComplex(val)
		}
		name.SetVal(val)

		out.Append(ir.NewDecl(g.pos(decl), ir.ODCLCONST, name))
	}
}

func (g *irgen) funcDecl(out *ir.Nodes, decl *syntax.FuncDecl) {
	fn := ir.NewFunc(g.pos(decl))
	fn.Nname, _ = g.def(decl.Name)
	fn.Nname.Func = fn
	fn.Nname.Defn = fn

	fn.Pragma = g.pragmaFlags(decl.Pragma, funcPragmas)
	if fn.Pragma&ir.Systemstack != 0 && fn.Pragma&ir.Nosplit != 0 {
		base.ErrorfAt(fn.Pos(), "go:nosplit and go:systemstack cannot be combined")
	}
	if fn.Pragma&ir.Nointerface != 0 {
		// Propagate //go:nointerface from Func.Pragma to Field.Nointerface.
		// This is a bit roundabout, but this is the earliest point where we've
		// processed the function's pragma flags, and we've also already created
		// the Fields to represent the receiver's method set.
		if recv := fn.Type().Recv(); recv != nil {
			typ := types.ReceiverBaseType(recv.Type)
			if typ.OrigSym != nil {
				// For a generic method, we mark the methods on the
				// base generic type, since those are the methods
				// that will be stenciled.
				typ = typ.OrigSym.Def.Type()
			}
			meth := typecheck.Lookdot1(fn, typecheck.Lookup(decl.Name.Value), typ, typ.Methods(), 0)
			meth.SetNointerface(true)
		}
	}

	if decl.Name.Value == "init" && decl.Recv == nil {
		g.target.Inits = append(g.target.Inits, fn)
	}

	g.later(func() {
		if fn.Type().HasTParam() {
			g.topFuncIsGeneric = true
		}
		g.funcBody(fn, decl.Recv, decl.Type, decl.Body)
		g.topFuncIsGeneric = false
		if fn.Type().HasTParam() && fn.Body != nil {
			// Set pointers to the dcls/body of a generic function/method in
			// the Inl struct, so it is marked for export, is available for
			// stenciling, and works with Inline_Flood().
			fn.Inl = &ir.Inline{
				Cost: 1,
				Dcl:  fn.Dcl,
				Body: fn.Body,
			}
		}

		out.Append(fn)
	})
}

func (g *irgen) typeDecl(out *ir.Nodes, decl *syntax.TypeDecl) {
	if decl.Alias {
		name, _ := g.def(decl.Name)
		g.pragmaFlags(decl.Pragma, 0)
		assert(name.Alias()) // should be set by irgen.obj

		out.Append(ir.NewDecl(g.pos(decl), ir.ODCLTYPE, name))
		return
	}

	// Prevent size calculations until we set the underlying type.
	types.DeferCheckSize()

	name, obj := g.def(decl.Name)
	ntyp, otyp := name.Type(), obj.Type()
	if ir.CurFunc != nil {
		ntyp.SetVargen()
	}

	pragmas := g.pragmaFlags(decl.Pragma, typePragmas)
	name.SetPragma(pragmas) // TODO(mdempsky): Is this still needed?

	if pragmas&ir.NotInHeap != 0 {
		ntyp.SetNotInHeap(true)
	}

	// We need to use g.typeExpr(decl.Type) here to ensure that for
	// chained, defined-type declarations like:
	//
	//	type T U
	//
	//	//go:notinheap
	//	type U struct { … }
	//
	// we mark both T and U as NotInHeap. If we instead used just
	// g.typ(otyp.Underlying()), then we'd instead set T's underlying
	// type directly to the struct type (which is not marked NotInHeap)
	// and fail to mark T as NotInHeap.
	//
	// Also, we rely here on Type.SetUnderlying allowing passing a
	// defined type and handling forward references like from T to U
	// above. Contrast with go/types's Named.SetUnderlying, which
	// disallows this.
	//
	// [mdempsky: Subtleties like these are why I always vehemently
	// object to new type pragmas.]
	ntyp.SetUnderlying(g.typeExpr(decl.Type))

	tparams := otyp.(*types2.Named).TParams()
	if n := tparams.Len(); n > 0 {
		rparams := make([]*types.Type, n)
		for i := range rparams {
			rparams[i] = g.typ(tparams.At(i))
		}
		// This will set hasTParam flag if any rparams are not concrete types.
		ntyp.SetRParams(rparams)
	}
	types.ResumeCheckSize()

	if otyp, ok := otyp.(*types2.Named); ok && otyp.NumMethods() != 0 {
		methods := make([]*types.Field, otyp.NumMethods())
		for i := range methods {
			m := otyp.Method(i)
			meth := g.obj(m)
			methods[i] = types.NewField(meth.Pos(), g.selector(m), meth.Type())
			methods[i].Nname = meth
		}
		ntyp.Methods().Set(methods)
	}

	out.Append(ir.NewDecl(g.pos(decl), ir.ODCLTYPE, name))
}

func (g *irgen) varDecl(out *ir.Nodes, decl *syntax.VarDecl) {
	pos := g.pos(decl)
	names := make([]*ir.Name, len(decl.NameList))
	for i, name := range decl.NameList {
		names[i], _ = g.def(name)
	}

	if decl.Pragma != nil {
		pragma := decl.Pragma.(*pragmas)
		// TODO(mdempsky): Plumb noder.importedEmbed through to here.
		varEmbed(g.makeXPos, names[0], decl, pragma, true)
		g.reportUnused(pragma)
	}

	do := func() {
		values := g.exprList(decl.Values)

		var as2 *ir.AssignListStmt
		if len(values) != 0 && len(names) != len(values) {
			as2 = ir.NewAssignListStmt(pos, ir.OAS2, make([]ir.Node, len(names)), values)
		}

		for i, name := range names {
			if ir.CurFunc != nil {
				out.Append(ir.NewDecl(pos, ir.ODCL, name))
			}
			if as2 != nil {
				as2.Lhs[i] = name
				name.Defn = as2
			} else {
				as := ir.NewAssignStmt(pos, name, nil)
				if len(values) != 0 {
					as.Y = values[i]
					name.Defn = as
				} else if ir.CurFunc == nil {
					name.Defn = as
				}
				lhs := []ir.Node{as.X}
				rhs := []ir.Node{}
				if as.Y != nil {
					rhs = []ir.Node{as.Y}
				}
				transformAssign(as, lhs, rhs)
				as.X = lhs[0]
				if as.Y != nil {
					as.Y = rhs[0]
				}
				as.SetTypecheck(1)
				out.Append(as)
			}
		}
		if as2 != nil {
			transformAssign(as2, as2.Lhs, as2.Rhs)
			as2.SetTypecheck(1)
			out.Append(as2)
		}
	}

	// If we're within a function, we need to process the assignment
	// part of the variable declaration right away. Otherwise, we leave
	// it to be handled after all top-level declarations are processed.
	if ir.CurFunc != nil {
		do()
	} else {
		g.later(do)
	}
}

// pragmaFlags returns any specified pragma flags included in allowed,
// and reports errors about any other, unexpected pragmas.
func (g *irgen) pragmaFlags(pragma syntax.Pragma, allowed ir.PragmaFlag) ir.PragmaFlag {
	if pragma == nil {
		return 0
	}
	p := pragma.(*pragmas)
	present := p.Flag & allowed
	p.Flag &^= allowed
	g.reportUnused(p)
	return present
}

// reportUnused reports errors about any unused pragmas.
func (g *irgen) reportUnused(pragma *pragmas) {
	for _, pos := range pragma.Pos {
		if pos.Flag&pragma.Flag != 0 {
			base.ErrorfAt(g.makeXPos(pos.Pos), "misplaced compiler directive")
		}
	}
	if len(pragma.Embeds) > 0 {
		for _, e := range pragma.Embeds {
			base.ErrorfAt(g.makeXPos(e.Pos), "misplaced go:embed directive")
		}
	}
}