aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/ssa.go
blob: 997e972e0ad45a06cc1f9617d72c07ee2d7fa700 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gc

import (
	"bytes"
	"fmt"
	"html"
	"os"
	"strings"

	"cmd/compile/internal/ssa"
	"cmd/internal/obj"
	"cmd/internal/sys"
)

var ssaEnabled = true

var ssaConfig *ssa.Config
var ssaExp ssaExport

func initssa() *ssa.Config {
	ssaExp.unimplemented = false
	ssaExp.mustImplement = true
	if ssaConfig == nil {
		ssaConfig = ssa.NewConfig(Thearch.LinkArch.Name, &ssaExp, Ctxt, Debug['N'] == 0)
		if Thearch.LinkArch.Name == "386" {
			ssaConfig.Set387(Thearch.Use387)
		}
	}
	return ssaConfig
}

func shouldssa(fn *Node) bool {
	switch Thearch.LinkArch.Name {
	default:
		// Only available for testing.
		if os.Getenv("SSATEST") == "" {
			return false
		}
	case "amd64", "amd64p32", "arm", "386", "arm64":
		// Generally available.
	}
	if !ssaEnabled {
		return false
	}

	// Environment variable control of SSA CG
	// 1. IF GOSSAFUNC == current function name THEN
	//       compile this function with SSA and log output to ssa.html

	// 2. IF GOSSAHASH == "" THEN
	//       compile this function (and everything else) with SSA

	// 3. IF GOSSAHASH == "n" or "N"
	//       IF GOSSAPKG == current package name THEN
	//          compile this function (and everything in this package) with SSA
	//       ELSE
	//          use the old back end for this function.
	//       This is for compatibility with existing test harness and should go away.

	// 4. IF GOSSAHASH is a suffix of the binary-rendered SHA1 hash of the function name THEN
	//          compile this function with SSA
	//       ELSE
	//          compile this function with the old back end.

	// Plan is for 3 to be removed when the tests are revised.
	// SSA is now default, and is disabled by setting
	// GOSSAHASH to n or N, or selectively with strings of
	// 0 and 1.

	name := fn.Func.Nname.Sym.Name

	funcname := os.Getenv("GOSSAFUNC")
	if funcname != "" {
		// If GOSSAFUNC is set, compile only that function.
		return name == funcname
	}

	pkg := os.Getenv("GOSSAPKG")
	if pkg != "" {
		// If GOSSAPKG is set, compile only that package.
		return localpkg.Name == pkg
	}

	return initssa().DebugHashMatch("GOSSAHASH", name)
}

// buildssa builds an SSA function.
func buildssa(fn *Node) *ssa.Func {
	name := fn.Func.Nname.Sym.Name
	printssa := name == os.Getenv("GOSSAFUNC")
	if printssa {
		fmt.Println("generating SSA for", name)
		dumplist("buildssa-enter", fn.Func.Enter)
		dumplist("buildssa-body", fn.Nbody)
		dumplist("buildssa-exit", fn.Func.Exit)
	}

	var s state
	s.pushLine(fn.Lineno)
	defer s.popLine()

	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
		s.cgoUnsafeArgs = true
	}
	if fn.Func.Pragma&Nowritebarrier != 0 {
		s.noWB = true
	}
	defer func() {
		if s.WBLineno != 0 {
			fn.Func.WBLineno = s.WBLineno
		}
	}()
	// TODO(khr): build config just once at the start of the compiler binary

	ssaExp.log = printssa

	s.config = initssa()
	s.f = s.config.NewFunc()
	s.f.Name = name
	s.exitCode = fn.Func.Exit
	s.panics = map[funcLine]*ssa.Block{}

	if name == os.Getenv("GOSSAFUNC") {
		// TODO: tempfile? it is handy to have the location
		// of this file be stable, so you can just reload in the browser.
		s.config.HTML = ssa.NewHTMLWriter("ssa.html", s.config, name)
		// TODO: generate and print a mapping from nodes to values and blocks
	}
	defer func() {
		if !printssa {
			s.config.HTML.Close()
		}
	}()

	// Allocate starting block
	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)

	// Allocate starting values
	s.labels = map[string]*ssaLabel{}
	s.labeledNodes = map[*Node]*ssaLabel{}
	s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem)
	s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
	s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR])

	s.startBlock(s.f.Entry)
	s.vars[&memVar] = s.startmem

	s.varsyms = map[*Node]interface{}{}

	// Generate addresses of local declarations
	s.decladdrs = map[*Node]*ssa.Value{}
	for _, n := range fn.Func.Dcl {
		switch n.Class {
		case PPARAM, PPARAMOUT:
			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp)
			if n.Class == PPARAMOUT && s.canSSA(n) {
				// Save ssa-able PPARAMOUT variables so we can
				// store them back to the stack at the end of
				// the function.
				s.returns = append(s.returns, n)
			}
			if n.Class == PPARAM && s.canSSA(n) && n.Type.IsPtrShaped() {
				s.ptrargs = append(s.ptrargs, n)
				n.SetNotLiveAtEnd(true) // SSA takes care of this explicitly
			}
		case PAUTO:
			// processed at each use, to prevent Addr coming
			// before the decl.
		case PAUTOHEAP:
			// moved to heap - already handled by frontend
		case PFUNC:
			// local function - already handled by frontend
		default:
			s.Unimplementedf("local variable with class %s unimplemented", classnames[n.Class])
		}
	}

	// Convert the AST-based IR to the SSA-based IR
	s.stmts(fn.Func.Enter)
	s.stmts(fn.Nbody)

	// fallthrough to exit
	if s.curBlock != nil {
		s.pushLine(fn.Func.Endlineno)
		s.exit()
		s.popLine()
	}

	// Check that we used all labels
	for name, lab := range s.labels {
		if !lab.used() && !lab.reported {
			yyerrorl(lab.defNode.Lineno, "label %v defined and not used", name)
			lab.reported = true
		}
		if lab.used() && !lab.defined() && !lab.reported {
			yyerrorl(lab.useNode.Lineno, "label %v not defined", name)
			lab.reported = true
		}
	}

	// Check any forward gotos. Non-forward gotos have already been checked.
	for _, n := range s.fwdGotos {
		lab := s.labels[n.Left.Sym.Name]
		// If the label is undefined, we have already have printed an error.
		if lab.defined() {
			s.checkgoto(n, lab.defNode)
		}
	}

	if nerrors > 0 {
		s.f.Free()
		return nil
	}

	prelinkNumvars := s.f.NumValues()
	sparseDefState := s.locatePotentialPhiFunctions(fn)

	// Link up variable uses to variable definitions
	s.linkForwardReferences(sparseDefState)

	if ssa.BuildStats > 0 {
		s.f.LogStat("build", s.f.NumBlocks(), "blocks", prelinkNumvars, "vars_before",
			s.f.NumValues(), "vars_after", prelinkNumvars*s.f.NumBlocks(), "ssa_phi_loc_cutoff_score")
	}

	// Don't carry reference this around longer than necessary
	s.exitCode = Nodes{}

	// Main call to ssa package to compile function
	ssa.Compile(s.f)

	return s.f
}

type state struct {
	// configuration (arch) information
	config *ssa.Config

	// function we're building
	f *ssa.Func

	// labels and labeled control flow nodes (OFOR, OSWITCH, OSELECT) in f
	labels       map[string]*ssaLabel
	labeledNodes map[*Node]*ssaLabel

	// gotos that jump forward; required for deferred checkgoto calls
	fwdGotos []*Node
	// Code that must precede any return
	// (e.g., copying value of heap-escaped paramout back to true paramout)
	exitCode Nodes

	// unlabeled break and continue statement tracking
	breakTo    *ssa.Block // current target for plain break statement
	continueTo *ssa.Block // current target for plain continue statement

	// current location where we're interpreting the AST
	curBlock *ssa.Block

	// variable assignments in the current block (map from variable symbol to ssa value)
	// *Node is the unique identifier (an ONAME Node) for the variable.
	vars map[*Node]*ssa.Value

	// all defined variables at the end of each block. Indexed by block ID.
	defvars []map[*Node]*ssa.Value

	// addresses of PPARAM and PPARAMOUT variables.
	decladdrs map[*Node]*ssa.Value

	// symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused.
	varsyms map[*Node]interface{}

	// starting values. Memory, stack pointer, and globals pointer
	startmem *ssa.Value
	sp       *ssa.Value
	sb       *ssa.Value

	// line number stack. The current line number is top of stack
	line []int32

	// list of panic calls by function name and line number.
	// Used to deduplicate panic calls.
	panics map[funcLine]*ssa.Block

	// list of FwdRef values.
	fwdRefs []*ssa.Value

	// list of PPARAMOUT (return) variables.
	returns []*Node

	// list of PPARAM SSA-able pointer-shaped args. We ensure these are live
	// throughout the function to help users avoid premature finalizers.
	ptrargs []*Node

	cgoUnsafeArgs bool
	noWB          bool
	WBLineno      int32 // line number of first write barrier. 0=no write barriers
}

type funcLine struct {
	f    *Node
	line int32
}

type ssaLabel struct {
	target         *ssa.Block // block identified by this label
	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
	defNode        *Node      // label definition Node (OLABEL)
	// Label use Node (OGOTO, OBREAK, OCONTINUE).
	// Used only for error detection and reporting.
	// There might be multiple uses, but we only need to track one.
	useNode  *Node
	reported bool // reported indicates whether an error has already been reported for this label
}

// defined reports whether the label has a definition (OLABEL node).
func (l *ssaLabel) defined() bool { return l.defNode != nil }

// used reports whether the label has a use (OGOTO, OBREAK, or OCONTINUE node).
func (l *ssaLabel) used() bool { return l.useNode != nil }

// label returns the label associated with sym, creating it if necessary.
func (s *state) label(sym *Sym) *ssaLabel {
	lab := s.labels[sym.Name]
	if lab == nil {
		lab = new(ssaLabel)
		s.labels[sym.Name] = lab
	}
	return lab
}

func (s *state) Logf(msg string, args ...interface{})   { s.config.Logf(msg, args...) }
func (s *state) Log() bool                              { return s.config.Log() }
func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(s.peekLine(), msg, args...) }
func (s *state) Unimplementedf(msg string, args ...interface{}) {
	s.config.Unimplementedf(s.peekLine(), msg, args...)
}
func (s *state) Warnl(line int32, msg string, args ...interface{}) { s.config.Warnl(line, msg, args...) }
func (s *state) Debug_checknil() bool                              { return s.config.Debug_checknil() }

var (
	// dummy node for the memory variable
	memVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "mem"}}

	// dummy nodes for temporary variables
	ptrVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ptr"}}
	lenVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "len"}}
	newlenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "newlen"}}
	capVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "cap"}}
	typVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "typ"}}
	idataVar  = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "idata"}}
	okVar     = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ok"}}
	deltaVar  = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "delta"}}
)

// startBlock sets the current block we're generating code in to b.
func (s *state) startBlock(b *ssa.Block) {
	if s.curBlock != nil {
		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
	}
	s.curBlock = b
	s.vars = map[*Node]*ssa.Value{}
}

// endBlock marks the end of generating code for the current block.
// Returns the (former) current block. Returns nil if there is no current
// block, i.e. if no code flows to the current execution point.
func (s *state) endBlock() *ssa.Block {
	b := s.curBlock
	if b == nil {
		return nil
	}
	for len(s.defvars) <= int(b.ID) {
		s.defvars = append(s.defvars, nil)
	}
	s.defvars[b.ID] = s.vars
	s.curBlock = nil
	s.vars = nil
	b.Line = s.peekLine()
	return b
}

// pushLine pushes a line number on the line number stack.
func (s *state) pushLine(line int32) {
	if line == 0 {
		// the frontend may emit node with line number missing,
		// use the parent line number in this case.
		line = s.peekLine()
		if Debug['K'] != 0 {
			Warn("buildssa: line 0")
		}
	}
	s.line = append(s.line, line)
}

// popLine pops the top of the line number stack.
func (s *state) popLine() {
	s.line = s.line[:len(s.line)-1]
}

// peekLine peek the top of the line number stack.
func (s *state) peekLine() int32 {
	return s.line[len(s.line)-1]
}

func (s *state) Error(msg string, args ...interface{}) {
	yyerrorl(s.peekLine(), msg, args...)
}

// newValue0 adds a new value with no arguments to the current block.
func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
	return s.curBlock.NewValue0(s.peekLine(), op, t)
}

// newValue0A adds a new value with no arguments and an aux value to the current block.
func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
	return s.curBlock.NewValue0A(s.peekLine(), op, t, aux)
}

// newValue0I adds a new value with no arguments and an auxint value to the current block.
func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
	return s.curBlock.NewValue0I(s.peekLine(), op, t, auxint)
}

// newValue1 adds a new value with one argument to the current block.
func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
	return s.curBlock.NewValue1(s.peekLine(), op, t, arg)
}

// newValue1A adds a new value with one argument and an aux value to the current block.
func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
	return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg)
}

// newValue1I adds a new value with one argument and an auxint value to the current block.
func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value {
	return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg)
}

// newValue2 adds a new value with two arguments to the current block.
func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
	return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1)
}

// newValue2I adds a new value with two arguments and an auxint value to the current block.
func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
	return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1)
}

// newValue3 adds a new value with three arguments to the current block.
func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
	return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2)
}

// newValue3I adds a new value with three arguments and an auxint value to the current block.
func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
	return s.curBlock.NewValue3I(s.peekLine(), op, t, aux, arg0, arg1, arg2)
}

// entryNewValue0 adds a new value with no arguments to the entry block.
func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
	return s.f.Entry.NewValue0(s.peekLine(), op, t)
}

// entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
	return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux)
}

// entryNewValue0I adds a new value with no arguments and an auxint value to the entry block.
func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
	return s.f.Entry.NewValue0I(s.peekLine(), op, t, auxint)
}

// entryNewValue1 adds a new value with one argument to the entry block.
func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
	return s.f.Entry.NewValue1(s.peekLine(), op, t, arg)
}

// entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
	return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg)
}

// entryNewValue1A adds a new value with one argument and an aux value to the entry block.
func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
	return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg)
}

// entryNewValue2 adds a new value with two arguments to the entry block.
func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
	return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1)
}

// const* routines add a new const value to the entry block.
func (s *state) constSlice(t ssa.Type) *ssa.Value       { return s.f.ConstSlice(s.peekLine(), t) }
func (s *state) constInterface(t ssa.Type) *ssa.Value   { return s.f.ConstInterface(s.peekLine(), t) }
func (s *state) constNil(t ssa.Type) *ssa.Value         { return s.f.ConstNil(s.peekLine(), t) }
func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekLine(), t) }
func (s *state) constBool(c bool) *ssa.Value {
	return s.f.ConstBool(s.peekLine(), Types[TBOOL], c)
}
func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value {
	return s.f.ConstInt8(s.peekLine(), t, c)
}
func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value {
	return s.f.ConstInt16(s.peekLine(), t, c)
}
func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value {
	return s.f.ConstInt32(s.peekLine(), t, c)
}
func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value {
	return s.f.ConstInt64(s.peekLine(), t, c)
}
func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value {
	return s.f.ConstFloat32(s.peekLine(), t, c)
}
func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value {
	return s.f.ConstFloat64(s.peekLine(), t, c)
}
func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
	if s.config.IntSize == 8 {
		return s.constInt64(t, c)
	}
	if int64(int32(c)) != c {
		s.Fatalf("integer constant too big %d", c)
	}
	return s.constInt32(t, int32(c))
}

func (s *state) stmts(a Nodes) {
	for _, x := range a.Slice() {
		s.stmt(x)
	}
}

// ssaStmtList converts the statement n to SSA and adds it to s.
func (s *state) stmtList(l Nodes) {
	for _, n := range l.Slice() {
		s.stmt(n)
	}
}

// ssaStmt converts the statement n to SSA and adds it to s.
func (s *state) stmt(n *Node) {
	s.pushLine(n.Lineno)
	defer s.popLine()

	// If s.curBlock is nil, then we're about to generate dead code.
	// We can't just short-circuit here, though,
	// because we check labels and gotos as part of SSA generation.
	// Provide a block for the dead code so that we don't have
	// to add special cases everywhere else.
	if s.curBlock == nil {
		dead := s.f.NewBlock(ssa.BlockPlain)
		s.startBlock(dead)
	}

	s.stmtList(n.Ninit)
	switch n.Op {

	case OBLOCK:
		s.stmtList(n.List)

	// No-ops
	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:

	// Expression statements
	case OCALLFUNC, OCALLMETH, OCALLINTER:
		s.call(n, callNormal)
		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC &&
			(compiling_runtime && n.Left.Sym.Name == "throw" ||
				n.Left.Sym.Pkg == Runtimepkg && (n.Left.Sym.Name == "gopanic" || n.Left.Sym.Name == "selectgo" || n.Left.Sym.Name == "block")) {
			m := s.mem()
			b := s.endBlock()
			b.Kind = ssa.BlockExit
			b.SetControl(m)
			// TODO: never rewrite OPANIC to OCALLFUNC in the
			// first place. Need to wait until all backends
			// go through SSA.
		}
	case ODEFER:
		s.call(n.Left, callDefer)
	case OPROC:
		s.call(n.Left, callGo)

	case OAS2DOTTYPE:
		res, resok := s.dottype(n.Rlist.First(), true)
		s.assign(n.List.First(), res, needwritebarrier(n.List.First(), n.Rlist.First()), false, n.Lineno, 0, false)
		s.assign(n.List.Second(), resok, false, false, n.Lineno, 0, false)
		return

	case ODCL:
		if n.Left.Class == PAUTOHEAP {
			Fatalf("DCL %v", n)
		}

	case OLABEL:
		sym := n.Left.Sym

		if isblanksym(sym) {
			// Empty identifier is valid but useless.
			// See issues 11589, 11593.
			return
		}

		lab := s.label(sym)

		// Associate label with its control flow node, if any
		if ctl := n.Name.Defn; ctl != nil {
			switch ctl.Op {
			case OFOR, OSWITCH, OSELECT:
				s.labeledNodes[ctl] = lab
			}
		}

		if !lab.defined() {
			lab.defNode = n
		} else {
			s.Error("label %v already defined at %v", sym, linestr(lab.defNode.Lineno))
			lab.reported = true
		}
		// The label might already have a target block via a goto.
		if lab.target == nil {
			lab.target = s.f.NewBlock(ssa.BlockPlain)
		}

		// go to that label (we pretend "label:" is preceded by "goto label")
		b := s.endBlock()
		b.AddEdgeTo(lab.target)
		s.startBlock(lab.target)

	case OGOTO:
		sym := n.Left.Sym

		lab := s.label(sym)
		if lab.target == nil {
			lab.target = s.f.NewBlock(ssa.BlockPlain)
		}
		if !lab.used() {
			lab.useNode = n
		}

		if lab.defined() {
			s.checkgoto(n, lab.defNode)
		} else {
			s.fwdGotos = append(s.fwdGotos, n)
		}

		b := s.endBlock()
		b.AddEdgeTo(lab.target)

	case OAS, OASWB:
		// Check whether we can generate static data rather than code.
		// If so, ignore n and defer data generation until codegen.
		// Failure to do this causes writes to readonly symbols.
		if gen_as_init(n, true) {
			var data []*Node
			if s.f.StaticData != nil {
				data = s.f.StaticData.([]*Node)
			}
			s.f.StaticData = append(data, n)
			return
		}

		if n.Left == n.Right && n.Left.Op == ONAME {
			// An x=x assignment. No point in doing anything
			// here. In addition, skipping this assignment
			// prevents generating:
			//   VARDEF x
			//   COPY x -> x
			// which is bad because x is incorrectly considered
			// dead before the vardef. See issue #14904.
			return
		}

		var t *Type
		if n.Right != nil {
			t = n.Right.Type
		} else {
			t = n.Left.Type
		}

		// Evaluate RHS.
		rhs := n.Right
		if rhs != nil {
			switch rhs.Op {
			case OSTRUCTLIT, OARRAYLIT:
				// All literals with nonzero fields have already been
				// rewritten during walk. Any that remain are just T{}
				// or equivalents. Use the zero value.
				if !iszero(rhs) {
					Fatalf("literal with nonzero value in SSA: %v", rhs)
				}
				rhs = nil
			case OAPPEND:
				// If we're writing the result of an append back to the same slice,
				// handle it specially to avoid write barriers on the fast (non-growth) path.
				// If the slice can be SSA'd, it'll be on the stack,
				// so there will be no write barriers,
				// so there's no need to attempt to prevent them.
				if samesafeexpr(n.Left, rhs.List.First()) && !s.canSSA(n.Left) {
					s.append(rhs, true)
					return
				}
			}
		}
		var r *ssa.Value
		var isVolatile bool
		needwb := n.Op == OASWB && rhs != nil
		deref := !canSSAType(t)
		if deref {
			if rhs == nil {
				r = nil // Signal assign to use OpZero.
			} else {
				r, isVolatile = s.addr(rhs, false)
			}
		} else {
			if rhs == nil {
				r = s.zeroVal(t)
			} else {
				r = s.expr(rhs)
			}
		}
		if rhs != nil && rhs.Op == OAPPEND {
			// The frontend gets rid of the write barrier to enable the special OAPPEND
			// handling above, but since this is not a special case, we need it.
			// TODO: just add a ptr graying to the end of growslice?
			// TODO: check whether we need to provide special handling and a write barrier
			// for ODOTTYPE and ORECV also.
			// They get similar wb-removal treatment in walk.go:OAS.
			needwb = true
		}

		var skip skipMask
		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
			// We're assigning a slicing operation back to its source.
			// Don't write back fields we aren't changing. See issue #14855.
			i, j, k := rhs.SliceBounds()
			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
				// [0:...] is the same as [:...]
				i = nil
			}
			// TODO: detect defaults for len/cap also.
			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
			//    tmp = len(*p)
			//    (*p)[:tmp]
			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
			//      j = nil
			//}
			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
			//      k = nil
			//}
			if i == nil {
				skip |= skipPtr
				if j == nil {
					skip |= skipLen
				}
				if k == nil {
					skip |= skipCap
				}
			}
		}

		s.assign(n.Left, r, needwb, deref, n.Lineno, skip, isVolatile)

	case OIF:
		bThen := s.f.NewBlock(ssa.BlockPlain)
		bEnd := s.f.NewBlock(ssa.BlockPlain)
		var bElse *ssa.Block
		if n.Rlist.Len() != 0 {
			bElse = s.f.NewBlock(ssa.BlockPlain)
			s.condBranch(n.Left, bThen, bElse, n.Likely)
		} else {
			s.condBranch(n.Left, bThen, bEnd, n.Likely)
		}

		s.startBlock(bThen)
		s.stmts(n.Nbody)
		if b := s.endBlock(); b != nil {
			b.AddEdgeTo(bEnd)
		}

		if n.Rlist.Len() != 0 {
			s.startBlock(bElse)
			s.stmtList(n.Rlist)
			if b := s.endBlock(); b != nil {
				b.AddEdgeTo(bEnd)
			}
		}
		s.startBlock(bEnd)

	case ORETURN:
		s.stmtList(n.List)
		s.exit()
	case ORETJMP:
		s.stmtList(n.List)
		b := s.exit()
		b.Kind = ssa.BlockRetJmp // override BlockRet
		b.Aux = n.Left.Sym

	case OCONTINUE, OBREAK:
		var op string
		var to *ssa.Block
		switch n.Op {
		case OCONTINUE:
			op = "continue"
			to = s.continueTo
		case OBREAK:
			op = "break"
			to = s.breakTo
		}
		if n.Left == nil {
			// plain break/continue
			if to == nil {
				s.Error("%s is not in a loop", op)
				return
			}
			// nothing to do; "to" is already the correct target
		} else {
			// labeled break/continue; look up the target
			sym := n.Left.Sym
			lab := s.label(sym)
			if !lab.used() {
				lab.useNode = n.Left
			}
			if !lab.defined() {
				s.Error("%s label not defined: %v", op, sym)
				lab.reported = true
				return
			}
			switch n.Op {
			case OCONTINUE:
				to = lab.continueTarget
			case OBREAK:
				to = lab.breakTarget
			}
			if to == nil {
				// Valid label but not usable with a break/continue here, e.g.:
				// for {
				// 	continue abc
				// }
				// abc:
				// for {}
				s.Error("invalid %s label %v", op, sym)
				lab.reported = true
				return
			}
		}

		b := s.endBlock()
		b.AddEdgeTo(to)

	case OFOR:
		// OFOR: for Ninit; Left; Right { Nbody }
		bCond := s.f.NewBlock(ssa.BlockPlain)
		bBody := s.f.NewBlock(ssa.BlockPlain)
		bIncr := s.f.NewBlock(ssa.BlockPlain)
		bEnd := s.f.NewBlock(ssa.BlockPlain)

		// first, jump to condition test
		b := s.endBlock()
		b.AddEdgeTo(bCond)

		// generate code to test condition
		s.startBlock(bCond)
		if n.Left != nil {
			s.condBranch(n.Left, bBody, bEnd, 1)
		} else {
			b := s.endBlock()
			b.Kind = ssa.BlockPlain
			b.AddEdgeTo(bBody)
		}

		// set up for continue/break in body
		prevContinue := s.continueTo
		prevBreak := s.breakTo
		s.continueTo = bIncr
		s.breakTo = bEnd
		lab := s.labeledNodes[n]
		if lab != nil {
			// labeled for loop
			lab.continueTarget = bIncr
			lab.breakTarget = bEnd
		}

		// generate body
		s.startBlock(bBody)
		s.stmts(n.Nbody)

		// tear down continue/break
		s.continueTo = prevContinue
		s.breakTo = prevBreak
		if lab != nil {
			lab.continueTarget = nil
			lab.breakTarget = nil
		}

		// done with body, goto incr
		if b := s.endBlock(); b != nil {
			b.AddEdgeTo(bIncr)
		}

		// generate incr
		s.startBlock(bIncr)
		if n.Right != nil {
			s.stmt(n.Right)
		}
		if b := s.endBlock(); b != nil {
			b.AddEdgeTo(bCond)
		}
		s.startBlock(bEnd)

	case OSWITCH, OSELECT:
		// These have been mostly rewritten by the front end into their Nbody fields.
		// Our main task is to correctly hook up any break statements.
		bEnd := s.f.NewBlock(ssa.BlockPlain)

		prevBreak := s.breakTo
		s.breakTo = bEnd
		lab := s.labeledNodes[n]
		if lab != nil {
			// labeled
			lab.breakTarget = bEnd
		}

		// generate body code
		s.stmts(n.Nbody)

		s.breakTo = prevBreak
		if lab != nil {
			lab.breakTarget = nil
		}

		// OSWITCH never falls through (s.curBlock == nil here).
		// OSELECT does not fall through if we're calling selectgo.
		// OSELECT does fall through if we're calling selectnb{send,recv}[2].
		// In those latter cases, go to the code after the select.
		if b := s.endBlock(); b != nil {
			b.AddEdgeTo(bEnd)
		}
		s.startBlock(bEnd)

	case OVARKILL:
		// Insert a varkill op to record that a variable is no longer live.
		// We only care about liveness info at call sites, so putting the
		// varkill in the store chain is enough to keep it correctly ordered
		// with respect to call ops.
		if !s.canSSA(n.Left) {
			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem())
		}

	case OVARLIVE:
		// Insert a varlive op to record that a variable is still live.
		if !n.Left.Addrtaken {
			s.Fatalf("VARLIVE variable %s must have Addrtaken set", n.Left)
		}
		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem())

	case OCHECKNIL:
		p := s.expr(n.Left)
		s.nilCheck(p)

	default:
		s.Unimplementedf("unhandled stmt %s", n.Op)
	}
}

// exit processes any code that needs to be generated just before returning.
// It returns a BlockRet block that ends the control flow. Its control value
// will be set to the final memory state.
func (s *state) exit() *ssa.Block {
	if hasdefer {
		s.rtcall(Deferreturn, true, nil)
	}

	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
	// variables back to the stack.
	s.stmts(s.exitCode)

	// Store SSAable PPARAMOUT variables back to stack locations.
	for _, n := range s.returns {
		addr := s.decladdrs[n]
		val := s.variable(n, n.Type)
		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem())
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, n.Type.Size(), addr, val, s.mem())
		// TODO: if val is ever spilled, we'd like to use the
		// PPARAMOUT slot for spilling it. That won't happen
		// currently.
	}

	// Keep input pointer args live until the return. This is a bandaid
	// fix for 1.7 for what will become in 1.8 explicit runtime.KeepAlive calls.
	// For <= 1.7 we guarantee that pointer input arguments live to the end of
	// the function to prevent premature (from the user's point of view)
	// execution of finalizers. See issue 15277.
	// TODO: remove for 1.8?
	for _, n := range s.ptrargs {
		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
	}

	// Do actual return.
	m := s.mem()
	b := s.endBlock()
	b.Kind = ssa.BlockRet
	b.SetControl(m)
	return b
}

type opAndType struct {
	op    Op
	etype EType
}

var opToSSA = map[opAndType]ssa.Op{
	opAndType{OADD, TINT8}:    ssa.OpAdd8,
	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
	opAndType{OADD, TINT16}:   ssa.OpAdd16,
	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
	opAndType{OADD, TINT32}:   ssa.OpAdd32,
	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
	opAndType{OADD, TPTR32}:   ssa.OpAdd32,
	opAndType{OADD, TINT64}:   ssa.OpAdd64,
	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
	opAndType{OADD, TPTR64}:   ssa.OpAdd64,
	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,

	opAndType{OSUB, TINT8}:    ssa.OpSub8,
	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
	opAndType{OSUB, TINT16}:   ssa.OpSub16,
	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
	opAndType{OSUB, TINT32}:   ssa.OpSub32,
	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
	opAndType{OSUB, TINT64}:   ssa.OpSub64,
	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,

	opAndType{ONOT, TBOOL}: ssa.OpNot,

	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,

	opAndType{OCOM, TINT8}:   ssa.OpCom8,
	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
	opAndType{OCOM, TINT16}:  ssa.OpCom16,
	opAndType{OCOM, TUINT16}: ssa.OpCom16,
	opAndType{OCOM, TINT32}:  ssa.OpCom32,
	opAndType{OCOM, TUINT32}: ssa.OpCom32,
	opAndType{OCOM, TINT64}:  ssa.OpCom64,
	opAndType{OCOM, TUINT64}: ssa.OpCom64,

	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,

	opAndType{OMUL, TINT8}:    ssa.OpMul8,
	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
	opAndType{OMUL, TINT16}:   ssa.OpMul16,
	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
	opAndType{OMUL, TINT32}:   ssa.OpMul32,
	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
	opAndType{OMUL, TINT64}:   ssa.OpMul64,
	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,

	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,

	opAndType{OHMUL, TINT8}:   ssa.OpHmul8,
	opAndType{OHMUL, TUINT8}:  ssa.OpHmul8u,
	opAndType{OHMUL, TINT16}:  ssa.OpHmul16,
	opAndType{OHMUL, TUINT16}: ssa.OpHmul16u,
	opAndType{OHMUL, TINT32}:  ssa.OpHmul32,
	opAndType{OHMUL, TUINT32}: ssa.OpHmul32u,

	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,

	opAndType{OMOD, TINT8}:   ssa.OpMod8,
	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
	opAndType{OMOD, TINT16}:  ssa.OpMod16,
	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
	opAndType{OMOD, TINT32}:  ssa.OpMod32,
	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
	opAndType{OMOD, TINT64}:  ssa.OpMod64,
	opAndType{OMOD, TUINT64}: ssa.OpMod64u,

	opAndType{OAND, TINT8}:   ssa.OpAnd8,
	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
	opAndType{OAND, TINT16}:  ssa.OpAnd16,
	opAndType{OAND, TUINT16}: ssa.OpAnd16,
	opAndType{OAND, TINT32}:  ssa.OpAnd32,
	opAndType{OAND, TUINT32}: ssa.OpAnd32,
	opAndType{OAND, TINT64}:  ssa.OpAnd64,
	opAndType{OAND, TUINT64}: ssa.OpAnd64,

	opAndType{OOR, TINT8}:   ssa.OpOr8,
	opAndType{OOR, TUINT8}:  ssa.OpOr8,
	opAndType{OOR, TINT16}:  ssa.OpOr16,
	opAndType{OOR, TUINT16}: ssa.OpOr16,
	opAndType{OOR, TINT32}:  ssa.OpOr32,
	opAndType{OOR, TUINT32}: ssa.OpOr32,
	opAndType{OOR, TINT64}:  ssa.OpOr64,
	opAndType{OOR, TUINT64}: ssa.OpOr64,

	opAndType{OXOR, TINT8}:   ssa.OpXor8,
	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
	opAndType{OXOR, TINT16}:  ssa.OpXor16,
	opAndType{OXOR, TUINT16}: ssa.OpXor16,
	opAndType{OXOR, TINT32}:  ssa.OpXor32,
	opAndType{OXOR, TUINT32}: ssa.OpXor32,
	opAndType{OXOR, TINT64}:  ssa.OpXor64,
	opAndType{OXOR, TUINT64}: ssa.OpXor64,

	opAndType{OEQ, TBOOL}:      ssa.OpEqB,
	opAndType{OEQ, TINT8}:      ssa.OpEq8,
	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
	opAndType{OEQ, TINT16}:     ssa.OpEq16,
	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
	opAndType{OEQ, TINT32}:     ssa.OpEq32,
	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
	opAndType{OEQ, TINT64}:     ssa.OpEq64,
	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
	opAndType{OEQ, TSLICE}:     ssa.OpEqSlice,
	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
	opAndType{OEQ, TPTR32}:     ssa.OpEqPtr,
	opAndType{OEQ, TPTR64}:     ssa.OpEqPtr,
	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,

	opAndType{ONE, TBOOL}:      ssa.OpNeqB,
	opAndType{ONE, TINT8}:      ssa.OpNeq8,
	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
	opAndType{ONE, TINT16}:     ssa.OpNeq16,
	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
	opAndType{ONE, TINT32}:     ssa.OpNeq32,
	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
	opAndType{ONE, TINT64}:     ssa.OpNeq64,
	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
	opAndType{ONE, TSLICE}:     ssa.OpNeqSlice,
	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
	opAndType{ONE, TPTR32}:     ssa.OpNeqPtr,
	opAndType{ONE, TPTR64}:     ssa.OpNeqPtr,
	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,

	opAndType{OLT, TINT8}:    ssa.OpLess8,
	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
	opAndType{OLT, TINT16}:   ssa.OpLess16,
	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
	opAndType{OLT, TINT32}:   ssa.OpLess32,
	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
	opAndType{OLT, TINT64}:   ssa.OpLess64,
	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,

	opAndType{OGT, TINT8}:    ssa.OpGreater8,
	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
	opAndType{OGT, TINT16}:   ssa.OpGreater16,
	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
	opAndType{OGT, TINT32}:   ssa.OpGreater32,
	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
	opAndType{OGT, TINT64}:   ssa.OpGreater64,
	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,

	opAndType{OLE, TINT8}:    ssa.OpLeq8,
	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
	opAndType{OLE, TINT16}:   ssa.OpLeq16,
	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
	opAndType{OLE, TINT32}:   ssa.OpLeq32,
	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
	opAndType{OLE, TINT64}:   ssa.OpLeq64,
	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,

	opAndType{OGE, TINT8}:    ssa.OpGeq8,
	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
	opAndType{OGE, TINT16}:   ssa.OpGeq16,
	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
	opAndType{OGE, TINT32}:   ssa.OpGeq32,
	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
	opAndType{OGE, TINT64}:   ssa.OpGeq64,
	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,

	opAndType{OLROT, TUINT8}:  ssa.OpLrot8,
	opAndType{OLROT, TUINT16}: ssa.OpLrot16,
	opAndType{OLROT, TUINT32}: ssa.OpLrot32,
	opAndType{OLROT, TUINT64}: ssa.OpLrot64,

	opAndType{OSQRT, TFLOAT64}: ssa.OpSqrt,
}

func (s *state) concreteEtype(t *Type) EType {
	e := t.Etype
	switch e {
	default:
		return e
	case TINT:
		if s.config.IntSize == 8 {
			return TINT64
		}
		return TINT32
	case TUINT:
		if s.config.IntSize == 8 {
			return TUINT64
		}
		return TUINT32
	case TUINTPTR:
		if s.config.PtrSize == 8 {
			return TUINT64
		}
		return TUINT32
	}
}

func (s *state) ssaOp(op Op, t *Type) ssa.Op {
	etype := s.concreteEtype(t)
	x, ok := opToSSA[opAndType{op, etype}]
	if !ok {
		s.Unimplementedf("unhandled binary op %s %s", op, etype)
	}
	return x
}

func floatForComplex(t *Type) *Type {
	if t.Size() == 8 {
		return Types[TFLOAT32]
	} else {
		return Types[TFLOAT64]
	}
}

type opAndTwoTypes struct {
	op     Op
	etype1 EType
	etype2 EType
}

type twoTypes struct {
	etype1 EType
	etype2 EType
}

type twoOpsAndType struct {
	op1              ssa.Op
	op2              ssa.Op
	intermediateType EType
}

var fpConvOpToSSA = map[twoTypes]twoOpsAndType{

	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},

	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},

	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},

	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
	// unsigned
	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead

	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead

	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead

	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead

	// float
	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT64},
	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT32},
	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
}

// this map is used only for 32-bit arch, and only includes the difference
// on 32-bit arch, don't use int64<->float conversion for uint32
var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
}

var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,

	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,

	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,

	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,

	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,

	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,

	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,

	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
}

func (s *state) ssaShiftOp(op Op, t *Type, u *Type) ssa.Op {
	etype1 := s.concreteEtype(t)
	etype2 := s.concreteEtype(u)
	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
	if !ok {
		s.Unimplementedf("unhandled shift op %s etype=%s/%s", op, etype1, etype2)
	}
	return x
}

func (s *state) ssaRotateOp(op Op, t *Type) ssa.Op {
	etype1 := s.concreteEtype(t)
	x, ok := opToSSA[opAndType{op, etype1}]
	if !ok {
		s.Unimplementedf("unhandled rotate op %s etype=%s", op, etype1)
	}
	return x
}

// expr converts the expression n to ssa, adds it to s and returns the ssa result.
func (s *state) expr(n *Node) *ssa.Value {
	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
		// ONAMEs and named OLITERALs have the line number
		// of the decl, not the use. See issue 14742.
		s.pushLine(n.Lineno)
		defer s.popLine()
	}

	s.stmtList(n.Ninit)
	switch n.Op {
	case OCFUNC:
		aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Left.Sym})
		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
	case ONAME:
		if n.Class == PFUNC {
			// "value" of a function is the address of the function's closure
			sym := funcsym(n.Sym)
			aux := &ssa.ExternSymbol{Typ: n.Type, Sym: sym}
			return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb)
		}
		if s.canSSA(n) {
			return s.variable(n, n.Type)
		}
		addr, _ := s.addr(n, false)
		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
	case OCLOSUREVAR:
		addr, _ := s.addr(n, false)
		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
	case OLITERAL:
		switch u := n.Val().U.(type) {
		case *Mpint:
			i := u.Int64()
			switch n.Type.Size() {
			case 1:
				return s.constInt8(n.Type, int8(i))
			case 2:
				return s.constInt16(n.Type, int16(i))
			case 4:
				return s.constInt32(n.Type, int32(i))
			case 8:
				return s.constInt64(n.Type, i)
			default:
				s.Fatalf("bad integer size %d", n.Type.Size())
				return nil
			}
		case string:
			if u == "" {
				return s.constEmptyString(n.Type)
			}
			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
		case bool:
			return s.constBool(u)
		case *NilVal:
			t := n.Type
			switch {
			case t.IsSlice():
				return s.constSlice(t)
			case t.IsInterface():
				return s.constInterface(t)
			default:
				return s.constNil(t)
			}
		case *Mpflt:
			switch n.Type.Size() {
			case 4:
				return s.constFloat32(n.Type, u.Float32())
			case 8:
				return s.constFloat64(n.Type, u.Float64())
			default:
				s.Fatalf("bad float size %d", n.Type.Size())
				return nil
			}
		case *Mpcplx:
			r := &u.Real
			i := &u.Imag
			switch n.Type.Size() {
			case 8:
				pt := Types[TFLOAT32]
				return s.newValue2(ssa.OpComplexMake, n.Type,
					s.constFloat32(pt, r.Float32()),
					s.constFloat32(pt, i.Float32()))
			case 16:
				pt := Types[TFLOAT64]
				return s.newValue2(ssa.OpComplexMake, n.Type,
					s.constFloat64(pt, r.Float64()),
					s.constFloat64(pt, i.Float64()))
			default:
				s.Fatalf("bad float size %d", n.Type.Size())
				return nil
			}

		default:
			s.Unimplementedf("unhandled OLITERAL %v", n.Val().Ctype())
			return nil
		}
	case OCONVNOP:
		to := n.Type
		from := n.Left.Type

		// Assume everything will work out, so set up our return value.
		// Anything interesting that happens from here is a fatal.
		x := s.expr(n.Left)

		// Special case for not confusing GC and liveness.
		// We don't want pointers accidentally classified
		// as not-pointers or vice-versa because of copy
		// elision.
		if to.IsPtrShaped() != from.IsPtrShaped() {
			return s.newValue2(ssa.OpConvert, to, x, s.mem())
		}

		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type

		// CONVNOP closure
		if to.Etype == TFUNC && from.IsPtrShaped() {
			return v
		}

		// named <--> unnamed type or typed <--> untyped const
		if from.Etype == to.Etype {
			return v
		}

		// unsafe.Pointer <--> *T
		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
			return v
		}

		dowidth(from)
		dowidth(to)
		if from.Width != to.Width {
			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
			return nil
		}
		if etypesign(from.Etype) != etypesign(to.Etype) {
			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
			return nil
		}

		if instrumenting {
			// These appear to be fine, but they fail the
			// integer constraint below, so okay them here.
			// Sample non-integer conversion: map[string]string -> *uint8
			return v
		}

		if etypesign(from.Etype) == 0 {
			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
			return nil
		}

		// integer, same width, same sign
		return v

	case OCONV:
		x := s.expr(n.Left)
		ft := n.Left.Type // from type
		tt := n.Type      // to type
		if ft.IsInteger() && tt.IsInteger() {
			var op ssa.Op
			if tt.Size() == ft.Size() {
				op = ssa.OpCopy
			} else if tt.Size() < ft.Size() {
				// truncation
				switch 10*ft.Size() + tt.Size() {
				case 21:
					op = ssa.OpTrunc16to8
				case 41:
					op = ssa.OpTrunc32to8
				case 42:
					op = ssa.OpTrunc32to16
				case 81:
					op = ssa.OpTrunc64to8
				case 82:
					op = ssa.OpTrunc64to16
				case 84:
					op = ssa.OpTrunc64to32
				default:
					s.Fatalf("weird integer truncation %s -> %s", ft, tt)
				}
			} else if ft.IsSigned() {
				// sign extension
				switch 10*ft.Size() + tt.Size() {
				case 12:
					op = ssa.OpSignExt8to16
				case 14:
					op = ssa.OpSignExt8to32
				case 18:
					op = ssa.OpSignExt8to64
				case 24:
					op = ssa.OpSignExt16to32
				case 28:
					op = ssa.OpSignExt16to64
				case 48:
					op = ssa.OpSignExt32to64
				default:
					s.Fatalf("bad integer sign extension %s -> %s", ft, tt)
				}
			} else {
				// zero extension
				switch 10*ft.Size() + tt.Size() {
				case 12:
					op = ssa.OpZeroExt8to16
				case 14:
					op = ssa.OpZeroExt8to32
				case 18:
					op = ssa.OpZeroExt8to64
				case 24:
					op = ssa.OpZeroExt16to32
				case 28:
					op = ssa.OpZeroExt16to64
				case 48:
					op = ssa.OpZeroExt32to64
				default:
					s.Fatalf("weird integer sign extension %s -> %s", ft, tt)
				}
			}
			return s.newValue1(op, n.Type, x)
		}

		if ft.IsFloat() || tt.IsFloat() {
			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
			if s.config.IntSize == 4 && Thearch.LinkArch.Name != "amd64p32" {
				if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
					conv = conv1
				}
			}
			if !ok {
				s.Fatalf("weird float conversion %s -> %s", ft, tt)
			}
			op1, op2, it := conv.op1, conv.op2, conv.intermediateType

			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
				// normal case, not tripping over unsigned 64
				if op1 == ssa.OpCopy {
					if op2 == ssa.OpCopy {
						return x
					}
					return s.newValue1(op2, n.Type, x)
				}
				if op2 == ssa.OpCopy {
					return s.newValue1(op1, n.Type, x)
				}
				return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x))
			}
			// Tricky 64-bit unsigned cases.
			if ft.IsInteger() {
				// therefore tt is float32 or float64, and ft is also unsigned
				if tt.Size() == 4 {
					return s.uint64Tofloat32(n, x, ft, tt)
				}
				if tt.Size() == 8 {
					return s.uint64Tofloat64(n, x, ft, tt)
				}
				s.Fatalf("weird unsigned integer to float conversion %s -> %s", ft, tt)
			}
			// therefore ft is float32 or float64, and tt is unsigned integer
			if ft.Size() == 4 {
				return s.float32ToUint64(n, x, ft, tt)
			}
			if ft.Size() == 8 {
				return s.float64ToUint64(n, x, ft, tt)
			}
			s.Fatalf("weird float to unsigned integer conversion %s -> %s", ft, tt)
			return nil
		}

		if ft.IsComplex() && tt.IsComplex() {
			var op ssa.Op
			if ft.Size() == tt.Size() {
				op = ssa.OpCopy
			} else if ft.Size() == 8 && tt.Size() == 16 {
				op = ssa.OpCvt32Fto64F
			} else if ft.Size() == 16 && tt.Size() == 8 {
				op = ssa.OpCvt64Fto32F
			} else {
				s.Fatalf("weird complex conversion %s -> %s", ft, tt)
			}
			ftp := floatForComplex(ft)
			ttp := floatForComplex(tt)
			return s.newValue2(ssa.OpComplexMake, tt,
				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
		}

		s.Unimplementedf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
		return nil

	case ODOTTYPE:
		res, _ := s.dottype(n, false)
		return res

	// binary ops
	case OLT, OEQ, ONE, OLE, OGE, OGT:
		a := s.expr(n.Left)
		b := s.expr(n.Right)
		if n.Left.Type.IsComplex() {
			pt := floatForComplex(n.Left.Type)
			op := s.ssaOp(OEQ, pt)
			r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
			i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
			c := s.newValue2(ssa.OpAnd8, Types[TBOOL], r, i)
			switch n.Op {
			case OEQ:
				return c
			case ONE:
				return s.newValue1(ssa.OpNot, Types[TBOOL], c)
			default:
				s.Fatalf("ordered complex compare %s", n.Op)
			}
		}
		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b)
	case OMUL:
		a := s.expr(n.Left)
		b := s.expr(n.Right)
		if n.Type.IsComplex() {
			mulop := ssa.OpMul64F
			addop := ssa.OpAdd64F
			subop := ssa.OpSub64F
			pt := floatForComplex(n.Type) // Could be Float32 or Float64
			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancelation error

			areal := s.newValue1(ssa.OpComplexReal, pt, a)
			breal := s.newValue1(ssa.OpComplexReal, pt, b)
			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
			bimag := s.newValue1(ssa.OpComplexImag, pt, b)

			if pt != wt { // Widen for calculation
				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
			}

			xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
			ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))

			if pt != wt { // Narrow to store back
				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
			}

			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
		}
		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)

	case ODIV:
		a := s.expr(n.Left)
		b := s.expr(n.Right)
		if n.Type.IsComplex() {
			// TODO this is not executed because the front-end substitutes a runtime call.
			// That probably ought to change; with modest optimization the widen/narrow
			// conversions could all be elided in larger expression trees.
			mulop := ssa.OpMul64F
			addop := ssa.OpAdd64F
			subop := ssa.OpSub64F
			divop := ssa.OpDiv64F
			pt := floatForComplex(n.Type) // Could be Float32 or Float64
			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancelation error

			areal := s.newValue1(ssa.OpComplexReal, pt, a)
			breal := s.newValue1(ssa.OpComplexReal, pt, b)
			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
			bimag := s.newValue1(ssa.OpComplexImag, pt, b)

			if pt != wt { // Widen for calculation
				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
			}

			denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
			xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
			ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))

			// TODO not sure if this is best done in wide precision or narrow
			// Double-rounding might be an issue.
			// Note that the pre-SSA implementation does the entire calculation
			// in wide format, so wide is compatible.
			xreal = s.newValue2(divop, wt, xreal, denom)
			ximag = s.newValue2(divop, wt, ximag, denom)

			if pt != wt { // Narrow to store back
				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
			}
			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
		}
		if n.Type.IsFloat() {
			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
		} else {
			// do a size-appropriate check for zero
			cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
			s.check(cmp, panicdivide)
			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
		}
	case OMOD:
		a := s.expr(n.Left)
		b := s.expr(n.Right)
		// do a size-appropriate check for zero
		cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
		s.check(cmp, panicdivide)
		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
	case OADD, OSUB:
		a := s.expr(n.Left)
		b := s.expr(n.Right)
		if n.Type.IsComplex() {
			pt := floatForComplex(n.Type)
			op := s.ssaOp(n.Op, pt)
			return s.newValue2(ssa.OpComplexMake, n.Type,
				s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
				s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
		}
		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
	case OAND, OOR, OHMUL, OXOR:
		a := s.expr(n.Left)
		b := s.expr(n.Right)
		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
	case OLSH, ORSH:
		a := s.expr(n.Left)
		b := s.expr(n.Right)
		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
	case OLROT:
		a := s.expr(n.Left)
		i := n.Right.Int64()
		if i <= 0 || i >= n.Type.Size()*8 {
			s.Fatalf("Wrong rotate distance for LROT, expected 1 through %d, saw %d", n.Type.Size()*8-1, i)
		}
		return s.newValue1I(s.ssaRotateOp(n.Op, n.Type), a.Type, i, a)
	case OANDAND, OOROR:
		// To implement OANDAND (and OOROR), we introduce a
		// new temporary variable to hold the result. The
		// variable is associated with the OANDAND node in the
		// s.vars table (normally variables are only
		// associated with ONAME nodes). We convert
		//     A && B
		// to
		//     var = A
		//     if var {
		//         var = B
		//     }
		// Using var in the subsequent block introduces the
		// necessary phi variable.
		el := s.expr(n.Left)
		s.vars[n] = el

		b := s.endBlock()
		b.Kind = ssa.BlockIf
		b.SetControl(el)
		// In theory, we should set b.Likely here based on context.
		// However, gc only gives us likeliness hints
		// in a single place, for plain OIF statements,
		// and passing around context is finnicky, so don't bother for now.

		bRight := s.f.NewBlock(ssa.BlockPlain)
		bResult := s.f.NewBlock(ssa.BlockPlain)
		if n.Op == OANDAND {
			b.AddEdgeTo(bRight)
			b.AddEdgeTo(bResult)
		} else if n.Op == OOROR {
			b.AddEdgeTo(bResult)
			b.AddEdgeTo(bRight)
		}

		s.startBlock(bRight)
		er := s.expr(n.Right)
		s.vars[n] = er

		b = s.endBlock()
		b.AddEdgeTo(bResult)

		s.startBlock(bResult)
		return s.variable(n, Types[TBOOL])
	case OCOMPLEX:
		r := s.expr(n.Left)
		i := s.expr(n.Right)
		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)

	// unary ops
	case OMINUS:
		a := s.expr(n.Left)
		if n.Type.IsComplex() {
			tp := floatForComplex(n.Type)
			negop := s.ssaOp(n.Op, tp)
			return s.newValue2(ssa.OpComplexMake, n.Type,
				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
		}
		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
	case ONOT, OCOM, OSQRT:
		a := s.expr(n.Left)
		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
	case OIMAG, OREAL:
		a := s.expr(n.Left)
		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
	case OPLUS:
		return s.expr(n.Left)

	case OADDR:
		a, _ := s.addr(n.Left, n.Bounded)
		// Note we know the volatile result is false because you can't write &f() in Go.
		return a

	case OINDREG:
		if int(n.Reg) != Thearch.REGSP {
			s.Unimplementedf("OINDREG of non-SP register %s in expr: %v", obj.Rconv(int(n.Reg)), n)
			return nil
		}
		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp)
		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())

	case OIND:
		p := s.exprPtr(n.Left, false, n.Lineno)
		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())

	case ODOT:
		t := n.Left.Type
		if canSSAType(t) {
			v := s.expr(n.Left)
			return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
		}
		p, _ := s.addr(n, false)
		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())

	case ODOTPTR:
		p := s.exprPtr(n.Left, false, n.Lineno)
		p = s.newValue1I(ssa.OpOffPtr, p.Type, n.Xoffset, p)
		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())

	case OINDEX:
		switch {
		case n.Left.Type.IsString():
			a := s.expr(n.Left)
			i := s.expr(n.Right)
			i = s.extendIndex(i, Panicindex)
			if !n.Bounded {
				len := s.newValue1(ssa.OpStringLen, Types[TINT], a)
				s.boundsCheck(i, len)
			}
			ptrtyp := Ptrto(Types[TUINT8])
			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
			if Isconst(n.Right, CTINT) {
				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
			} else {
				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
			}
			return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem())
		case n.Left.Type.IsSlice():
			p, _ := s.addr(n, false)
			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
		case n.Left.Type.IsArray():
			// TODO: fix when we can SSA arrays of length 1.
			p, _ := s.addr(n, false)
			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
		default:
			s.Fatalf("bad type for index %v", n.Left.Type)
			return nil
		}

	case OLEN, OCAP:
		switch {
		case n.Left.Type.IsSlice():
			op := ssa.OpSliceLen
			if n.Op == OCAP {
				op = ssa.OpSliceCap
			}
			return s.newValue1(op, Types[TINT], s.expr(n.Left))
		case n.Left.Type.IsString(): // string; not reachable for OCAP
			return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left))
		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
			return s.referenceTypeBuiltin(n, s.expr(n.Left))
		default: // array
			return s.constInt(Types[TINT], n.Left.Type.NumElem())
		}

	case OSPTR:
		a := s.expr(n.Left)
		if n.Left.Type.IsSlice() {
			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
		} else {
			return s.newValue1(ssa.OpStringPtr, n.Type, a)
		}

	case OITAB:
		a := s.expr(n.Left)
		return s.newValue1(ssa.OpITab, n.Type, a)

	case OEFACE:
		tab := s.expr(n.Left)
		data := s.expr(n.Right)
		// The frontend allows putting things like struct{*byte} in
		// the data portion of an eface. But we don't want struct{*byte}
		// as a register type because (among other reasons) the liveness
		// analysis is confused by the "fat" variables that result from
		// such types being spilled.
		// So here we ensure that we are selecting the underlying pointer
		// when we build an eface.
		// TODO: get rid of this now that structs can be SSA'd?
		for !data.Type.IsPtrShaped() {
			switch {
			case data.Type.IsArray():
				data = s.newValue1I(ssa.OpArrayIndex, data.Type.ElemType(), 0, data)
			case data.Type.IsStruct():
				for i := data.Type.NumFields() - 1; i >= 0; i-- {
					f := data.Type.FieldType(i)
					if f.Size() == 0 {
						// eface type could also be struct{p *byte; q [0]int}
						continue
					}
					data = s.newValue1I(ssa.OpStructSelect, f, int64(i), data)
					break
				}
			default:
				s.Fatalf("type being put into an eface isn't a pointer")
			}
		}
		return s.newValue2(ssa.OpIMake, n.Type, tab, data)

	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
		v := s.expr(n.Left)
		var i, j, k *ssa.Value
		low, high, max := n.SliceBounds()
		if low != nil {
			i = s.extendIndex(s.expr(low), panicslice)
		}
		if high != nil {
			j = s.extendIndex(s.expr(high), panicslice)
		}
		if max != nil {
			k = s.extendIndex(s.expr(max), panicslice)
		}
		p, l, c := s.slice(n.Left.Type, v, i, j, k)
		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)

	case OSLICESTR:
		v := s.expr(n.Left)
		var i, j *ssa.Value
		low, high, _ := n.SliceBounds()
		if low != nil {
			i = s.extendIndex(s.expr(low), panicslice)
		}
		if high != nil {
			j = s.extendIndex(s.expr(high), panicslice)
		}
		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
		return s.newValue2(ssa.OpStringMake, n.Type, p, l)

	case OCALLFUNC:
		if isIntrinsicCall1(n) {
			return s.intrinsicCall1(n)
		}
		fallthrough

	case OCALLINTER, OCALLMETH:
		a := s.call(n, callNormal)
		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())

	case OGETG:
		return s.newValue1(ssa.OpGetG, n.Type, s.mem())

	case OAPPEND:
		return s.append(n, false)

	default:
		s.Unimplementedf("unhandled expr %s", n.Op)
		return nil
	}
}

// append converts an OAPPEND node to SSA.
// If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
// adds it to s, and returns the Value.
// If inplace is true, it writes the result of the OAPPEND expression n
// back to the slice being appended to, and returns nil.
// inplace MUST be set to false if the slice can be SSA'd.
func (s *state) append(n *Node, inplace bool) *ssa.Value {
	// If inplace is false, process as expression "append(s, e1, e2, e3)":
	//
	// ptr, len, cap := s
	// newlen := len + 3
	// if newlen > cap {
	//     ptr, len, cap = growslice(s, newlen)
	//     newlen = len + 3 // recalculate to avoid a spill
	// }
	// // with write barriers, if needed:
	// *(ptr+len) = e1
	// *(ptr+len+1) = e2
	// *(ptr+len+2) = e3
	// return makeslice(ptr, newlen, cap)
	//
	//
	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
	//
	// a := &s
	// ptr, len, cap := s
	// newlen := len + 3
	// if newlen > cap {
	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
	//    vardef(a)       // if necessary, advise liveness we are writing a new a
	//    *a.cap = newcap // write before ptr to avoid a spill
	//    *a.ptr = newptr // with write barrier
	// }
	// newlen = len + 3 // recalculate to avoid a spill
	// *a.len = newlen
	// // with write barriers, if needed:
	// *(ptr+len) = e1
	// *(ptr+len+1) = e2
	// *(ptr+len+2) = e3

	et := n.Type.Elem()
	pt := Ptrto(et)

	// Evaluate slice
	sn := n.List.First() // the slice node is the first in the list

	var slice, addr *ssa.Value
	if inplace {
		addr, _ = s.addr(sn, false)
		slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
	} else {
		slice = s.expr(sn)
	}

	// Allocate new blocks
	grow := s.f.NewBlock(ssa.BlockPlain)
	assign := s.f.NewBlock(ssa.BlockPlain)

	// Decide if we need to grow
	nargs := int64(n.List.Len() - 1)
	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
	l := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
	c := s.newValue1(ssa.OpSliceCap, Types[TINT], slice)
	nl := s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))

	cmp := s.newValue2(s.ssaOp(OGT, Types[TINT]), Types[TBOOL], nl, c)
	s.vars[&ptrVar] = p

	if !inplace {
		s.vars[&newlenVar] = nl
		s.vars[&capVar] = c
	} else {
		s.vars[&lenVar] = l
	}

	b := s.endBlock()
	b.Kind = ssa.BlockIf
	b.Likely = ssa.BranchUnlikely
	b.SetControl(cmp)
	b.AddEdgeTo(grow)
	b.AddEdgeTo(assign)

	// Call growslice
	s.startBlock(grow)
	taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(n.Type.Elem())}, s.sb)

	r := s.rtcall(growslice, true, []*Type{pt, Types[TINT], Types[TINT]}, taddr, p, l, c, nl)

	if inplace {
		if sn.Op == ONAME {
			// Tell liveness we're about to build a new slice
			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, sn, s.mem())
		}
		capaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(Array_cap), addr)
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capaddr, r[2], s.mem())
		s.insertWBstore(pt, addr, r[0], n.Lineno, 0)
		// load the value we just stored to avoid having to spill it
		s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
	} else {
		s.vars[&ptrVar] = r[0]
		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], r[1], s.constInt(Types[TINT], nargs))
		s.vars[&capVar] = r[2]
	}

	b = s.endBlock()
	b.AddEdgeTo(assign)

	// assign new elements to slots
	s.startBlock(assign)

	if inplace {
		l = s.variable(&lenVar, Types[TINT]) // generates phi for len
		nl = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
		lenaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(Array_nel), addr)
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenaddr, nl, s.mem())
	}

	// Evaluate args
	type argRec struct {
		// if store is true, we're appending the value v.  If false, we're appending the
		// value at *v.  If store==false, isVolatile reports whether the source
		// is in the outargs section of the stack frame.
		v          *ssa.Value
		store      bool
		isVolatile bool
	}
	args := make([]argRec, 0, nargs)
	for _, n := range n.List.Slice()[1:] {
		if canSSAType(n.Type) {
			args = append(args, argRec{v: s.expr(n), store: true})
		} else {
			v, isVolatile := s.addr(n, false)
			args = append(args, argRec{v: v, isVolatile: isVolatile})
		}
	}

	p = s.variable(&ptrVar, pt) // generates phi for ptr
	if !inplace {
		nl = s.variable(&newlenVar, Types[TINT]) // generates phi for nl
		c = s.variable(&capVar, Types[TINT])     // generates phi for cap
	}
	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
	// TODO: just one write barrier call for all of these writes?
	// TODO: maybe just one writeBarrier.enabled check?
	for i, arg := range args {
		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(Types[TINT], int64(i)))
		if arg.store {
			if haspointers(et) {
				s.insertWBstore(et, addr, arg.v, n.Lineno, 0)
			} else {
				s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, et.Size(), addr, arg.v, s.mem())
			}
		} else {
			if haspointers(et) {
				s.insertWBmove(et, addr, arg.v, n.Lineno, arg.isVolatile)
			} else {
				s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(et), addr, arg.v, s.mem())
			}
		}
	}

	delete(s.vars, &ptrVar)
	if inplace {
		delete(s.vars, &lenVar)
		return nil
	}
	delete(s.vars, &newlenVar)
	delete(s.vars, &capVar)
	// make result
	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
}

// condBranch evaluates the boolean expression cond and branches to yes
// if cond is true and no if cond is false.
// This function is intended to handle && and || better than just calling
// s.expr(cond) and branching on the result.
func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
	if cond.Op == OANDAND {
		mid := s.f.NewBlock(ssa.BlockPlain)
		s.stmtList(cond.Ninit)
		s.condBranch(cond.Left, mid, no, max8(likely, 0))
		s.startBlock(mid)
		s.condBranch(cond.Right, yes, no, likely)
		return
		// Note: if likely==1, then both recursive calls pass 1.
		// If likely==-1, then we don't have enough information to decide
		// whether the first branch is likely or not. So we pass 0 for
		// the likeliness of the first branch.
		// TODO: have the frontend give us branch prediction hints for
		// OANDAND and OOROR nodes (if it ever has such info).
	}
	if cond.Op == OOROR {
		mid := s.f.NewBlock(ssa.BlockPlain)
		s.stmtList(cond.Ninit)
		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
		s.startBlock(mid)
		s.condBranch(cond.Right, yes, no, likely)
		return
		// Note: if likely==-1, then both recursive calls pass -1.
		// If likely==1, then we don't have enough info to decide
		// the likelihood of the first branch.
	}
	if cond.Op == ONOT {
		s.stmtList(cond.Ninit)
		s.condBranch(cond.Left, no, yes, -likely)
		return
	}
	c := s.expr(cond)
	b := s.endBlock()
	b.Kind = ssa.BlockIf
	b.SetControl(c)
	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
	b.AddEdgeTo(yes)
	b.AddEdgeTo(no)
}

type skipMask uint8

const (
	skipPtr skipMask = 1 << iota
	skipLen
	skipCap
)

// assign does left = right.
// Right has already been evaluated to ssa, left has not.
// If deref is true, then we do left = *right instead (and right has already been nil-checked).
// If deref is true and right == nil, just do left = 0.
// If deref is true, rightIsVolatile reports whether right points to volatile (clobbered by a call) storage.
// Include a write barrier if wb is true.
// skip indicates assignments (at the top level) that can be avoided.
func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32, skip skipMask, rightIsVolatile bool) {
	if left.Op == ONAME && isblank(left) {
		return
	}
	t := left.Type
	dowidth(t)
	if s.canSSA(left) {
		if deref {
			s.Fatalf("can SSA LHS %s but not RHS %s", left, right)
		}
		if left.Op == ODOT {
			// We're assigning to a field of an ssa-able value.
			// We need to build a new structure with the new value for the
			// field we're assigning and the old values for the other fields.
			// For instance:
			//   type T struct {a, b, c int}
			//   var T x
			//   x.b = 5
			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}

			// Grab information about the structure type.
			t := left.Left.Type
			nf := t.NumFields()
			idx := fieldIdx(left)

			// Grab old value of structure.
			old := s.expr(left.Left)

			// Make new structure.
			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)

			// Add fields as args.
			for i := 0; i < nf; i++ {
				if i == idx {
					new.AddArg(right)
				} else {
					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
				}
			}

			// Recursively assign the new value we've made to the base of the dot op.
			s.assign(left.Left, new, false, false, line, 0, rightIsVolatile)
			// TODO: do we need to update named values here?
			return
		}
		// Update variable assignment.
		s.vars[left] = right
		s.addNamedValue(left, right)
		return
	}
	// Left is not ssa-able. Compute its address.
	addr, _ := s.addr(left, false)
	if left.Op == ONAME && skip == 0 {
		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem())
	}
	if deref {
		// Treat as a mem->mem move.
		if right == nil {
			s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, SizeAlignAuxInt(t), addr, s.mem())
			return
		}
		if wb {
			s.insertWBmove(t, addr, right, line, rightIsVolatile)
			return
		}
		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), addr, right, s.mem())
		return
	}
	// Treat as a store.
	if wb {
		if skip&skipPtr != 0 {
			// Special case: if we don't write back the pointers, don't bother
			// doing the write barrier check.
			s.storeTypeScalars(t, addr, right, skip)
			return
		}
		s.insertWBstore(t, addr, right, line, skip)
		return
	}
	if skip != 0 {
		if skip&skipPtr == 0 {
			s.storeTypePtrs(t, addr, right)
		}
		s.storeTypeScalars(t, addr, right, skip)
		return
	}
	s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem())
}

// zeroVal returns the zero value for type t.
func (s *state) zeroVal(t *Type) *ssa.Value {
	switch {
	case t.IsInteger():
		switch t.Size() {
		case 1:
			return s.constInt8(t, 0)
		case 2:
			return s.constInt16(t, 0)
		case 4:
			return s.constInt32(t, 0)
		case 8:
			return s.constInt64(t, 0)
		default:
			s.Fatalf("bad sized integer type %s", t)
		}
	case t.IsFloat():
		switch t.Size() {
		case 4:
			return s.constFloat32(t, 0)
		case 8:
			return s.constFloat64(t, 0)
		default:
			s.Fatalf("bad sized float type %s", t)
		}
	case t.IsComplex():
		switch t.Size() {
		case 8:
			z := s.constFloat32(Types[TFLOAT32], 0)
			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
		case 16:
			z := s.constFloat64(Types[TFLOAT64], 0)
			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
		default:
			s.Fatalf("bad sized complex type %s", t)
		}

	case t.IsString():
		return s.constEmptyString(t)
	case t.IsPtrShaped():
		return s.constNil(t)
	case t.IsBoolean():
		return s.constBool(false)
	case t.IsInterface():
		return s.constInterface(t)
	case t.IsSlice():
		return s.constSlice(t)
	case t.IsStruct():
		n := t.NumFields()
		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
		for i := 0; i < n; i++ {
			v.AddArg(s.zeroVal(t.FieldType(i).(*Type)))
		}
		return v
	}
	s.Unimplementedf("zero for type %v not implemented", t)
	return nil
}

type callKind int8

const (
	callNormal callKind = iota
	callDefer
	callGo
)

// isSSAIntrinsic1 returns true if n is a call to a recognized 1-arg intrinsic
// that can be handled by the SSA backend.
// SSA uses this, but so does the front end to see if should not
// inline a function because it is a candidate for intrinsic
// substitution.
func isSSAIntrinsic1(s *Sym) bool {
	// The test below is not quite accurate -- in the event that
	// a function is disabled on a per-function basis, for example
	// because of hash-keyed binary failure search, SSA might be
	// disabled for that function but it would not be noted here,
	// and thus an inlining would not occur (in practice, inlining
	// so far has only been noticed for Bswap32 and the 16-bit count
	// leading/trailing instructions, but heuristics might change
	// in the future or on different architectures).
	if !ssaEnabled || ssa.IntrinsicsDisable || Thearch.LinkArch.Family != sys.AMD64 {
		return false
	}
	if s != nil && s.Pkg != nil && s.Pkg.Path == "runtime/internal/sys" {
		switch s.Name {
		case
			"Ctz64", "Ctz32", "Ctz16",
			"Bswap64", "Bswap32":
			return true
		}
	}
	return false
}

func isIntrinsicCall1(n *Node) bool {
	if n == nil || n.Left == nil {
		return false
	}
	return isSSAIntrinsic1(n.Left.Sym)
}

// intrinsicFirstArg extracts arg from n.List and eval
func (s *state) intrinsicFirstArg(n *Node) *ssa.Value {
	x := n.List.First()
	if x.Op == OAS {
		x = x.Right
	}
	return s.expr(x)
}

// intrinsicCall1 converts a call to a recognized 1-arg intrinsic
// into the intrinsic
func (s *state) intrinsicCall1(n *Node) *ssa.Value {
	var result *ssa.Value
	switch n.Left.Sym.Name {
	case "Ctz64":
		result = s.newValue1(ssa.OpCtz64, Types[TUINT64], s.intrinsicFirstArg(n))
	case "Ctz32":
		result = s.newValue1(ssa.OpCtz32, Types[TUINT32], s.intrinsicFirstArg(n))
	case "Ctz16":
		result = s.newValue1(ssa.OpCtz16, Types[TUINT16], s.intrinsicFirstArg(n))
	case "Bswap64":
		result = s.newValue1(ssa.OpBswap64, Types[TUINT64], s.intrinsicFirstArg(n))
	case "Bswap32":
		result = s.newValue1(ssa.OpBswap32, Types[TUINT32], s.intrinsicFirstArg(n))
	}
	if result == nil {
		Fatalf("Unknown special call: %v", n.Left.Sym)
	}
	if ssa.IntrinsicsDebug > 0 {
		Warnl(n.Lineno, "intrinsic substitution for %v with %s", n.Left.Sym.Name, result.LongString())
	}
	return result
}

// Calls the function n using the specified call type.
// Returns the address of the return value (or nil if none).
func (s *state) call(n *Node, k callKind) *ssa.Value {
	var sym *Sym           // target symbol (if static)
	var closure *ssa.Value // ptr to closure to run (if dynamic)
	var codeptr *ssa.Value // ptr to target code (if dynamic)
	var rcvr *ssa.Value    // receiver to set
	fn := n.Left
	switch n.Op {
	case OCALLFUNC:
		if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC {
			sym = fn.Sym
			break
		}
		closure = s.expr(fn)
	case OCALLMETH:
		if fn.Op != ODOTMETH {
			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
		}
		if k == callNormal {
			sym = fn.Sym
			break
		}
		n2 := newname(fn.Sym)
		n2.Class = PFUNC
		n2.Lineno = fn.Lineno
		closure = s.expr(n2)
		// Note: receiver is already assigned in n.List, so we don't
		// want to set it here.
	case OCALLINTER:
		if fn.Op != ODOTINTER {
			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
		}
		i := s.expr(fn.Left)
		itab := s.newValue1(ssa.OpITab, Types[TUINTPTR], i)
		if k != callNormal {
			s.nilCheck(itab)
		}
		itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab
		itab = s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), itabidx, itab)
		if k == callNormal {
			codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], itab, s.mem())
		} else {
			closure = itab
		}
		rcvr = s.newValue1(ssa.OpIData, Types[TUINTPTR], i)
	}
	dowidth(fn.Type)
	stksize := fn.Type.ArgWidth() // includes receiver

	// Run all argument assignments. The arg slots have already
	// been offset by the appropriate amount (+2*widthptr for go/defer,
	// +widthptr for interface calls).
	// For OCALLMETH, the receiver is set in these statements.
	s.stmtList(n.List)

	// Set receiver (for interface calls)
	if rcvr != nil {
		argStart := Ctxt.FixedFrameSize()
		if k != callNormal {
			argStart += int64(2 * Widthptr)
		}
		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), argStart, s.sp)
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, rcvr, s.mem())
	}

	// Defer/go args
	if k != callNormal {
		// Write argsize and closure (args to Newproc/Deferproc).
		argStart := Ctxt.FixedFrameSize()
		argsize := s.constInt32(Types[TUINT32], int32(stksize))
		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT32]), argStart, s.sp)
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, addr, argsize, s.mem())
		addr = s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), argStart+int64(Widthptr), s.sp)
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem())
		stksize += 2 * int64(Widthptr)
	}

	// call target
	bNext := s.f.NewBlock(ssa.BlockPlain)
	var call *ssa.Value
	switch {
	case k == callDefer:
		call = s.newValue1(ssa.OpDeferCall, ssa.TypeMem, s.mem())
	case k == callGo:
		call = s.newValue1(ssa.OpGoCall, ssa.TypeMem, s.mem())
	case closure != nil:
		codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem())
		call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem())
	case codeptr != nil:
		call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem())
	case sym != nil:
		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, sym, s.mem())
	default:
		Fatalf("bad call type %s %v", n.Op, n)
	}
	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them

	// Finish call block
	s.vars[&memVar] = call
	b := s.endBlock()
	b.Kind = ssa.BlockCall
	b.SetControl(call)
	b.AddEdgeTo(bNext)
	if k == callDefer {
		// Add recover edge to exit code.
		b.Kind = ssa.BlockDefer
		r := s.f.NewBlock(ssa.BlockPlain)
		s.startBlock(r)
		s.exit()
		b.AddEdgeTo(r)
		b.Likely = ssa.BranchLikely
	}

	// Start exit block, find address of result.
	s.startBlock(bNext)
	// Keep input pointer args live across calls.  This is a bandaid until 1.8.
	for _, n := range s.ptrargs {
		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
	}
	res := n.Left.Type.Results()
	if res.NumFields() == 0 || k != callNormal {
		// call has no return value. Continue with the next statement.
		return nil
	}
	fp := res.Field(0)
	return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(fp.Type), fp.Offset+Ctxt.FixedFrameSize(), s.sp)
}

// etypesign returns the signed-ness of e, for integer/pointer etypes.
// -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
func etypesign(e EType) int8 {
	switch e {
	case TINT8, TINT16, TINT32, TINT64, TINT:
		return -1
	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
		return +1
	}
	return 0
}

// lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node.
// This improves the effectiveness of cse by using the same Aux values for the
// same symbols.
func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} {
	switch sym.(type) {
	default:
		s.Fatalf("sym %v is of uknown type %T", sym, sym)
	case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol:
		// these are the only valid types
	}

	if lsym, ok := s.varsyms[n]; ok {
		return lsym
	} else {
		s.varsyms[n] = sym
		return sym
	}
}

// addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
// Also returns a bool reporting whether the returned value is "volatile", that is it
// points to the outargs section and thus the referent will be clobbered by any call.
// The value that the returned Value represents is guaranteed to be non-nil.
// If bounded is true then this address does not require a nil check for its operand
// even if that would otherwise be implied.
func (s *state) addr(n *Node, bounded bool) (*ssa.Value, bool) {
	t := Ptrto(n.Type)
	switch n.Op {
	case ONAME:
		switch n.Class {
		case PEXTERN:
			// global variable
			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Sym})
			v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb)
			// TODO: Make OpAddr use AuxInt as well as Aux.
			if n.Xoffset != 0 {
				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
			}
			return v, false
		case PPARAM:
			// parameter slot
			v := s.decladdrs[n]
			if v != nil {
				return v, false
			}
			if n.String() == ".fp" {
				// Special arg that points to the frame pointer.
				// (Used by the race detector, others?)
				aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
				return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp), false
			}
			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
			return nil, false
		case PAUTO:
			aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n})
			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
			// ensure that we reuse symbols for out parameters so
			// that cse works on their addresses
			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
		default:
			s.Unimplementedf("variable address class %v not implemented", classnames[n.Class])
			return nil, false
		}
	case OINDREG:
		// indirect off a register
		// used for storing/loading arguments/returns to/from callees
		if int(n.Reg) != Thearch.REGSP {
			s.Unimplementedf("OINDREG of non-SP register %s in addr: %v", obj.Rconv(int(n.Reg)), n)
			return nil, false
		}
		return s.entryNewValue1I(ssa.OpOffPtr, t, n.Xoffset, s.sp), true
	case OINDEX:
		if n.Left.Type.IsSlice() {
			a := s.expr(n.Left)
			i := s.expr(n.Right)
			i = s.extendIndex(i, Panicindex)
			len := s.newValue1(ssa.OpSliceLen, Types[TINT], a)
			if !n.Bounded {
				s.boundsCheck(i, len)
			}
			p := s.newValue1(ssa.OpSlicePtr, t, a)
			return s.newValue2(ssa.OpPtrIndex, t, p, i), false
		} else { // array
			a, isVolatile := s.addr(n.Left, bounded)
			i := s.expr(n.Right)
			i = s.extendIndex(i, Panicindex)
			len := s.constInt(Types[TINT], n.Left.Type.NumElem())
			if !n.Bounded {
				s.boundsCheck(i, len)
			}
			return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Elem()), a, i), isVolatile
		}
	case OIND:
		return s.exprPtr(n.Left, bounded, n.Lineno), false
	case ODOT:
		p, isVolatile := s.addr(n.Left, bounded)
		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), isVolatile
	case ODOTPTR:
		p := s.exprPtr(n.Left, bounded, n.Lineno)
		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), false
	case OCLOSUREVAR:
		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
			s.entryNewValue0(ssa.OpGetClosurePtr, Ptrto(Types[TUINT8]))), false
	case OCONVNOP:
		addr, isVolatile := s.addr(n.Left, bounded)
		return s.newValue1(ssa.OpCopy, t, addr), isVolatile // ensure that addr has the right type
	case OCALLFUNC, OCALLINTER, OCALLMETH:
		return s.call(n, callNormal), true

	default:
		s.Unimplementedf("unhandled addr %v", n.Op)
		return nil, false
	}
}

// canSSA reports whether n is SSA-able.
// n must be an ONAME (or an ODOT sequence with an ONAME base).
func (s *state) canSSA(n *Node) bool {
	if Debug['N'] != 0 {
		return false
	}
	for n.Op == ODOT {
		n = n.Left
	}
	if n.Op != ONAME {
		return false
	}
	if n.Addrtaken {
		return false
	}
	if n.isParamHeapCopy() {
		return false
	}
	if n.Class == PAUTOHEAP {
		Fatalf("canSSA of PAUTOHEAP %v", n)
	}
	switch n.Class {
	case PEXTERN:
		return false
	case PPARAMOUT:
		if hasdefer {
			// TODO: handle this case?  Named return values must be
			// in memory so that the deferred function can see them.
			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
			return false
		}
		if s.cgoUnsafeArgs {
			// Cgo effectively takes the address of all result args,
			// but the compiler can't see that.
			return false
		}
	}
	if n.Class == PPARAM && n.String() == ".this" {
		// wrappers generated by genwrapper need to update
		// the .this pointer in place.
		// TODO: treat as a PPARMOUT?
		return false
	}
	return canSSAType(n.Type)
	// TODO: try to make more variables SSAable?
}

// canSSA reports whether variables of type t are SSA-able.
func canSSAType(t *Type) bool {
	dowidth(t)
	if t.Width > int64(4*Widthptr) {
		// 4*Widthptr is an arbitrary constant. We want it
		// to be at least 3*Widthptr so slices can be registerized.
		// Too big and we'll introduce too much register pressure.
		return false
	}
	switch t.Etype {
	case TARRAY:
		// We can't do arrays because dynamic indexing is
		// not supported on SSA variables.
		// TODO: maybe allow if length is <=1?  All indexes
		// are constant?  Might be good for the arrays
		// introduced by the compiler for variadic functions.
		return false
	case TSTRUCT:
		if t.NumFields() > ssa.MaxStruct {
			return false
		}
		for _, t1 := range t.Fields().Slice() {
			if !canSSAType(t1.Type) {
				return false
			}
		}
		return true
	default:
		return true
	}
}

// exprPtr evaluates n to a pointer and nil-checks it.
func (s *state) exprPtr(n *Node, bounded bool, lineno int32) *ssa.Value {
	p := s.expr(n)
	if bounded || n.NonNil {
		if s.f.Config.Debug_checknil() && lineno > 1 {
			s.f.Config.Warnl(lineno, "removed nil check")
		}
		return p
	}
	s.nilCheck(p)
	return p
}

// nilCheck generates nil pointer checking code.
// Starts a new block on return, unless nil checks are disabled.
// Used only for automatically inserted nil checks,
// not for user code like 'x != nil'.
func (s *state) nilCheck(ptr *ssa.Value) {
	if Disable_checknil != 0 {
		return
	}
	chk := s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem())
	b := s.endBlock()
	b.Kind = ssa.BlockCheck
	b.SetControl(chk)
	bNext := s.f.NewBlock(ssa.BlockPlain)
	b.AddEdgeTo(bNext)
	s.startBlock(bNext)
}

// boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
// Starts a new block on return.
// idx is already converted to full int width.
func (s *state) boundsCheck(idx, len *ssa.Value) {
	if Debug['B'] != 0 {
		return
	}

	// bounds check
	cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len)
	s.check(cmp, Panicindex)
}

// sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
// Starts a new block on return.
// idx and len are already converted to full int width.
func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
	if Debug['B'] != 0 {
		return
	}

	// bounds check
	cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len)
	s.check(cmp, panicslice)
}

// If cmp (a bool) is false, panic using the given function.
func (s *state) check(cmp *ssa.Value, fn *Node) {
	b := s.endBlock()
	b.Kind = ssa.BlockIf
	b.SetControl(cmp)
	b.Likely = ssa.BranchLikely
	bNext := s.f.NewBlock(ssa.BlockPlain)
	line := s.peekLine()
	bPanic := s.panics[funcLine{fn, line}]
	if bPanic == nil {
		bPanic = s.f.NewBlock(ssa.BlockPlain)
		s.panics[funcLine{fn, line}] = bPanic
		s.startBlock(bPanic)
		// The panic call takes/returns memory to ensure that the right
		// memory state is observed if the panic happens.
		s.rtcall(fn, false, nil)
	}
	b.AddEdgeTo(bNext)
	b.AddEdgeTo(bPanic)
	s.startBlock(bNext)
}

// rtcall issues a call to the given runtime function fn with the listed args.
// Returns a slice of results of the given result types.
// The call is added to the end of the current block.
// If returns is false, the block is marked as an exit block.
// If returns is true, the block is marked as a call block. A new block
// is started to load the return values.
func (s *state) rtcall(fn *Node, returns bool, results []*Type, args ...*ssa.Value) []*ssa.Value {
	// Write args to the stack
	off := Ctxt.FixedFrameSize()
	for _, arg := range args {
		t := arg.Type
		off = Rnd(off, t.Alignment())
		ptr := s.sp
		if off != 0 {
			ptr = s.newValue1I(ssa.OpOffPtr, t.PtrTo(), off, s.sp)
		}
		size := t.Size()
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, size, ptr, arg, s.mem())
		off += size
	}
	off = Rnd(off, int64(Widthptr))
	if Thearch.LinkArch.Name == "amd64p32" {
		// amd64p32 wants 8-byte alignment of the start of the return values.
		off = Rnd(off, 8)
	}

	// Issue call
	call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn.Sym, s.mem())
	s.vars[&memVar] = call

	// Finish block
	b := s.endBlock()
	if !returns {
		b.Kind = ssa.BlockExit
		b.SetControl(call)
		call.AuxInt = off - Ctxt.FixedFrameSize()
		if len(results) > 0 {
			Fatalf("panic call can't have results")
		}
		return nil
	}
	b.Kind = ssa.BlockCall
	b.SetControl(call)
	bNext := s.f.NewBlock(ssa.BlockPlain)
	b.AddEdgeTo(bNext)
	s.startBlock(bNext)

	// Keep input pointer args live across calls.  This is a bandaid until 1.8.
	for _, n := range s.ptrargs {
		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
	}

	// Load results
	res := make([]*ssa.Value, len(results))
	for i, t := range results {
		off = Rnd(off, t.Alignment())
		ptr := s.sp
		if off != 0 {
			ptr = s.newValue1I(ssa.OpOffPtr, Ptrto(t), off, s.sp)
		}
		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
		off += t.Size()
	}
	off = Rnd(off, int64(Widthptr))

	// Remember how much callee stack space we needed.
	call.AuxInt = off

	return res
}

// insertWBmove inserts the assignment *left = *right including a write barrier.
// t is the type being assigned.
func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32, rightIsVolatile bool) {
	// if writeBarrier.enabled {
	//   typedmemmove(&t, left, right)
	// } else {
	//   *left = *right
	// }

	if s.noWB {
		s.Fatalf("write barrier prohibited")
	}
	if s.WBLineno == 0 {
		s.WBLineno = left.Line
	}
	bThen := s.f.NewBlock(ssa.BlockPlain)
	bElse := s.f.NewBlock(ssa.BlockPlain)
	bEnd := s.f.NewBlock(ssa.BlockPlain)

	aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym}
	flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb)
	// Load word, test word, avoiding partial register write from load byte.
	flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
	flag = s.newValue2(ssa.OpNeq32, Types[TBOOL], flag, s.constInt32(Types[TUINT32], 0))
	b := s.endBlock()
	b.Kind = ssa.BlockIf
	b.Likely = ssa.BranchUnlikely
	b.SetControl(flag)
	b.AddEdgeTo(bThen)
	b.AddEdgeTo(bElse)

	s.startBlock(bThen)

	if !rightIsVolatile {
		// Issue typedmemmove call.
		taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb)
		s.rtcall(typedmemmove, true, nil, taddr, left, right)
	} else {
		// Copy to temp location if the source is volatile (will be clobbered by
		// a function call).  Marshaling the args to typedmemmove might clobber the
		// value we're trying to move.
		tmp := temp(t)
		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, tmp, s.mem())
		tmpaddr, _ := s.addr(tmp, true)
		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), tmpaddr, right, s.mem())
		// Issue typedmemmove call.
		taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb)
		s.rtcall(typedmemmove, true, nil, taddr, left, tmpaddr)
		// Mark temp as dead.
		s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, tmp, s.mem())
	}
	s.endBlock().AddEdgeTo(bEnd)

	s.startBlock(bElse)
	s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), left, right, s.mem())
	s.endBlock().AddEdgeTo(bEnd)

	s.startBlock(bEnd)

	if Debug_wb > 0 {
		Warnl(line, "write barrier")
	}
}

// insertWBstore inserts the assignment *left = right including a write barrier.
// t is the type being assigned.
func (s *state) insertWBstore(t *Type, left, right *ssa.Value, line int32, skip skipMask) {
	// store scalar fields
	// if writeBarrier.enabled {
	//   writebarrierptr for pointer fields
	// } else {
	//   store pointer fields
	// }

	if s.noWB {
		s.Fatalf("write barrier prohibited")
	}
	if s.WBLineno == 0 {
		s.WBLineno = left.Line
	}
	s.storeTypeScalars(t, left, right, skip)

	bThen := s.f.NewBlock(ssa.BlockPlain)
	bElse := s.f.NewBlock(ssa.BlockPlain)
	bEnd := s.f.NewBlock(ssa.BlockPlain)

	aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym}
	flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb)
	// Load word, test word, avoiding partial register write from load byte.
	flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
	flag = s.newValue2(ssa.OpNeq32, Types[TBOOL], flag, s.constInt32(Types[TUINT32], 0))
	b := s.endBlock()
	b.Kind = ssa.BlockIf
	b.Likely = ssa.BranchUnlikely
	b.SetControl(flag)
	b.AddEdgeTo(bThen)
	b.AddEdgeTo(bElse)

	// Issue write barriers for pointer writes.
	s.startBlock(bThen)
	s.storeTypePtrsWB(t, left, right)
	s.endBlock().AddEdgeTo(bEnd)

	// Issue regular stores for pointer writes.
	s.startBlock(bElse)
	s.storeTypePtrs(t, left, right)
	s.endBlock().AddEdgeTo(bEnd)

	s.startBlock(bEnd)

	if Debug_wb > 0 {
		Warnl(line, "write barrier")
	}
}

// do *left = right for all scalar (non-pointer) parts of t.
func (s *state) storeTypeScalars(t *Type, left, right *ssa.Value, skip skipMask) {
	switch {
	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), left, right, s.mem())
	case t.IsPtrShaped():
		// no scalar fields.
	case t.IsString():
		if skip&skipLen != 0 {
			return
		}
		len := s.newValue1(ssa.OpStringLen, Types[TINT], right)
		lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left)
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
	case t.IsSlice():
		if skip&skipLen == 0 {
			len := s.newValue1(ssa.OpSliceLen, Types[TINT], right)
			lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left)
			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
		}
		if skip&skipCap == 0 {
			cap := s.newValue1(ssa.OpSliceCap, Types[TINT], right)
			capAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), 2*s.config.IntSize, left)
			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capAddr, cap, s.mem())
		}
	case t.IsInterface():
		// itab field doesn't need a write barrier (even though it is a pointer).
		itab := s.newValue1(ssa.OpITab, Ptrto(Types[TUINT8]), right)
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, left, itab, s.mem())
	case t.IsStruct():
		n := t.NumFields()
		for i := 0; i < n; i++ {
			ft := t.FieldType(i)
			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
			s.storeTypeScalars(ft.(*Type), addr, val, 0)
		}
	default:
		s.Fatalf("bad write barrier type %s", t)
	}
}

// do *left = right for all pointer parts of t.
func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) {
	switch {
	case t.IsPtrShaped():
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
	case t.IsString():
		ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right)
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
	case t.IsSlice():
		ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right)
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
	case t.IsInterface():
		// itab field is treated as a scalar.
		idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right)
		idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left)
		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
	case t.IsStruct():
		n := t.NumFields()
		for i := 0; i < n; i++ {
			ft := t.FieldType(i)
			if !haspointers(ft.(*Type)) {
				continue
			}
			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
			s.storeTypePtrs(ft.(*Type), addr, val)
		}
	default:
		s.Fatalf("bad write barrier type %s", t)
	}
}

// do *left = right with a write barrier for all pointer parts of t.
func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) {
	switch {
	case t.IsPtrShaped():
		s.rtcall(writebarrierptr, true, nil, left, right)
	case t.IsString():
		ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right)
		s.rtcall(writebarrierptr, true, nil, left, ptr)
	case t.IsSlice():
		ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right)
		s.rtcall(writebarrierptr, true, nil, left, ptr)
	case t.IsInterface():
		idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right)
		idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left)
		s.rtcall(writebarrierptr, true, nil, idataAddr, idata)
	case t.IsStruct():
		n := t.NumFields()
		for i := 0; i < n; i++ {
			ft := t.FieldType(i)
			if !haspointers(ft.(*Type)) {
				continue
			}
			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
			s.storeTypePtrsWB(ft.(*Type), addr, val)
		}
	default:
		s.Fatalf("bad write barrier type %s", t)
	}
}

// slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
// i,j,k may be nil, in which case they are set to their default value.
// t is a slice, ptr to array, or string type.
func (s *state) slice(t *Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
	var elemtype *Type
	var ptrtype *Type
	var ptr *ssa.Value
	var len *ssa.Value
	var cap *ssa.Value
	zero := s.constInt(Types[TINT], 0)
	switch {
	case t.IsSlice():
		elemtype = t.Elem()
		ptrtype = Ptrto(elemtype)
		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
		len = s.newValue1(ssa.OpSliceLen, Types[TINT], v)
		cap = s.newValue1(ssa.OpSliceCap, Types[TINT], v)
	case t.IsString():
		elemtype = Types[TUINT8]
		ptrtype = Ptrto(elemtype)
		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
		len = s.newValue1(ssa.OpStringLen, Types[TINT], v)
		cap = len
	case t.IsPtr():
		if !t.Elem().IsArray() {
			s.Fatalf("bad ptr to array in slice %v\n", t)
		}
		elemtype = t.Elem().Elem()
		ptrtype = Ptrto(elemtype)
		s.nilCheck(v)
		ptr = v
		len = s.constInt(Types[TINT], t.Elem().NumElem())
		cap = len
	default:
		s.Fatalf("bad type in slice %v\n", t)
	}

	// Set default values
	if i == nil {
		i = zero
	}
	if j == nil {
		j = len
	}
	if k == nil {
		k = cap
	}

	// Panic if slice indices are not in bounds.
	s.sliceBoundsCheck(i, j)
	if j != k {
		s.sliceBoundsCheck(j, k)
	}
	if k != cap {
		s.sliceBoundsCheck(k, cap)
	}

	// Generate the following code assuming that indexes are in bounds.
	// The conditional is to make sure that we don't generate a slice
	// that points to the next object in memory.
	// rlen = j-i
	// rcap = k-i
	// delta = i*elemsize
	// if rcap == 0 {
	//    delta = 0
	// }
	// rptr = p+delta
	// result = (SliceMake rptr rlen rcap)
	subOp := s.ssaOp(OSUB, Types[TINT])
	eqOp := s.ssaOp(OEQ, Types[TINT])
	mulOp := s.ssaOp(OMUL, Types[TINT])
	rlen := s.newValue2(subOp, Types[TINT], j, i)
	var rcap *ssa.Value
	switch {
	case t.IsString():
		// Capacity of the result is unimportant. However, we use
		// rcap to test if we've generated a zero-length slice.
		// Use length of strings for that.
		rcap = rlen
	case j == k:
		rcap = rlen
	default:
		rcap = s.newValue2(subOp, Types[TINT], k, i)
	}

	// delta = # of elements to offset pointer by.
	s.vars[&deltaVar] = i

	// Generate code to set delta=0 if the resulting capacity is zero.
	if !((i.Op == ssa.OpConst64 && i.AuxInt == 0) ||
		(i.Op == ssa.OpConst32 && int32(i.AuxInt) == 0)) {
		cmp := s.newValue2(eqOp, Types[TBOOL], rcap, zero)

		b := s.endBlock()
		b.Kind = ssa.BlockIf
		b.Likely = ssa.BranchUnlikely
		b.SetControl(cmp)

		// Generate block which zeros the delta variable.
		nz := s.f.NewBlock(ssa.BlockPlain)
		b.AddEdgeTo(nz)
		s.startBlock(nz)
		s.vars[&deltaVar] = zero
		s.endBlock()

		// All done.
		merge := s.f.NewBlock(ssa.BlockPlain)
		b.AddEdgeTo(merge)
		nz.AddEdgeTo(merge)
		s.startBlock(merge)

		// TODO: use conditional moves somehow?
	}

	// Compute rptr = ptr + delta * elemsize
	rptr := s.newValue2(ssa.OpAddPtr, ptrtype, ptr, s.newValue2(mulOp, Types[TINT], s.variable(&deltaVar, Types[TINT]), s.constInt(Types[TINT], elemtype.Width)))
	delete(s.vars, &deltaVar)
	return rptr, rlen, rcap
}

type u2fcvtTab struct {
	geq, cvt2F, and, rsh, or, add ssa.Op
	one                           func(*state, ssa.Type, int64) *ssa.Value
}

var u64_f64 u2fcvtTab = u2fcvtTab{
	geq:   ssa.OpGeq64,
	cvt2F: ssa.OpCvt64to64F,
	and:   ssa.OpAnd64,
	rsh:   ssa.OpRsh64Ux64,
	or:    ssa.OpOr64,
	add:   ssa.OpAdd64F,
	one:   (*state).constInt64,
}

var u64_f32 u2fcvtTab = u2fcvtTab{
	geq:   ssa.OpGeq64,
	cvt2F: ssa.OpCvt64to32F,
	and:   ssa.OpAnd64,
	rsh:   ssa.OpRsh64Ux64,
	or:    ssa.OpOr64,
	add:   ssa.OpAdd32F,
	one:   (*state).constInt64,
}

// Excess generality on a machine with 64-bit integer registers.
// Not used on AMD64.
var u32_f32 u2fcvtTab = u2fcvtTab{
	geq:   ssa.OpGeq32,
	cvt2F: ssa.OpCvt32to32F,
	and:   ssa.OpAnd32,
	rsh:   ssa.OpRsh32Ux32,
	or:    ssa.OpOr32,
	add:   ssa.OpAdd32F,
	one: func(s *state, t ssa.Type, x int64) *ssa.Value {
		return s.constInt32(t, int32(x))
	},
}

func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
	return s.uintTofloat(&u64_f64, n, x, ft, tt)
}

func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
	return s.uintTofloat(&u64_f32, n, x, ft, tt)
}

func (s *state) uintTofloat(cvttab *u2fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
	// if x >= 0 {
	//    result = (floatY) x
	// } else {
	// 	  y = uintX(x) ; y = x & 1
	// 	  z = uintX(x) ; z = z >> 1
	// 	  z = z >> 1
	// 	  z = z | y
	// 	  result = floatY(z)
	// 	  result = result + result
	// }
	//
	// Code borrowed from old code generator.
	// What's going on: large 64-bit "unsigned" looks like
	// negative number to hardware's integer-to-float
	// conversion. However, because the mantissa is only
	// 63 bits, we don't need the LSB, so instead we do an
	// unsigned right shift (divide by two), convert, and
	// double. However, before we do that, we need to be
	// sure that we do not lose a "1" if that made the
	// difference in the resulting rounding. Therefore, we
	// preserve it, and OR (not ADD) it back in. The case
	// that matters is when the eleven discarded bits are
	// equal to 10000000001; that rounds up, and the 1 cannot
	// be lost else it would round down if the LSB of the
	// candidate mantissa is 0.
	cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft))
	b := s.endBlock()
	b.Kind = ssa.BlockIf
	b.SetControl(cmp)
	b.Likely = ssa.BranchLikely

	bThen := s.f.NewBlock(ssa.BlockPlain)
	bElse := s.f.NewBlock(ssa.BlockPlain)
	bAfter := s.f.NewBlock(ssa.BlockPlain)

	b.AddEdgeTo(bThen)
	s.startBlock(bThen)
	a0 := s.newValue1(cvttab.cvt2F, tt, x)
	s.vars[n] = a0
	s.endBlock()
	bThen.AddEdgeTo(bAfter)

	b.AddEdgeTo(bElse)
	s.startBlock(bElse)
	one := cvttab.one(s, ft, 1)
	y := s.newValue2(cvttab.and, ft, x, one)
	z := s.newValue2(cvttab.rsh, ft, x, one)
	z = s.newValue2(cvttab.or, ft, z, y)
	a := s.newValue1(cvttab.cvt2F, tt, z)
	a1 := s.newValue2(cvttab.add, tt, a, a)
	s.vars[n] = a1
	s.endBlock()
	bElse.AddEdgeTo(bAfter)

	s.startBlock(bAfter)
	return s.variable(n, n.Type)
}

// referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
		s.Fatalf("node must be a map or a channel")
	}
	// if n == nil {
	//   return 0
	// } else {
	//   // len
	//   return *((*int)n)
	//   // cap
	//   return *(((*int)n)+1)
	// }
	lenType := n.Type
	nilValue := s.constNil(Types[TUINTPTR])
	cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue)
	b := s.endBlock()
	b.Kind = ssa.BlockIf
	b.SetControl(cmp)
	b.Likely = ssa.BranchUnlikely

	bThen := s.f.NewBlock(ssa.BlockPlain)
	bElse := s.f.NewBlock(ssa.BlockPlain)
	bAfter := s.f.NewBlock(ssa.BlockPlain)

	// length/capacity of a nil map/chan is zero
	b.AddEdgeTo(bThen)
	s.startBlock(bThen)
	s.vars[n] = s.zeroVal(lenType)
	s.endBlock()
	bThen.AddEdgeTo(bAfter)

	b.AddEdgeTo(bElse)
	s.startBlock(bElse)
	if n.Op == OLEN {
		// length is stored in the first word for map/chan
		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
	} else if n.Op == OCAP {
		// capacity is stored in the second word for chan
		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
	} else {
		s.Fatalf("op must be OLEN or OCAP")
	}
	s.endBlock()
	bElse.AddEdgeTo(bAfter)

	s.startBlock(bAfter)
	return s.variable(n, lenType)
}

type f2uCvtTab struct {
	ltf, cvt2U, subf ssa.Op
	value            func(*state, ssa.Type, float64) *ssa.Value
}

var f32_u64 f2uCvtTab = f2uCvtTab{
	ltf:   ssa.OpLess32F,
	cvt2U: ssa.OpCvt32Fto64,
	subf:  ssa.OpSub32F,
	value: (*state).constFloat32,
}

var f64_u64 f2uCvtTab = f2uCvtTab{
	ltf:   ssa.OpLess64F,
	cvt2U: ssa.OpCvt64Fto64,
	subf:  ssa.OpSub64F,
	value: (*state).constFloat64,
}

func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
	return s.floatToUint(&f32_u64, n, x, ft, tt)
}
func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
	return s.floatToUint(&f64_u64, n, x, ft, tt)
}

func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
	// if x < 9223372036854775808.0 {
	// 	result = uintY(x)
	// } else {
	// 	y = x - 9223372036854775808.0
	// 	z = uintY(y)
	// 	result = z | -9223372036854775808
	// }
	twoToThe63 := cvttab.value(s, ft, 9223372036854775808.0)
	cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, twoToThe63)
	b := s.endBlock()
	b.Kind = ssa.BlockIf
	b.SetControl(cmp)
	b.Likely = ssa.BranchLikely

	bThen := s.f.NewBlock(ssa.BlockPlain)
	bElse := s.f.NewBlock(ssa.BlockPlain)
	bAfter := s.f.NewBlock(ssa.BlockPlain)

	b.AddEdgeTo(bThen)
	s.startBlock(bThen)
	a0 := s.newValue1(cvttab.cvt2U, tt, x)
	s.vars[n] = a0
	s.endBlock()
	bThen.AddEdgeTo(bAfter)

	b.AddEdgeTo(bElse)
	s.startBlock(bElse)
	y := s.newValue2(cvttab.subf, ft, x, twoToThe63)
	y = s.newValue1(cvttab.cvt2U, tt, y)
	z := s.constInt64(tt, -9223372036854775808)
	a1 := s.newValue2(ssa.OpOr64, tt, y, z)
	s.vars[n] = a1
	s.endBlock()
	bElse.AddEdgeTo(bAfter)

	s.startBlock(bAfter)
	return s.variable(n, n.Type)
}

// ifaceType returns the value for the word containing the type.
// n is the node for the interface expression.
// v is the corresponding value.
func (s *state) ifaceType(n *Node, v *ssa.Value) *ssa.Value {
	byteptr := Ptrto(Types[TUINT8]) // type used in runtime prototypes for runtime type (*byte)

	if n.Type.IsEmptyInterface() {
		// Have *eface. The type is the first word in the struct.
		return s.newValue1(ssa.OpITab, byteptr, v)
	}

	// Have *iface.
	// The first word in the struct is the *itab.
	// If the *itab is nil, return 0.
	// Otherwise, the second word in the *itab is the type.

	tab := s.newValue1(ssa.OpITab, byteptr, v)
	s.vars[&typVar] = tab
	isnonnil := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], tab, s.constNil(byteptr))
	b := s.endBlock()
	b.Kind = ssa.BlockIf
	b.SetControl(isnonnil)
	b.Likely = ssa.BranchLikely

	bLoad := s.f.NewBlock(ssa.BlockPlain)
	bEnd := s.f.NewBlock(ssa.BlockPlain)

	b.AddEdgeTo(bLoad)
	b.AddEdgeTo(bEnd)
	bLoad.AddEdgeTo(bEnd)

	s.startBlock(bLoad)
	off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), tab)
	s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
	s.endBlock()

	s.startBlock(bEnd)
	typ := s.variable(&typVar, byteptr)
	delete(s.vars, &typVar)
	return typ
}

// dottype generates SSA for a type assertion node.
// commaok indicates whether to panic or return a bool.
// If commaok is false, resok will be nil.
func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
	iface := s.expr(n.Left)
	typ := s.ifaceType(n.Left, iface)  // actual concrete type
	target := s.expr(typename(n.Type)) // target type
	if !isdirectiface(n.Type) {
		// walk rewrites ODOTTYPE/OAS2DOTTYPE into runtime calls except for this case.
		Fatalf("dottype needs a direct iface type %s", n.Type)
	}

	if Debug_typeassert > 0 {
		Warnl(n.Lineno, "type assertion inlined")
	}

	// TODO:  If we have a nonempty interface and its itab field is nil,
	// then this test is redundant and ifaceType should just branch directly to bFail.
	cond := s.newValue2(ssa.OpEqPtr, Types[TBOOL], typ, target)
	b := s.endBlock()
	b.Kind = ssa.BlockIf
	b.SetControl(cond)
	b.Likely = ssa.BranchLikely

	byteptr := Ptrto(Types[TUINT8])

	bOk := s.f.NewBlock(ssa.BlockPlain)
	bFail := s.f.NewBlock(ssa.BlockPlain)
	b.AddEdgeTo(bOk)
	b.AddEdgeTo(bFail)

	if !commaok {
		// on failure, panic by calling panicdottype
		s.startBlock(bFail)
		taddr := s.newValue1A(ssa.OpAddr, byteptr, &ssa.ExternSymbol{Typ: byteptr, Sym: typenamesym(n.Left.Type)}, s.sb)
		s.rtcall(panicdottype, false, nil, typ, target, taddr)

		// on success, return idata field
		s.startBlock(bOk)
		return s.newValue1(ssa.OpIData, n.Type, iface), nil
	}

	// commaok is the more complicated case because we have
	// a control flow merge point.
	bEnd := s.f.NewBlock(ssa.BlockPlain)

	// type assertion succeeded
	s.startBlock(bOk)
	s.vars[&idataVar] = s.newValue1(ssa.OpIData, n.Type, iface)
	s.vars[&okVar] = s.constBool(true)
	s.endBlock()
	bOk.AddEdgeTo(bEnd)

	// type assertion failed
	s.startBlock(bFail)
	s.vars[&idataVar] = s.constNil(byteptr)
	s.vars[&okVar] = s.constBool(false)
	s.endBlock()
	bFail.AddEdgeTo(bEnd)

	// merge point
	s.startBlock(bEnd)
	res = s.variable(&idataVar, byteptr)
	resok = s.variable(&okVar, Types[TBOOL])
	delete(s.vars, &idataVar)
	delete(s.vars, &okVar)
	return res, resok
}

// checkgoto checks that a goto from from to to does not
// jump into a block or jump over variable declarations.
// It is a copy of checkgoto in the pre-SSA backend,
// modified only for line number handling.
// TODO: document how this works and why it is designed the way it is.
func (s *state) checkgoto(from *Node, to *Node) {
	if from.Sym == to.Sym {
		return
	}

	nf := 0
	for fs := from.Sym; fs != nil; fs = fs.Link {
		nf++
	}
	nt := 0
	for fs := to.Sym; fs != nil; fs = fs.Link {
		nt++
	}
	fs := from.Sym
	for ; nf > nt; nf-- {
		fs = fs.Link
	}
	if fs != to.Sym {
		// decide what to complain about.
		// prefer to complain about 'into block' over declarations,
		// so scan backward to find most recent block or else dcl.
		var block *Sym

		var dcl *Sym
		ts := to.Sym
		for ; nt > nf; nt-- {
			if ts.Pkg == nil {
				block = ts
			} else {
				dcl = ts
			}
			ts = ts.Link
		}

		for ts != fs {
			if ts.Pkg == nil {
				block = ts
			} else {
				dcl = ts
			}
			ts = ts.Link
			fs = fs.Link
		}

		lno := from.Left.Lineno
		if block != nil {
			yyerrorl(lno, "goto %v jumps into block starting at %v", from.Left.Sym, linestr(block.Lastlineno))
		} else {
			yyerrorl(lno, "goto %v jumps over declaration of %v at %v", from.Left.Sym, dcl, linestr(dcl.Lastlineno))
		}
	}
}

// variable returns the value of a variable at the current location.
func (s *state) variable(name *Node, t ssa.Type) *ssa.Value {
	v := s.vars[name]
	if v == nil {
		v = s.newValue0A(ssa.OpFwdRef, t, name)
		s.fwdRefs = append(s.fwdRefs, v)
		s.vars[name] = v
		s.addNamedValue(name, v)
	}
	return v
}

func (s *state) mem() *ssa.Value {
	return s.variable(&memVar, ssa.TypeMem)
}

func (s *state) linkForwardReferences(dm *sparseDefState) {

	// Build SSA graph. Each variable on its first use in a basic block
	// leaves a FwdRef in that block representing the incoming value
	// of that variable. This function links that ref up with possible definitions,
	// inserting Phi values as needed. This is essentially the algorithm
	// described by Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau:
	// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
	// Differences:
	//   - We use FwdRef nodes to postpone phi building until the CFG is
	//     completely built. That way we can avoid the notion of "sealed"
	//     blocks.
	//   - Phi optimization is a separate pass (in ../ssa/phielim.go).
	for len(s.fwdRefs) > 0 {
		v := s.fwdRefs[len(s.fwdRefs)-1]
		s.fwdRefs = s.fwdRefs[:len(s.fwdRefs)-1]
		s.resolveFwdRef(v, dm)
	}
}

// resolveFwdRef modifies v to be the variable's value at the start of its block.
// v must be a FwdRef op.
func (s *state) resolveFwdRef(v *ssa.Value, dm *sparseDefState) {
	b := v.Block
	name := v.Aux.(*Node)
	v.Aux = nil
	if b == s.f.Entry {
		// Live variable at start of function.
		if s.canSSA(name) {
			if strings.HasPrefix(name.Sym.Name, "autotmp_") {
				// It's likely that this is an uninitialized variable in the entry block.
				s.Fatalf("Treating auto as if it were arg, func %s, node %v, value %v", b.Func.Name, name, v)
			}
			v.Op = ssa.OpArg
			v.Aux = name
			return
		}
		// Not SSAable. Load it.
		addr := s.decladdrs[name]
		if addr == nil {
			// TODO: closure args reach here.
			s.Unimplementedf("unhandled closure arg %s at entry to function %s", name, b.Func.Name)
		}
		if _, ok := addr.Aux.(*ssa.ArgSymbol); !ok {
			s.Fatalf("variable live at start of function %s is not an argument %s", b.Func.Name, name)
		}
		v.Op = ssa.OpLoad
		v.AddArgs(addr, s.startmem)
		return
	}
	if len(b.Preds) == 0 {
		// This block is dead; we have no predecessors and we're not the entry block.
		// It doesn't matter what we use here as long as it is well-formed.
		v.Op = ssa.OpUnknown
		return
	}
	// Find variable value on each predecessor.
	var argstore [4]*ssa.Value
	args := argstore[:0]
	for _, e := range b.Preds {
		p := e.Block()
		p = dm.FindBetterDefiningBlock(name, p) // try sparse improvement on p
		args = append(args, s.lookupVarOutgoing(p, v.Type, name, v.Line))
	}

	// Decide if we need a phi or not. We need a phi if there
	// are two different args (which are both not v).
	var w *ssa.Value
	for _, a := range args {
		if a == v {
			continue // self-reference
		}
		if a == w {
			continue // already have this witness
		}
		if w != nil {
			// two witnesses, need a phi value
			v.Op = ssa.OpPhi
			v.AddArgs(args...)
			return
		}
		w = a // save witness
	}
	if w == nil {
		s.Fatalf("no witness for reachable phi %s", v)
	}
	// One witness. Make v a copy of w.
	v.Op = ssa.OpCopy
	v.AddArg(w)
}

// lookupVarOutgoing finds the variable's value at the end of block b.
func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name *Node, line int32) *ssa.Value {
	for {
		if v, ok := s.defvars[b.ID][name]; ok {
			return v
		}
		// The variable is not defined by b and we haven't looked it up yet.
		// If b has exactly one predecessor, loop to look it up there.
		// Otherwise, give up and insert a new FwdRef and resolve it later.
		if len(b.Preds) != 1 {
			break
		}
		b = b.Preds[0].Block()
	}
	// Generate a FwdRef for the variable and return that.
	v := b.NewValue0A(line, ssa.OpFwdRef, t, name)
	s.fwdRefs = append(s.fwdRefs, v)
	s.defvars[b.ID][name] = v
	s.addNamedValue(name, v)
	return v
}

func (s *state) addNamedValue(n *Node, v *ssa.Value) {
	if n.Class == Pxxx {
		// Don't track our dummy nodes (&memVar etc.).
		return
	}
	if strings.HasPrefix(n.Sym.Name, "autotmp_") {
		// Don't track autotmp_ variables.
		return
	}
	if n.Class == PPARAMOUT {
		// Don't track named output values.  This prevents return values
		// from being assigned too early. See #14591 and #14762. TODO: allow this.
		return
	}
	if n.Class == PAUTO && n.Xoffset != 0 {
		s.Fatalf("AUTO var with offset %s %d", n, n.Xoffset)
	}
	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
	values, ok := s.f.NamedValues[loc]
	if !ok {
		s.f.Names = append(s.f.Names, loc)
	}
	s.f.NamedValues[loc] = append(values, v)
}

// Branch is an unresolved branch.
type Branch struct {
	P *obj.Prog  // branch instruction
	B *ssa.Block // target
}

// SSAGenState contains state needed during Prog generation.
type SSAGenState struct {
	// Branches remembers all the branch instructions we've seen
	// and where they would like to go.
	Branches []Branch

	// bstart remembers where each block starts (indexed by block ID)
	bstart []*obj.Prog

	// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
	SSEto387 map[int16]int16
	// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
	ScratchFpMem *Node
}

// Pc returns the current Prog.
func (s *SSAGenState) Pc() *obj.Prog {
	return Pc
}

// SetLineno sets the current source line number.
func (s *SSAGenState) SetLineno(l int32) {
	lineno = l
}

// genssa appends entries to ptxt for each instruction in f.
// gcargs and gclocals are filled in with pointer maps for the frame.
func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) {
	var s SSAGenState

	e := f.Config.Frontend().(*ssaExport)
	// We're about to emit a bunch of Progs.
	// Since the only way to get here is to explicitly request it,
	// just fail on unimplemented instead of trying to unwind our mess.
	e.mustImplement = true

	// Remember where each block starts.
	s.bstart = make([]*obj.Prog, f.NumBlocks())

	var valueProgs map[*obj.Prog]*ssa.Value
	var blockProgs map[*obj.Prog]*ssa.Block
	var logProgs = e.log
	if logProgs {
		valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues())
		blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
		f.Logf("genssa %s\n", f.Name)
		blockProgs[Pc] = f.Blocks[0]
	}

	if Thearch.Use387 {
		s.SSEto387 = map[int16]int16{}
	}
	if f.Config.NeedsFpScratch {
		s.ScratchFpMem = temp(Types[TUINT64])
	}

	// Emit basic blocks
	for i, b := range f.Blocks {
		s.bstart[b.ID] = Pc
		// Emit values in block
		Thearch.SSAMarkMoves(&s, b)
		for _, v := range b.Values {
			x := Pc
			Thearch.SSAGenValue(&s, v)
			if logProgs {
				for ; x != Pc; x = x.Link {
					valueProgs[x] = v
				}
			}
		}
		// Emit control flow instructions for block
		var next *ssa.Block
		if i < len(f.Blocks)-1 && (Debug['N'] == 0 || b.Kind == ssa.BlockCall) {
			// If -N, leave next==nil so every block with successors
			// ends in a JMP (except call blocks - plive doesn't like
			// select{send,recv} followed by a JMP call).  Helps keep
			// line numbers for otherwise empty blocks.
			next = f.Blocks[i+1]
		}
		x := Pc
		Thearch.SSAGenBlock(&s, b, next)
		if logProgs {
			for ; x != Pc; x = x.Link {
				blockProgs[x] = b
			}
		}
	}

	// Resolve branches
	for _, br := range s.Branches {
		br.P.To.Val = s.bstart[br.B.ID]
	}

	if logProgs {
		for p := ptxt; p != nil; p = p.Link {
			var s string
			if v, ok := valueProgs[p]; ok {
				s = v.String()
			} else if b, ok := blockProgs[p]; ok {
				s = b.String()
			} else {
				s = "   " // most value and branch strings are 2-3 characters long
			}
			f.Logf("%s\t%s\n", s, p)
		}
		if f.Config.HTML != nil {
			saved := ptxt.Ctxt.LineHist.PrintFilenameOnly
			ptxt.Ctxt.LineHist.PrintFilenameOnly = true
			var buf bytes.Buffer
			buf.WriteString("<code>")
			buf.WriteString("<dl class=\"ssa-gen\">")
			for p := ptxt; p != nil; p = p.Link {
				buf.WriteString("<dt class=\"ssa-prog-src\">")
				if v, ok := valueProgs[p]; ok {
					buf.WriteString(v.HTML())
				} else if b, ok := blockProgs[p]; ok {
					buf.WriteString(b.HTML())
				}
				buf.WriteString("</dt>")
				buf.WriteString("<dd class=\"ssa-prog\">")
				buf.WriteString(html.EscapeString(p.String()))
				buf.WriteString("</dd>")
				buf.WriteString("</li>")
			}
			buf.WriteString("</dl>")
			buf.WriteString("</code>")
			f.Config.HTML.WriteColumn("genssa", buf.String())
			ptxt.Ctxt.LineHist.PrintFilenameOnly = saved
		}
	}

	// Emit static data
	if f.StaticData != nil {
		for _, n := range f.StaticData.([]*Node) {
			if !gen_as_init(n, false) {
				Fatalf("non-static data marked as static: %v\n\n", n)
			}
		}
	}

	// Allocate stack frame
	allocauto(ptxt)

	// Generate gc bitmaps.
	liveness(Curfn, ptxt, gcargs, gclocals)

	// Add frame prologue. Zero ambiguously live variables.
	Thearch.Defframe(ptxt)
	if Debug['f'] != 0 {
		frame(0)
	}

	// Remove leftover instrumentation from the instruction stream.
	removevardef(ptxt)

	f.Config.HTML.Close()
}

// movZero generates a register indirect move with a 0 immediate and keeps track of bytes left and next offset
func movZero(as obj.As, width int64, nbytes int64, offset int64, regnum int16) (nleft int64, noff int64) {
	p := Prog(as)
	// TODO: use zero register on archs that support it.
	p.From.Type = obj.TYPE_CONST
	p.From.Offset = 0
	p.To.Type = obj.TYPE_MEM
	p.To.Reg = regnum
	p.To.Offset = offset
	offset += width
	nleft = nbytes - width
	return nleft, offset
}

type FloatingEQNEJump struct {
	Jump  obj.As
	Index int
}

func oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump, likely ssa.BranchPrediction, branches []Branch) []Branch {
	p := Prog(jumps.Jump)
	p.To.Type = obj.TYPE_BRANCH
	to := jumps.Index
	branches = append(branches, Branch{p, b.Succs[to].Block()})
	if to == 1 {
		likely = -likely
	}
	// liblink reorders the instruction stream as it sees fit.
	// Pass along what we know so liblink can make use of it.
	// TODO: Once we've fully switched to SSA,
	// make liblink leave our output alone.
	switch likely {
	case ssa.BranchUnlikely:
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = 0
	case ssa.BranchLikely:
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = 1
	}
	return branches
}

func SSAGenFPJump(s *SSAGenState, b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
	likely := b.Likely
	switch next {
	case b.Succs[0].Block():
		s.Branches = oneFPJump(b, &jumps[0][0], likely, s.Branches)
		s.Branches = oneFPJump(b, &jumps[0][1], likely, s.Branches)
	case b.Succs[1].Block():
		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
	default:
		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
		q := Prog(obj.AJMP)
		q.To.Type = obj.TYPE_BRANCH
		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
	}
}

func AuxOffset(v *ssa.Value) (offset int64) {
	if v.Aux == nil {
		return 0
	}
	switch sym := v.Aux.(type) {

	case *ssa.AutoSymbol:
		n := sym.Node.(*Node)
		return n.Xoffset
	}
	return 0
}

// AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
func AddAux(a *obj.Addr, v *ssa.Value) {
	AddAux2(a, v, v.AuxInt)
}
func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
	if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
		v.Fatalf("bad AddAux addr %v", a)
	}
	// add integer offset
	a.Offset += offset

	// If no additional symbol offset, we're done.
	if v.Aux == nil {
		return
	}
	// Add symbol's offset from its base register.
	switch sym := v.Aux.(type) {
	case *ssa.ExternSymbol:
		a.Name = obj.NAME_EXTERN
		switch s := sym.Sym.(type) {
		case *Sym:
			a.Sym = Linksym(s)
		case *obj.LSym:
			a.Sym = s
		default:
			v.Fatalf("ExternSymbol.Sym is %T", s)
		}
	case *ssa.ArgSymbol:
		n := sym.Node.(*Node)
		a.Name = obj.NAME_PARAM
		a.Node = n
		a.Sym = Linksym(n.Orig.Sym)
		a.Offset += n.Xoffset // TODO: why do I have to add this here?  I don't for auto variables.
	case *ssa.AutoSymbol:
		n := sym.Node.(*Node)
		a.Name = obj.NAME_AUTO
		a.Node = n
		a.Sym = Linksym(n.Sym)
	default:
		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
	}
}

// SizeAlignAuxInt returns an AuxInt encoding the size and alignment of type t.
func SizeAlignAuxInt(t *Type) int64 {
	return ssa.MakeSizeAndAlign(t.Size(), t.Alignment()).Int64()
}

// extendIndex extends v to a full int width.
// panic using the given function if v does not fit in an int (only on 32-bit archs).
func (s *state) extendIndex(v *ssa.Value, panicfn *Node) *ssa.Value {
	size := v.Type.Size()
	if size == s.config.IntSize {
		return v
	}
	if size > s.config.IntSize {
		// truncate 64-bit indexes on 32-bit pointer archs. Test the
		// high word and branch to out-of-bounds failure if it is not 0.
		if Debug['B'] == 0 {
			hi := s.newValue1(ssa.OpInt64Hi, Types[TUINT32], v)
			cmp := s.newValue2(ssa.OpEq32, Types[TBOOL], hi, s.constInt32(Types[TUINT32], 0))
			s.check(cmp, panicfn)
		}
		return s.newValue1(ssa.OpTrunc64to32, Types[TINT], v)
	}

	// Extend value to the required size
	var op ssa.Op
	if v.Type.IsSigned() {
		switch 10*size + s.config.IntSize {
		case 14:
			op = ssa.OpSignExt8to32
		case 18:
			op = ssa.OpSignExt8to64
		case 24:
			op = ssa.OpSignExt16to32
		case 28:
			op = ssa.OpSignExt16to64
		case 48:
			op = ssa.OpSignExt32to64
		default:
			s.Fatalf("bad signed index extension %s", v.Type)
		}
	} else {
		switch 10*size + s.config.IntSize {
		case 14:
			op = ssa.OpZeroExt8to32
		case 18:
			op = ssa.OpZeroExt8to64
		case 24:
			op = ssa.OpZeroExt16to32
		case 28:
			op = ssa.OpZeroExt16to64
		case 48:
			op = ssa.OpZeroExt32to64
		default:
			s.Fatalf("bad unsigned index extension %s", v.Type)
		}
	}
	return s.newValue1(op, Types[TINT], v)
}

// SSAReg returns the register to which v has been allocated.
func SSAReg(v *ssa.Value) *ssa.Register {
	reg := v.Block.Func.RegAlloc[v.ID]
	if reg == nil {
		v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func)
	}
	return reg.(*ssa.Register)
}

// SSAReg0 returns the register to which the first output of v has been allocated.
func SSAReg0(v *ssa.Value) *ssa.Register {
	reg := v.Block.Func.RegAlloc[v.ID].(ssa.LocPair)[0]
	if reg == nil {
		v.Fatalf("nil first register for value: %s\n%s\n", v.LongString(), v.Block.Func)
	}
	return reg.(*ssa.Register)
}

// SSAReg1 returns the register to which the second output of v has been allocated.
func SSAReg1(v *ssa.Value) *ssa.Register {
	reg := v.Block.Func.RegAlloc[v.ID].(ssa.LocPair)[1]
	if reg == nil {
		v.Fatalf("nil second register for value: %s\n%s\n", v.LongString(), v.Block.Func)
	}
	return reg.(*ssa.Register)
}

// SSARegNum returns the register number (in cmd/internal/obj numbering) to which v has been allocated.
func SSARegNum(v *ssa.Value) int16 {
	return Thearch.SSARegToReg[SSAReg(v).Num]
}

// SSARegNum0 returns the register number (in cmd/internal/obj numbering) to which the first output of v has been allocated.
func SSARegNum0(v *ssa.Value) int16 {
	return Thearch.SSARegToReg[SSAReg0(v).Num]
}

// SSARegNum1 returns the register number (in cmd/internal/obj numbering) to which the second output of v has been allocated.
func SSARegNum1(v *ssa.Value) int16 {
	return Thearch.SSARegToReg[SSAReg1(v).Num]
}

// CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
// Called during ssaGenValue.
func CheckLoweredPhi(v *ssa.Value) {
	if v.Op != ssa.OpPhi {
		v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
	}
	if v.Type.IsMemory() {
		return
	}
	f := v.Block.Func
	loc := f.RegAlloc[v.ID]
	for _, a := range v.Args {
		if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
			v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func)
		}
	}
}

// CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
// The output of LoweredGetClosurePtr is generally hardwired to the correct register.
// That register contains the closure pointer on closure entry.
func CheckLoweredGetClosurePtr(v *ssa.Value) {
	entry := v.Block.Func.Entry
	if entry != v.Block || entry.Values[0] != v {
		Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
	}
}

// AutoVar returns a *Node and int64 representing the auto variable and offset within it
// where v should be spilled.
func AutoVar(v *ssa.Value) (*Node, int64) {
	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
	if v.Type.Size() > loc.Type.Size() {
		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
	}
	return loc.N.(*Node), loc.Off
}

// fieldIdx finds the index of the field referred to by the ODOT node n.
func fieldIdx(n *Node) int {
	t := n.Left.Type
	f := n.Sym
	if !t.IsStruct() {
		panic("ODOT's LHS is not a struct")
	}

	var i int
	for _, t1 := range t.Fields().Slice() {
		if t1.Sym != f {
			i++
			continue
		}
		if t1.Offset != n.Xoffset {
			panic("field offset doesn't match")
		}
		return i
	}
	panic(fmt.Sprintf("can't find field in expr %s\n", n))

	// TODO: keep the result of this function somewhere in the ODOT Node
	// so we don't have to recompute it each time we need it.
}

// ssaExport exports a bunch of compiler services for the ssa backend.
type ssaExport struct {
	log           bool
	unimplemented bool
	mustImplement bool
}

func (s *ssaExport) TypeBool() ssa.Type    { return Types[TBOOL] }
func (s *ssaExport) TypeInt8() ssa.Type    { return Types[TINT8] }
func (s *ssaExport) TypeInt16() ssa.Type   { return Types[TINT16] }
func (s *ssaExport) TypeInt32() ssa.Type   { return Types[TINT32] }
func (s *ssaExport) TypeInt64() ssa.Type   { return Types[TINT64] }
func (s *ssaExport) TypeUInt8() ssa.Type   { return Types[TUINT8] }
func (s *ssaExport) TypeUInt16() ssa.Type  { return Types[TUINT16] }
func (s *ssaExport) TypeUInt32() ssa.Type  { return Types[TUINT32] }
func (s *ssaExport) TypeUInt64() ssa.Type  { return Types[TUINT64] }
func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] }
func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] }
func (s *ssaExport) TypeInt() ssa.Type     { return Types[TINT] }
func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] }
func (s *ssaExport) TypeString() ssa.Type  { return Types[TSTRING] }
func (s *ssaExport) TypeBytePtr() ssa.Type { return Ptrto(Types[TUINT8]) }

// StringData returns a symbol (a *Sym wrapped in an interface) which
// is the data component of a global string constant containing s.
func (*ssaExport) StringData(s string) interface{} {
	// TODO: is idealstring correct?  It might not matter...
	_, data := stringsym(s)
	return &ssa.ExternSymbol{Typ: idealstring, Sym: data}
}

func (e *ssaExport) Auto(t ssa.Type) ssa.GCNode {
	n := temp(t.(*Type))   // Note: adds new auto to Curfn.Func.Dcl list
	e.mustImplement = true // This modifies the input to SSA, so we want to make sure we succeed from here!
	return n
}

func (e *ssaExport) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
	n := name.N.(*Node)
	ptrType := Ptrto(Types[TUINT8])
	lenType := Types[TINT]
	if n.Class == PAUTO && !n.Addrtaken {
		// Split this string up into two separate variables.
		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
		l := e.namedAuto(n.Sym.Name+".len", lenType)
		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}
	}
	// Return the two parts of the larger variable.
	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
}

func (e *ssaExport) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
	n := name.N.(*Node)
	t := Ptrto(Types[TUINT8])
	if n.Class == PAUTO && !n.Addrtaken {
		// Split this interface up into two separate variables.
		f := ".itab"
		if n.Type.IsEmptyInterface() {
			f = ".type"
		}
		c := e.namedAuto(n.Sym.Name+f, t)
		d := e.namedAuto(n.Sym.Name+".data", t)
		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
	}
	// Return the two parts of the larger variable.
	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
}

func (e *ssaExport) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
	n := name.N.(*Node)
	ptrType := Ptrto(name.Type.ElemType().(*Type))
	lenType := Types[TINT]
	if n.Class == PAUTO && !n.Addrtaken {
		// Split this slice up into three separate variables.
		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
		l := e.namedAuto(n.Sym.Name+".len", lenType)
		c := e.namedAuto(n.Sym.Name+".cap", lenType)
		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0}
	}
	// Return the three parts of the larger variable.
	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
}

func (e *ssaExport) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
	n := name.N.(*Node)
	s := name.Type.Size() / 2
	var t *Type
	if s == 8 {
		t = Types[TFLOAT64]
	} else {
		t = Types[TFLOAT32]
	}
	if n.Class == PAUTO && !n.Addrtaken {
		// Split this complex up into two separate variables.
		c := e.namedAuto(n.Sym.Name+".real", t)
		d := e.namedAuto(n.Sym.Name+".imag", t)
		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
	}
	// Return the two parts of the larger variable.
	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
}

func (e *ssaExport) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
	n := name.N.(*Node)
	var t *Type
	if name.Type.IsSigned() {
		t = Types[TINT32]
	} else {
		t = Types[TUINT32]
	}
	if n.Class == PAUTO && !n.Addrtaken {
		// Split this int64 up into two separate variables.
		h := e.namedAuto(n.Sym.Name+".hi", t)
		l := e.namedAuto(n.Sym.Name+".lo", Types[TUINT32])
		return ssa.LocalSlot{N: h, Type: t, Off: 0}, ssa.LocalSlot{N: l, Type: Types[TUINT32], Off: 0}
	}
	// Return the two parts of the larger variable.
	// Assuming little endian (we don't support big endian 32-bit architecture yet)
	return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: Types[TUINT32], Off: name.Off}
}

func (e *ssaExport) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
	n := name.N.(*Node)
	st := name.Type
	ft := st.FieldType(i)
	if n.Class == PAUTO && !n.Addrtaken {
		// Note: the _ field may appear several times.  But
		// have no fear, identically-named but distinct Autos are
		// ok, albeit maybe confusing for a debugger.
		x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft)
		return ssa.LocalSlot{N: x, Type: ft, Off: 0}
	}
	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
}

// namedAuto returns a new AUTO variable with the given name and type.
func (e *ssaExport) namedAuto(name string, typ ssa.Type) ssa.GCNode {
	t := typ.(*Type)
	s := &Sym{Name: name, Pkg: autopkg}
	n := Nod(ONAME, nil, nil)
	s.Def = n
	s.Def.Used = true
	n.Sym = s
	n.Type = t
	n.Class = PAUTO
	n.Addable = true
	n.Ullman = 1
	n.Esc = EscNever
	n.Xoffset = 0
	n.Name.Curfn = Curfn
	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)

	dowidth(t)
	e.mustImplement = true

	return n
}

func (e *ssaExport) CanSSA(t ssa.Type) bool {
	return canSSAType(t.(*Type))
}

func (e *ssaExport) Line(line int32) string {
	return linestr(line)
}

// Log logs a message from the compiler.
func (e *ssaExport) Logf(msg string, args ...interface{}) {
	// If e was marked as unimplemented, anything could happen. Ignore.
	if e.log && !e.unimplemented {
		fmt.Printf(msg, args...)
	}
}

func (e *ssaExport) Log() bool {
	return e.log
}

// Fatal reports a compiler error and exits.
func (e *ssaExport) Fatalf(line int32, msg string, args ...interface{}) {
	// If e was marked as unimplemented, anything could happen. Ignore.
	if !e.unimplemented {
		lineno = line
		Fatalf(msg, args...)
	}
}

// Unimplemented reports that the function cannot be compiled.
// It will be removed once SSA work is complete.
func (e *ssaExport) Unimplementedf(line int32, msg string, args ...interface{}) {
	if e.mustImplement {
		lineno = line
		Fatalf(msg, args...)
	}
	const alwaysLog = false // enable to calculate top unimplemented features
	if !e.unimplemented && (e.log || alwaysLog) {
		// first implementation failure, print explanation
		fmt.Printf("SSA unimplemented: "+msg+"\n", args...)
	}
	e.unimplemented = true
}

// Warnl reports a "warning", which is usually flag-triggered
// logging output for the benefit of tests.
func (e *ssaExport) Warnl(line int32, fmt_ string, args ...interface{}) {
	Warnl(line, fmt_, args...)
}

func (e *ssaExport) Debug_checknil() bool {
	return Debug_checknil != 0
}

func (n *Node) Typ() ssa.Type {
	return n.Type
}