aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/reflect.go
blob: 61ac67c0bcc12d895e268e1188cb0dcc8d4f739f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gc

import (
	"cmd/internal/gcprog"
	"cmd/internal/obj"
	"fmt"
	"os"
	"sort"
	"strings"
)

type itabEntry struct {
	t, itype *Type
	sym      *Sym
}

type ptabEntry struct {
	s *Sym
	t *Type
}

// runtime interface and reflection data structures
var signatlist []*Node
var itabs []itabEntry
var ptabs []ptabEntry

type Sig struct {
	name   string
	pkg    *Pkg
	isym   *Sym
	tsym   *Sym
	type_  *Type
	mtype  *Type
	offset int32
}

// byMethodNameAndPackagePath sorts method signatures by name, then package path.
type byMethodNameAndPackagePath []*Sig

func (x byMethodNameAndPackagePath) Len() int      { return len(x) }
func (x byMethodNameAndPackagePath) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byMethodNameAndPackagePath) Less(i, j int) bool {
	return siglt(x[i], x[j])
}

// siglt reports whether a < b
func siglt(a, b *Sig) bool {
	if a.name != b.name {
		return a.name < b.name
	}
	if a.pkg == b.pkg {
		return false
	}
	if a.pkg == nil {
		return true
	}
	if b.pkg == nil {
		return false
	}
	return a.pkg.Path < b.pkg.Path
}

// Builds a type representing a Bucket structure for
// the given map type. This type is not visible to users -
// we include only enough information to generate a correct GC
// program for it.
// Make sure this stays in sync with ../../../../runtime/hashmap.go!
const (
	BUCKETSIZE = 8
	MAXKEYSIZE = 128
	MAXVALSIZE = 128
)

func structfieldSize() int       { return 3 * Widthptr } // Sizeof(runtime.structfield{})
func imethodSize() int           { return 4 + 4 }        // Sizeof(runtime.imethod{})
func uncommonSize(t *Type) int { // Sizeof(runtime.uncommontype{})
	if t.Sym == nil && len(methods(t)) == 0 {
		return 0
	}
	return 4 + 2 + 2 + 4 + 4
}

func makefield(name string, t *Type) *Field {
	f := newField()
	f.Type = t
	f.Sym = nopkg.Lookup(name)
	return f
}

func mapbucket(t *Type) *Type {
	if t.MapType().Bucket != nil {
		return t.MapType().Bucket
	}

	bucket := typ(TSTRUCT)
	keytype := t.Key()
	valtype := t.Val()
	dowidth(keytype)
	dowidth(valtype)
	if keytype.Width > MAXKEYSIZE {
		keytype = ptrto(keytype)
	}
	if valtype.Width > MAXVALSIZE {
		valtype = ptrto(valtype)
	}

	field := make([]*Field, 0, 5)

	// The first field is: uint8 topbits[BUCKETSIZE].
	arr := typArray(Types[TUINT8], BUCKETSIZE)
	field = append(field, makefield("topbits", arr))

	arr = typArray(keytype, BUCKETSIZE)
	arr.Noalg = true
	field = append(field, makefield("keys", arr))

	arr = typArray(valtype, BUCKETSIZE)
	arr.Noalg = true
	field = append(field, makefield("values", arr))

	// Make sure the overflow pointer is the last memory in the struct,
	// because the runtime assumes it can use size-ptrSize as the
	// offset of the overflow pointer. We double-check that property
	// below once the offsets and size are computed.
	//
	// BUCKETSIZE is 8, so the struct is aligned to 64 bits to this point.
	// On 32-bit systems, the max alignment is 32-bit, and the
	// overflow pointer will add another 32-bit field, and the struct
	// will end with no padding.
	// On 64-bit systems, the max alignment is 64-bit, and the
	// overflow pointer will add another 64-bit field, and the struct
	// will end with no padding.
	// On nacl/amd64p32, however, the max alignment is 64-bit,
	// but the overflow pointer will add only a 32-bit field,
	// so if the struct needs 64-bit padding (because a key or value does)
	// then it would end with an extra 32-bit padding field.
	// Preempt that by emitting the padding here.
	if int(t.Val().Align) > Widthptr || int(t.Key().Align) > Widthptr {
		field = append(field, makefield("pad", Types[TUINTPTR]))
	}

	// If keys and values have no pointers, the map implementation
	// can keep a list of overflow pointers on the side so that
	// buckets can be marked as having no pointers.
	// Arrange for the bucket to have no pointers by changing
	// the type of the overflow field to uintptr in this case.
	// See comment on hmap.overflow in ../../../../runtime/hashmap.go.
	otyp := ptrto(bucket)
	if !haspointers(t.Val()) && !haspointers(t.Key()) && t.Val().Width <= MAXVALSIZE && t.Key().Width <= MAXKEYSIZE {
		otyp = Types[TUINTPTR]
	}
	ovf := makefield("overflow", otyp)
	field = append(field, ovf)

	// link up fields
	bucket.Noalg = true
	bucket.Local = t.Local
	bucket.SetFields(field[:])
	dowidth(bucket)

	// Double-check that overflow field is final memory in struct,
	// with no padding at end. See comment above.
	if ovf.Offset != bucket.Width-int64(Widthptr) {
		yyerror("bad math in mapbucket for %v", t)
	}

	t.MapType().Bucket = bucket

	bucket.StructType().Map = t
	return bucket
}

// Builds a type representing a Hmap structure for the given map type.
// Make sure this stays in sync with ../../../../runtime/hashmap.go!
func hmap(t *Type) *Type {
	if t.MapType().Hmap != nil {
		return t.MapType().Hmap
	}

	bucket := mapbucket(t)
	fields := []*Field{
		makefield("count", Types[TINT]),
		makefield("flags", Types[TUINT8]),
		makefield("B", Types[TUINT8]),
		makefield("noverflow", Types[TUINT16]),
		makefield("hash0", Types[TUINT32]),
		makefield("buckets", ptrto(bucket)),
		makefield("oldbuckets", ptrto(bucket)),
		makefield("nevacuate", Types[TUINTPTR]),
		makefield("overflow", Types[TUNSAFEPTR]),
	}

	h := typ(TSTRUCT)
	h.Noalg = true
	h.Local = t.Local
	h.SetFields(fields)
	dowidth(h)
	t.MapType().Hmap = h
	h.StructType().Map = t
	return h
}

func hiter(t *Type) *Type {
	if t.MapType().Hiter != nil {
		return t.MapType().Hiter
	}

	// build a struct:
	// hiter {
	//    key *Key
	//    val *Value
	//    t *MapType
	//    h *Hmap
	//    buckets *Bucket
	//    bptr *Bucket
	//    overflow0 unsafe.Pointer
	//    overflow1 unsafe.Pointer
	//    startBucket uintptr
	//    stuff uintptr
	//    bucket uintptr
	//    checkBucket uintptr
	// }
	// must match ../../../../runtime/hashmap.go:hiter.
	var field [12]*Field
	field[0] = makefield("key", ptrto(t.Key()))
	field[1] = makefield("val", ptrto(t.Val()))
	field[2] = makefield("t", ptrto(Types[TUINT8]))
	field[3] = makefield("h", ptrto(hmap(t)))
	field[4] = makefield("buckets", ptrto(mapbucket(t)))
	field[5] = makefield("bptr", ptrto(mapbucket(t)))
	field[6] = makefield("overflow0", Types[TUNSAFEPTR])
	field[7] = makefield("overflow1", Types[TUNSAFEPTR])
	field[8] = makefield("startBucket", Types[TUINTPTR])
	field[9] = makefield("stuff", Types[TUINTPTR]) // offset+wrapped+B+I
	field[10] = makefield("bucket", Types[TUINTPTR])
	field[11] = makefield("checkBucket", Types[TUINTPTR])

	// build iterator struct holding the above fields
	i := typ(TSTRUCT)
	i.Noalg = true
	i.SetFields(field[:])
	dowidth(i)
	if i.Width != int64(12*Widthptr) {
		yyerror("hash_iter size not correct %d %d", i.Width, 12*Widthptr)
	}
	t.MapType().Hiter = i
	i.StructType().Map = t
	return i
}

// f is method type, with receiver.
// return function type, receiver as first argument (or not).
func methodfunc(f *Type, receiver *Type) *Type {
	var in []*Node
	if receiver != nil {
		d := nod(ODCLFIELD, nil, nil)
		d.Type = receiver
		in = append(in, d)
	}

	var d *Node
	for _, t := range f.Params().Fields().Slice() {
		d = nod(ODCLFIELD, nil, nil)
		d.Type = t.Type
		d.Isddd = t.Isddd
		in = append(in, d)
	}

	var out []*Node
	for _, t := range f.Results().Fields().Slice() {
		d = nod(ODCLFIELD, nil, nil)
		d.Type = t.Type
		out = append(out, d)
	}

	t := functype(nil, in, out)
	if f.Nname() != nil {
		// Link to name of original method function.
		t.SetNname(f.Nname())
	}

	return t
}

// methods returns the methods of the non-interface type t, sorted by name.
// Generates stub functions as needed.
func methods(t *Type) []*Sig {
	// method type
	mt := methtype(t)

	if mt == nil {
		return nil
	}
	expandmeth(mt)

	// type stored in interface word
	it := t

	if !isdirectiface(it) {
		it = ptrto(t)
	}

	// make list of methods for t,
	// generating code if necessary.
	var ms []*Sig
	for _, f := range mt.AllMethods().Slice() {
		if f.Type.Etype != TFUNC || f.Type.Recv() == nil {
			Fatalf("non-method on %v method %v %v\n", mt, f.Sym, f)
		}
		if f.Type.Recv() == nil {
			Fatalf("receiver with no type on %v method %v %v\n", mt, f.Sym, f)
		}
		if f.Nointerface {
			continue
		}

		method := f.Sym
		if method == nil {
			continue
		}

		// get receiver type for this particular method.
		// if pointer receiver but non-pointer t and
		// this is not an embedded pointer inside a struct,
		// method does not apply.
		this := f.Type.Recv().Type

		if this.IsPtr() && this.Elem() == t {
			continue
		}
		if this.IsPtr() && !t.IsPtr() && f.Embedded != 2 && !isifacemethod(f.Type) {
			continue
		}

		var sig Sig
		ms = append(ms, &sig)

		sig.name = method.Name
		if !exportname(method.Name) {
			if method.Pkg == nil {
				Fatalf("methods: missing package")
			}
			sig.pkg = method.Pkg
		}

		sig.isym = methodsym(method, it, 1)
		sig.tsym = methodsym(method, t, 0)
		sig.type_ = methodfunc(f.Type, t)
		sig.mtype = methodfunc(f.Type, nil)

		if sig.isym.Flags&SymSiggen == 0 {
			sig.isym.Flags |= SymSiggen
			if !eqtype(this, it) || this.Width < Types[Tptr].Width {
				compiling_wrappers = 1
				genwrapper(it, f, sig.isym, 1)
				compiling_wrappers = 0
			}
		}

		if sig.tsym.Flags&SymSiggen == 0 {
			sig.tsym.Flags |= SymSiggen
			if !eqtype(this, t) {
				compiling_wrappers = 1
				genwrapper(t, f, sig.tsym, 0)
				compiling_wrappers = 0
			}
		}
	}

	sort.Sort(byMethodNameAndPackagePath(ms))
	return ms
}

// imethods returns the methods of the interface type t, sorted by name.
func imethods(t *Type) []*Sig {
	var methods []*Sig
	for _, f := range t.Fields().Slice() {
		if f.Type.Etype != TFUNC || f.Sym == nil {
			continue
		}
		method := f.Sym
		var sig = Sig{
			name: method.Name,
		}
		if !exportname(method.Name) {
			if method.Pkg == nil {
				Fatalf("imethods: missing package")
			}
			sig.pkg = method.Pkg
		}

		sig.mtype = f.Type
		sig.offset = 0
		sig.type_ = methodfunc(f.Type, nil)

		if n := len(methods); n > 0 {
			last := methods[n-1]
			if !(siglt(last, &sig)) {
				Fatalf("sigcmp vs sortinter %s %s", last.name, sig.name)
			}
		}
		methods = append(methods, &sig)

		// Compiler can only refer to wrappers for non-blank methods.
		if isblanksym(method) {
			continue
		}

		// NOTE(rsc): Perhaps an oversight that
		// IfaceType.Method is not in the reflect data.
		// Generate the method body, so that compiled
		// code can refer to it.
		isym := methodsym(method, t, 0)

		if isym.Flags&SymSiggen == 0 {
			isym.Flags |= SymSiggen
			genwrapper(t, f, isym, 0)
		}
	}

	return methods
}

func dimportpath(p *Pkg) {
	if p.Pathsym != nil {
		return
	}

	// If we are compiling the runtime package, there are two runtime packages around
	// -- localpkg and Runtimepkg. We don't want to produce import path symbols for
	// both of them, so just produce one for localpkg.
	if myimportpath == "runtime" && p == Runtimepkg {
		return
	}

	var str string
	if p == localpkg {
		// Note: myimportpath != "", or else dgopkgpath won't call dimportpath.
		str = myimportpath
	} else {
		str = p.Path
	}

	s := obj.Linklookup(Ctxt, "type..importpath."+p.Prefix+".", 0)
	ot := dnameData(s, 0, str, "", nil, false)
	ggloblLSym(s, int32(ot), obj.DUPOK|obj.RODATA)
	p.Pathsym = s
}

func dgopkgpath(s *Sym, ot int, pkg *Pkg) int {
	return dgopkgpathLSym(Linksym(s), ot, pkg)
}

func dgopkgpathLSym(s *obj.LSym, ot int, pkg *Pkg) int {
	if pkg == nil {
		return duintxxLSym(s, ot, 0, Widthptr)
	}

	if pkg == localpkg && myimportpath == "" {
		// If we don't know the full import path of the package being compiled
		// (i.e. -p was not passed on the compiler command line), emit a reference to
		// type..importpath.""., which the linker will rewrite using the correct import path.
		// Every package that imports this one directly defines the symbol.
		// See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ.
		ns := obj.Linklookup(Ctxt, `type..importpath."".`, 0)
		return dsymptrLSym(s, ot, ns, 0)
	}

	dimportpath(pkg)
	return dsymptrLSym(s, ot, pkg.Pathsym, 0)
}

// dgopkgpathOffLSym writes an offset relocation in s at offset ot to the pkg path symbol.
func dgopkgpathOffLSym(s *obj.LSym, ot int, pkg *Pkg) int {
	if pkg == nil {
		return duintxxLSym(s, ot, 0, 4)
	}
	if pkg == localpkg && myimportpath == "" {
		// If we don't know the full import path of the package being compiled
		// (i.e. -p was not passed on the compiler command line), emit a reference to
		// type..importpath.""., which the linker will rewrite using the correct import path.
		// Every package that imports this one directly defines the symbol.
		// See also https://groups.google.com/forum/#!topic/golang-dev/myb9s53HxGQ.
		ns := obj.Linklookup(Ctxt, `type..importpath."".`, 0)
		return dsymptrOffLSym(s, ot, ns, 0)
	}

	dimportpath(pkg)
	return dsymptrOffLSym(s, ot, pkg.Pathsym, 0)
}

// isExportedField reports whether a struct field is exported.
// It also returns the package to use for PkgPath for an unexported field.
func isExportedField(ft *Field) (bool, *Pkg) {
	if ft.Sym != nil && ft.Embedded == 0 {
		return exportname(ft.Sym.Name), ft.Sym.Pkg
	} else {
		if ft.Type.Sym != nil &&
			(ft.Type.Sym.Pkg == builtinpkg || !exportname(ft.Type.Sym.Name)) {
			return false, ft.Type.Sym.Pkg
		} else {
			return true, nil
		}
	}
}

// dnameField dumps a reflect.name for a struct field.
func dnameField(s *Sym, ot int, spkg *Pkg, ft *Field) int {
	var name string
	if ft.Sym != nil && ft.Embedded == 0 {
		name = ft.Sym.Name
	}
	isExported, fpkg := isExportedField(ft)
	if isExported || fpkg == spkg {
		fpkg = nil
	}
	nsym := dname(name, ft.Note, fpkg, isExported)
	return dsymptrLSym(Linksym(s), ot, nsym, 0)
}

// dnameData writes the contents of a reflect.name into s at offset ot.
func dnameData(s *obj.LSym, ot int, name, tag string, pkg *Pkg, exported bool) int {
	if len(name) > 1<<16-1 {
		Fatalf("name too long: %s", name)
	}
	if len(tag) > 1<<16-1 {
		Fatalf("tag too long: %s", tag)
	}

	// Encode name and tag. See reflect/type.go for details.
	var bits byte
	l := 1 + 2 + len(name)
	if exported {
		bits |= 1 << 0
	}
	if len(tag) > 0 {
		l += 2 + len(tag)
		bits |= 1 << 1
	}
	if pkg != nil {
		bits |= 1 << 2
	}
	b := make([]byte, l)
	b[0] = bits
	b[1] = uint8(len(name) >> 8)
	b[2] = uint8(len(name))
	copy(b[3:], name)
	if len(tag) > 0 {
		tb := b[3+len(name):]
		tb[0] = uint8(len(tag) >> 8)
		tb[1] = uint8(len(tag))
		copy(tb[2:], tag)
	}

	ot = int(s.WriteBytes(Ctxt, int64(ot), b))

	if pkg != nil {
		ot = dgopkgpathOffLSym(s, ot, pkg)
	}

	return ot
}

var dnameCount int

// dname creates a reflect.name for a struct field or method.
func dname(name, tag string, pkg *Pkg, exported bool) *obj.LSym {
	// Write out data as "type.." to signal two things to the
	// linker, first that when dynamically linking, the symbol
	// should be moved to a relro section, and second that the
	// contents should not be decoded as a type.
	sname := "type..namedata."
	if pkg == nil {
		// In the common case, share data with other packages.
		if name == "" {
			if exported {
				sname += "-noname-exported." + tag
			} else {
				sname += "-noname-unexported." + tag
			}
		} else {
			sname += name + "." + tag
		}
	} else {
		sname = fmt.Sprintf(`%s"".%d`, sname, dnameCount)
		dnameCount++
	}
	s := obj.Linklookup(Ctxt, sname, 0)
	if len(s.P) > 0 {
		return s
	}
	ot := dnameData(s, 0, name, tag, pkg, exported)
	ggloblLSym(s, int32(ot), obj.DUPOK|obj.RODATA)
	return s
}

// dextratype dumps the fields of a runtime.uncommontype.
// dataAdd is the offset in bytes after the header where the
// backing array of the []method field is written (by dextratypeData).
func dextratype(s *Sym, ot int, t *Type, dataAdd int) int {
	m := methods(t)
	if t.Sym == nil && len(m) == 0 {
		return ot
	}
	noff := int(Rnd(int64(ot), int64(Widthptr)))
	if noff != ot {
		Fatalf("unexpected alignment in dextratype for %v", t)
	}

	for _, a := range m {
		dtypesym(a.type_)
	}

	ot = dgopkgpathOffLSym(Linksym(s), ot, typePkg(t))

	dataAdd += uncommonSize(t)
	mcount := len(m)
	if mcount != int(uint16(mcount)) {
		Fatalf("too many methods on %v: %d", t, mcount)
	}
	if dataAdd != int(uint32(dataAdd)) {
		Fatalf("methods are too far away on %v: %d", t, dataAdd)
	}

	ot = duint16(s, ot, uint16(mcount))
	ot = duint16(s, ot, 0)
	ot = duint32(s, ot, uint32(dataAdd))
	ot = duint32(s, ot, 0)
	return ot
}

func typePkg(t *Type) *Pkg {
	tsym := t.Sym
	if tsym == nil {
		switch t.Etype {
		case TARRAY, TSLICE, TPTR32, TPTR64, TCHAN:
			if t.Elem() != nil {
				tsym = t.Elem().Sym
			}
		}
	}
	if tsym != nil && t != Types[t.Etype] && t != errortype {
		return tsym.Pkg
	}
	return nil
}

// dextratypeData dumps the backing array for the []method field of
// runtime.uncommontype.
func dextratypeData(s *Sym, ot int, t *Type) int {
	lsym := Linksym(s)
	for _, a := range methods(t) {
		// ../../../../runtime/type.go:/method
		exported := exportname(a.name)
		var pkg *Pkg
		if !exported && a.pkg != typePkg(t) {
			pkg = a.pkg
		}
		nsym := dname(a.name, "", pkg, exported)

		ot = dsymptrOffLSym(lsym, ot, nsym, 0)
		ot = dmethodptrOffLSym(lsym, ot, Linksym(dtypesym(a.mtype)))
		ot = dmethodptrOffLSym(lsym, ot, Linksym(a.isym))
		ot = dmethodptrOffLSym(lsym, ot, Linksym(a.tsym))
	}
	return ot
}

func dmethodptrOffLSym(s *obj.LSym, ot int, x *obj.LSym) int {
	duintxxLSym(s, ot, 0, 4)
	r := obj.Addrel(s)
	r.Off = int32(ot)
	r.Siz = 4
	r.Sym = x
	r.Type = obj.R_METHODOFF
	return ot + 4
}

var kinds = []int{
	TINT:        obj.KindInt,
	TUINT:       obj.KindUint,
	TINT8:       obj.KindInt8,
	TUINT8:      obj.KindUint8,
	TINT16:      obj.KindInt16,
	TUINT16:     obj.KindUint16,
	TINT32:      obj.KindInt32,
	TUINT32:     obj.KindUint32,
	TINT64:      obj.KindInt64,
	TUINT64:     obj.KindUint64,
	TUINTPTR:    obj.KindUintptr,
	TFLOAT32:    obj.KindFloat32,
	TFLOAT64:    obj.KindFloat64,
	TBOOL:       obj.KindBool,
	TSTRING:     obj.KindString,
	TPTR32:      obj.KindPtr,
	TPTR64:      obj.KindPtr,
	TSTRUCT:     obj.KindStruct,
	TINTER:      obj.KindInterface,
	TCHAN:       obj.KindChan,
	TMAP:        obj.KindMap,
	TARRAY:      obj.KindArray,
	TSLICE:      obj.KindSlice,
	TFUNC:       obj.KindFunc,
	TCOMPLEX64:  obj.KindComplex64,
	TCOMPLEX128: obj.KindComplex128,
	TUNSAFEPTR:  obj.KindUnsafePointer,
}

func haspointers(t *Type) bool {
	switch t.Etype {
	case TINT, TUINT, TINT8, TUINT8, TINT16, TUINT16, TINT32, TUINT32, TINT64,
		TUINT64, TUINTPTR, TFLOAT32, TFLOAT64, TCOMPLEX64, TCOMPLEX128, TBOOL:
		return false

	case TSLICE:
		return true

	case TARRAY:
		at := t.Extra.(*ArrayType)
		if at.Haspointers != 0 {
			return at.Haspointers-1 != 0
		}

		ret := false
		if t.NumElem() != 0 { // non-empty array
			ret = haspointers(t.Elem())
		}

		at.Haspointers = 1 + uint8(obj.Bool2int(ret))
		return ret

	case TSTRUCT:
		st := t.StructType()
		if st.Haspointers != 0 {
			return st.Haspointers-1 != 0
		}

		ret := false
		for _, t1 := range t.Fields().Slice() {
			if haspointers(t1.Type) {
				ret = true
				break
			}
		}
		st.Haspointers = 1 + uint8(obj.Bool2int(ret))
		return ret
	}

	return true
}

// typeptrdata returns the length in bytes of the prefix of t
// containing pointer data. Anything after this offset is scalar data.
func typeptrdata(t *Type) int64 {
	if !haspointers(t) {
		return 0
	}

	switch t.Etype {
	case TPTR32,
		TPTR64,
		TUNSAFEPTR,
		TFUNC,
		TCHAN,
		TMAP:
		return int64(Widthptr)

	case TSTRING:
		// struct { byte *str; intgo len; }
		return int64(Widthptr)

	case TINTER:
		// struct { Itab *tab;	void *data; } or
		// struct { Type *type; void *data; }
		return 2 * int64(Widthptr)

	case TSLICE:
		// struct { byte *array; uintgo len; uintgo cap; }
		return int64(Widthptr)

	case TARRAY:
		// haspointers already eliminated t.NumElem() == 0.
		return (t.NumElem()-1)*t.Elem().Width + typeptrdata(t.Elem())

	case TSTRUCT:
		// Find the last field that has pointers.
		var lastPtrField *Field
		for _, t1 := range t.Fields().Slice() {
			if haspointers(t1.Type) {
				lastPtrField = t1
			}
		}
		return lastPtrField.Offset + typeptrdata(lastPtrField.Type)

	default:
		Fatalf("typeptrdata: unexpected type, %v", t)
		return 0
	}
}

// tflag is documented in reflect/type.go.
//
// tflag values must be kept in sync with copies in:
//	cmd/compile/internal/gc/reflect.go
//	cmd/link/internal/ld/decodesym.go
//	reflect/type.go
//	runtime/type.go
const (
	tflagUncommon  = 1 << 0
	tflagExtraStar = 1 << 1
	tflagNamed     = 1 << 2
)

var dcommontype_algarray *Sym

// dcommontype dumps the contents of a reflect.rtype (runtime._type).
func dcommontype(s *Sym, ot int, t *Type) int {
	if ot != 0 {
		Fatalf("dcommontype %d", ot)
	}

	sizeofAlg := 2 * Widthptr
	if dcommontype_algarray == nil {
		dcommontype_algarray = Pkglookup("algarray", Runtimepkg)
	}
	dowidth(t)
	alg := algtype(t)
	var algsym *Sym
	if alg == ASPECIAL || alg == AMEM {
		algsym = dalgsym(t)
	}

	sptrWeak := true
	var sptr *Sym
	if !t.IsPtr() || t.ptrTo != nil {
		tptr := ptrto(t)
		if t.Sym != nil || methods(tptr) != nil {
			sptrWeak = false
		}
		sptr = dtypesym(tptr)
	}

	gcsym, useGCProg, ptrdata := dgcsym(t)

	// ../../../../reflect/type.go:/^type.rtype
	// actual type structure
	//	type rtype struct {
	//		size          uintptr
	//		ptrdata       uintptr
	//		hash          uint32
	//		tflag         tflag
	//		align         uint8
	//		fieldAlign    uint8
	//		kind          uint8
	//		alg           *typeAlg
	//		gcdata        *byte
	//		str           nameOff
	//		ptrToThis     typeOff
	//	}
	ot = duintptr(s, ot, uint64(t.Width))
	ot = duintptr(s, ot, uint64(ptrdata))

	ot = duint32(s, ot, typehash(t))

	var tflag uint8
	if uncommonSize(t) != 0 {
		tflag |= tflagUncommon
	}
	if t.Sym != nil && t.Sym.Name != "" {
		tflag |= tflagNamed
	}

	exported := false
	p := t.tconv(FmtLeft | FmtUnsigned)
	// If we're writing out type T,
	// we are very likely to write out type *T as well.
	// Use the string "*T"[1:] for "T", so that the two
	// share storage. This is a cheap way to reduce the
	// amount of space taken up by reflect strings.
	if !strings.HasPrefix(p, "*") {
		p = "*" + p
		tflag |= tflagExtraStar
		if t.Sym != nil {
			exported = exportname(t.Sym.Name)
		}
	} else {
		if t.Elem() != nil && t.Elem().Sym != nil {
			exported = exportname(t.Elem().Sym.Name)
		}
	}

	ot = duint8(s, ot, tflag)

	// runtime (and common sense) expects alignment to be a power of two.
	i := int(t.Align)

	if i == 0 {
		i = 1
	}
	if i&(i-1) != 0 {
		Fatalf("invalid alignment %d for %v", t.Align, t)
	}
	ot = duint8(s, ot, t.Align) // align
	ot = duint8(s, ot, t.Align) // fieldAlign

	i = kinds[t.Etype]
	if !haspointers(t) {
		i |= obj.KindNoPointers
	}
	if isdirectiface(t) {
		i |= obj.KindDirectIface
	}
	if useGCProg {
		i |= obj.KindGCProg
	}
	ot = duint8(s, ot, uint8(i)) // kind
	if algsym == nil {
		ot = dsymptr(s, ot, dcommontype_algarray, int(alg)*sizeofAlg)
	} else {
		ot = dsymptr(s, ot, algsym, 0)
	}
	ot = dsymptr(s, ot, gcsym, 0) // gcdata

	nsym := dname(p, "", nil, exported)
	ot = dsymptrOffLSym(Linksym(s), ot, nsym, 0) // str
	// ptrToThis
	if sptr == nil {
		ot = duint32(s, ot, 0)
	} else if sptrWeak {
		ot = dsymptrWeakOffLSym(Linksym(s), ot, Linksym(sptr))
	} else {
		ot = dsymptrOffLSym(Linksym(s), ot, Linksym(sptr), 0)
	}

	return ot
}

func typesym(t *Type) *Sym {
	name := t.tconv(FmtLeft)

	// Use a separate symbol name for Noalg types for #17752.
	if a, bad := algtype1(t); a == ANOEQ && bad.Noalg {
		name = "noalg." + name
	}

	return Pkglookup(name, typepkg)
}

// tracksym returns the symbol for tracking use of field/method f, assumed
// to be a member of struct/interface type t.
func tracksym(t *Type, f *Field) *Sym {
	return Pkglookup(t.tconv(FmtLeft)+"."+f.Sym.Name, trackpkg)
}

func typesymprefix(prefix string, t *Type) *Sym {
	p := prefix + "." + t.tconv(FmtLeft)
	s := Pkglookup(p, typepkg)

	//print("algsym: %s -> %+S\n", p, s);

	return s
}

func typenamesym(t *Type) *Sym {
	if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() {
		Fatalf("typename %v", t)
	}
	s := typesym(t)
	if s.Def == nil {
		n := newname(s)
		n.Type = Types[TUINT8]
		n.Class = PEXTERN
		n.Typecheck = 1
		s.Def = n

		signatlist = append(signatlist, typenod(t))
	}

	return s.Def.Sym
}

func typename(t *Type) *Node {
	s := typenamesym(t)
	n := nod(OADDR, s.Def, nil)
	n.Type = ptrto(s.Def.Type)
	n.Addable = true
	n.Ullman = 2
	n.Typecheck = 1
	return n
}

func itabname(t, itype *Type) *Node {
	if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() || !itype.IsInterface() || itype.IsEmptyInterface() {
		Fatalf("itabname(%v, %v)", t, itype)
	}
	s := Pkglookup(t.tconv(FmtLeft)+","+itype.tconv(FmtLeft), itabpkg)
	if s.Def == nil {
		n := newname(s)
		n.Type = Types[TUINT8]
		n.Class = PEXTERN
		n.Typecheck = 1
		s.Def = n

		itabs = append(itabs, itabEntry{t: t, itype: itype, sym: s})
	}

	n := nod(OADDR, s.Def, nil)
	n.Type = ptrto(s.Def.Type)
	n.Addable = true
	n.Ullman = 2
	n.Typecheck = 1
	return n
}

// isreflexive reports whether t has a reflexive equality operator.
// That is, if x==x for all x of type t.
func isreflexive(t *Type) bool {
	switch t.Etype {
	case TBOOL,
		TINT,
		TUINT,
		TINT8,
		TUINT8,
		TINT16,
		TUINT16,
		TINT32,
		TUINT32,
		TINT64,
		TUINT64,
		TUINTPTR,
		TPTR32,
		TPTR64,
		TUNSAFEPTR,
		TSTRING,
		TCHAN:
		return true

	case TFLOAT32,
		TFLOAT64,
		TCOMPLEX64,
		TCOMPLEX128,
		TINTER:
		return false

	case TARRAY:
		return isreflexive(t.Elem())

	case TSTRUCT:
		for _, t1 := range t.Fields().Slice() {
			if !isreflexive(t1.Type) {
				return false
			}
		}
		return true

	default:
		Fatalf("bad type for map key: %v", t)
		return false
	}
}

// needkeyupdate reports whether map updates with t as a key
// need the key to be updated.
func needkeyupdate(t *Type) bool {
	switch t.Etype {
	case TBOOL,
		TINT,
		TUINT,
		TINT8,
		TUINT8,
		TINT16,
		TUINT16,
		TINT32,
		TUINT32,
		TINT64,
		TUINT64,
		TUINTPTR,
		TPTR32,
		TPTR64,
		TUNSAFEPTR,
		TCHAN:
		return false

	case TFLOAT32, // floats can be +0/-0
		TFLOAT64,
		TCOMPLEX64,
		TCOMPLEX128,
		TINTER,
		TSTRING: // strings might have smaller backing stores
		return true

	case TARRAY:
		return needkeyupdate(t.Elem())

	case TSTRUCT:
		for _, t1 := range t.Fields().Slice() {
			if needkeyupdate(t1.Type) {
				return true
			}
		}
		return false

	default:
		Fatalf("bad type for map key: %v", t)
		return true
	}
}

func dtypesym(t *Type) *Sym {
	// Replace byte, rune aliases with real type.
	// They've been separate internally to make error messages
	// better, but we have to merge them in the reflect tables.
	if t == bytetype || t == runetype {
		t = Types[t.Etype]
	}

	if t.IsUntyped() {
		Fatalf("dtypesym %v", t)
	}

	s := typesym(t)
	if s.Flags&SymSiggen != 0 {
		return s
	}
	s.Flags |= SymSiggen

	// special case (look for runtime below):
	// when compiling package runtime,
	// emit the type structures for int, float, etc.
	tbase := t

	if t.IsPtr() && t.Sym == nil && t.Elem().Sym != nil {
		tbase = t.Elem()
	}
	dupok := 0
	if tbase.Sym == nil {
		dupok = obj.DUPOK
	}

	if myimportpath == "runtime" && (tbase == Types[tbase.Etype] || tbase == bytetype || tbase == runetype || tbase == errortype) { // int, float, etc
		goto ok
	}

	// named types from other files are defined only by those files
	if tbase.Sym != nil && !tbase.Local {
		return s
	}
	if isforw[tbase.Etype] {
		return s
	}

ok:
	ot := 0
	switch t.Etype {
	default:
		ot = dcommontype(s, ot, t)
		ot = dextratype(s, ot, t, 0)

	case TARRAY:
		// ../../../../runtime/type.go:/arrayType
		s1 := dtypesym(t.Elem())
		t2 := typSlice(t.Elem())
		s2 := dtypesym(t2)
		ot = dcommontype(s, ot, t)
		ot = dsymptr(s, ot, s1, 0)
		ot = dsymptr(s, ot, s2, 0)
		ot = duintptr(s, ot, uint64(t.NumElem()))
		ot = dextratype(s, ot, t, 0)

	case TSLICE:
		// ../../../../runtime/type.go:/sliceType
		s1 := dtypesym(t.Elem())
		ot = dcommontype(s, ot, t)
		ot = dsymptr(s, ot, s1, 0)
		ot = dextratype(s, ot, t, 0)

	case TCHAN:
		// ../../../../runtime/type.go:/chanType
		s1 := dtypesym(t.Elem())
		ot = dcommontype(s, ot, t)
		ot = dsymptr(s, ot, s1, 0)
		ot = duintptr(s, ot, uint64(t.ChanDir()))
		ot = dextratype(s, ot, t, 0)

	case TFUNC:
		for _, t1 := range t.Recvs().Fields().Slice() {
			dtypesym(t1.Type)
		}
		isddd := false
		for _, t1 := range t.Params().Fields().Slice() {
			isddd = t1.Isddd
			dtypesym(t1.Type)
		}
		for _, t1 := range t.Results().Fields().Slice() {
			dtypesym(t1.Type)
		}

		ot = dcommontype(s, ot, t)
		inCount := t.Recvs().NumFields() + t.Params().NumFields()
		outCount := t.Results().NumFields()
		if isddd {
			outCount |= 1 << 15
		}
		ot = duint16(s, ot, uint16(inCount))
		ot = duint16(s, ot, uint16(outCount))
		if Widthptr == 8 {
			ot += 4 // align for *rtype
		}

		dataAdd := (inCount + t.Results().NumFields()) * Widthptr
		ot = dextratype(s, ot, t, dataAdd)

		// Array of rtype pointers follows funcType.
		for _, t1 := range t.Recvs().Fields().Slice() {
			ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
		}
		for _, t1 := range t.Params().Fields().Slice() {
			ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
		}
		for _, t1 := range t.Results().Fields().Slice() {
			ot = dsymptr(s, ot, dtypesym(t1.Type), 0)
		}

	case TINTER:
		m := imethods(t)
		n := len(m)
		for _, a := range m {
			dtypesym(a.type_)
		}

		// ../../../../runtime/type.go:/interfaceType
		ot = dcommontype(s, ot, t)

		var tpkg *Pkg
		if t.Sym != nil && t != Types[t.Etype] && t != errortype {
			tpkg = t.Sym.Pkg
		}
		ot = dgopkgpath(s, ot, tpkg)

		ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint+uncommonSize(t))
		ot = duintxx(s, ot, uint64(n), Widthint)
		ot = duintxx(s, ot, uint64(n), Widthint)
		dataAdd := imethodSize() * n
		ot = dextratype(s, ot, t, dataAdd)

		lsym := Linksym(s)
		for _, a := range m {
			// ../../../../runtime/type.go:/imethod
			exported := exportname(a.name)
			var pkg *Pkg
			if !exported && a.pkg != tpkg {
				pkg = a.pkg
			}
			nsym := dname(a.name, "", pkg, exported)

			ot = dsymptrOffLSym(lsym, ot, nsym, 0)
			ot = dsymptrOffLSym(lsym, ot, Linksym(dtypesym(a.type_)), 0)
		}

	// ../../../../runtime/type.go:/mapType
	case TMAP:
		s1 := dtypesym(t.Key())
		s2 := dtypesym(t.Val())
		s3 := dtypesym(mapbucket(t))
		s4 := dtypesym(hmap(t))
		ot = dcommontype(s, ot, t)
		ot = dsymptr(s, ot, s1, 0)
		ot = dsymptr(s, ot, s2, 0)
		ot = dsymptr(s, ot, s3, 0)
		ot = dsymptr(s, ot, s4, 0)
		if t.Key().Width > MAXKEYSIZE {
			ot = duint8(s, ot, uint8(Widthptr))
			ot = duint8(s, ot, 1) // indirect
		} else {
			ot = duint8(s, ot, uint8(t.Key().Width))
			ot = duint8(s, ot, 0) // not indirect
		}

		if t.Val().Width > MAXVALSIZE {
			ot = duint8(s, ot, uint8(Widthptr))
			ot = duint8(s, ot, 1) // indirect
		} else {
			ot = duint8(s, ot, uint8(t.Val().Width))
			ot = duint8(s, ot, 0) // not indirect
		}

		ot = duint16(s, ot, uint16(mapbucket(t).Width))
		ot = duint8(s, ot, uint8(obj.Bool2int(isreflexive(t.Key()))))
		ot = duint8(s, ot, uint8(obj.Bool2int(needkeyupdate(t.Key()))))
		ot = dextratype(s, ot, t, 0)

	case TPTR32, TPTR64:
		if t.Elem().Etype == TANY {
			// ../../../../runtime/type.go:/UnsafePointerType
			ot = dcommontype(s, ot, t)
			ot = dextratype(s, ot, t, 0)

			break
		}

		// ../../../../runtime/type.go:/ptrType
		s1 := dtypesym(t.Elem())

		ot = dcommontype(s, ot, t)
		ot = dsymptr(s, ot, s1, 0)
		ot = dextratype(s, ot, t, 0)

	// ../../../../runtime/type.go:/structType
	// for security, only the exported fields.
	case TSTRUCT:
		n := 0

		for _, t1 := range t.Fields().Slice() {
			dtypesym(t1.Type)
			n++
		}

		ot = dcommontype(s, ot, t)
		pkg := localpkg
		if t.Sym != nil {
			pkg = t.Sym.Pkg
		} else {
			// Unnamed type. Grab the package from the first field, if any.
			for _, f := range t.Fields().Slice() {
				if f.Embedded != 0 {
					continue
				}
				pkg = f.Sym.Pkg
				break
			}
		}
		ot = dgopkgpath(s, ot, pkg)
		ot = dsymptr(s, ot, s, ot+Widthptr+2*Widthint+uncommonSize(t))
		ot = duintxx(s, ot, uint64(n), Widthint)
		ot = duintxx(s, ot, uint64(n), Widthint)

		dataAdd := n * structfieldSize()
		ot = dextratype(s, ot, t, dataAdd)

		for _, f := range t.Fields().Slice() {
			// ../../../../runtime/type.go:/structField
			ot = dnameField(s, ot, pkg, f)
			ot = dsymptr(s, ot, dtypesym(f.Type), 0)
			ot = duintptr(s, ot, uint64(f.Offset))
		}
	}

	ot = dextratypeData(s, ot, t)
	ggloblsym(s, int32(ot), int16(dupok|obj.RODATA))

	// The linker will leave a table of all the typelinks for
	// types in the binary, so the runtime can find them.
	//
	// When buildmode=shared, all types are in typelinks so the
	// runtime can deduplicate type pointers.
	keep := Ctxt.Flag_dynlink
	if !keep && t.Sym == nil {
		// For an unnamed type, we only need the link if the type can
		// be created at run time by reflect.PtrTo and similar
		// functions. If the type exists in the program, those
		// functions must return the existing type structure rather
		// than creating a new one.
		switch t.Etype {
		case TPTR32, TPTR64, TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRUCT:
			keep = true
		}
	}
	s.Lsym.Set(obj.AttrMakeTypelink, keep)

	return s
}

func dumptypestructs() {
	// copy types from externdcl list to signatlist
	for _, n := range externdcl {
		if n.Op != OTYPE {
			continue
		}
		signatlist = append(signatlist, n)
	}

	// Process signatlist.  This can't use range, as entries are
	// added to the list while it is being processed.
	for i := 0; i < len(signatlist); i++ {
		n := signatlist[i]
		if n.Op != OTYPE {
			continue
		}
		t := n.Type
		dtypesym(t)
		if t.Sym != nil {
			dtypesym(ptrto(t))
		}
	}

	// process itabs
	for _, i := range itabs {
		// dump empty itab symbol into i.sym
		// type itab struct {
		//   inter  *interfacetype
		//   _type  *_type
		//   link   *itab
		//   bad    int32
		//   unused int32
		//   fun    [1]uintptr // variable sized
		// }
		o := dsymptr(i.sym, 0, dtypesym(i.itype), 0)
		o = dsymptr(i.sym, o, dtypesym(i.t), 0)
		o += Widthptr + 8                      // skip link/bad/inhash fields
		o += len(imethods(i.itype)) * Widthptr // skip fun method pointers
		// at runtime the itab will contain pointers to types, other itabs and
		// method functions. None are allocated on heap, so we can use obj.NOPTR.
		ggloblsym(i.sym, int32(o), int16(obj.DUPOK|obj.NOPTR))

		ilink := Pkglookup(i.t.tconv(FmtLeft)+","+i.itype.tconv(FmtLeft), itablinkpkg)
		dsymptr(ilink, 0, i.sym, 0)
		ggloblsym(ilink, int32(Widthptr), int16(obj.DUPOK|obj.RODATA))
	}

	// process ptabs
	if localpkg.Name == "main" && len(ptabs) > 0 {
		ot := 0
		s := obj.Linklookup(Ctxt, "go.plugin.tabs", 0)
		for _, p := range ptabs {
			// Dump ptab symbol into go.pluginsym package.
			//
			// type ptab struct {
			//	name nameOff
			//	typ  typeOff // pointer to symbol
			// }
			nsym := dname(p.s.Name, "", nil, true)
			ot = dsymptrOffLSym(s, ot, nsym, 0)
			ot = dsymptrOffLSym(s, ot, Linksym(dtypesym(p.t)), 0)
		}
		ggloblLSym(s, int32(ot), int16(obj.RODATA))

		ot = 0
		s = obj.Linklookup(Ctxt, "go.plugin.exports", 0)
		for _, p := range ptabs {
			ot = dsymptrLSym(s, ot, Linksym(p.s), 0)
		}
		ggloblLSym(s, int32(ot), int16(obj.RODATA))
	}

	// generate import strings for imported packages
	if forceObjFileStability {
		// Sorting the packages is not necessary but to compare binaries created
		// using textual and binary format we sort by path to reduce differences.
		sort.Sort(pkgByPath(pkgs))
	}
	for _, p := range pkgs {
		if p.Direct {
			dimportpath(p)
		}
	}

	// do basic types if compiling package runtime.
	// they have to be in at least one package,
	// and runtime is always loaded implicitly,
	// so this is as good as any.
	// another possible choice would be package main,
	// but using runtime means fewer copies in .6 files.
	if myimportpath == "runtime" {
		for i := EType(1); i <= TBOOL; i++ {
			dtypesym(ptrto(Types[i]))
		}
		dtypesym(ptrto(Types[TSTRING]))
		dtypesym(ptrto(Types[TUNSAFEPTR]))

		// emit type structs for error and func(error) string.
		// The latter is the type of an auto-generated wrapper.
		dtypesym(ptrto(errortype))

		dtypesym(functype(nil, []*Node{nod(ODCLFIELD, nil, typenod(errortype))}, []*Node{nod(ODCLFIELD, nil, typenod(Types[TSTRING]))}))

		// add paths for runtime and main, which 6l imports implicitly.
		dimportpath(Runtimepkg)

		if flag_race {
			dimportpath(racepkg)
		}
		if flag_msan {
			dimportpath(msanpkg)
		}
		dimportpath(mkpkg("main"))
	}
}

type pkgByPath []*Pkg

func (a pkgByPath) Len() int           { return len(a) }
func (a pkgByPath) Less(i, j int) bool { return a[i].Path < a[j].Path }
func (a pkgByPath) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }

func dalgsym(t *Type) *Sym {
	var s *Sym
	var hashfunc *Sym
	var eqfunc *Sym

	// dalgsym is only called for a type that needs an algorithm table,
	// which implies that the type is comparable (or else it would use ANOEQ).

	if algtype(t) == AMEM {
		// we use one algorithm table for all AMEM types of a given size
		p := fmt.Sprintf(".alg%d", t.Width)

		s = Pkglookup(p, typepkg)

		if s.Flags&SymAlgGen != 0 {
			return s
		}
		s.Flags |= SymAlgGen

		// make hash closure
		p = fmt.Sprintf(".hashfunc%d", t.Width)

		hashfunc = Pkglookup(p, typepkg)

		ot := 0
		ot = dsymptr(hashfunc, ot, Pkglookup("memhash_varlen", Runtimepkg), 0)
		ot = duintxx(hashfunc, ot, uint64(t.Width), Widthptr) // size encoded in closure
		ggloblsym(hashfunc, int32(ot), obj.DUPOK|obj.RODATA)

		// make equality closure
		p = fmt.Sprintf(".eqfunc%d", t.Width)

		eqfunc = Pkglookup(p, typepkg)

		ot = 0
		ot = dsymptr(eqfunc, ot, Pkglookup("memequal_varlen", Runtimepkg), 0)
		ot = duintxx(eqfunc, ot, uint64(t.Width), Widthptr)
		ggloblsym(eqfunc, int32(ot), obj.DUPOK|obj.RODATA)
	} else {
		// generate an alg table specific to this type
		s = typesymprefix(".alg", t)

		hash := typesymprefix(".hash", t)
		eq := typesymprefix(".eq", t)
		hashfunc = typesymprefix(".hashfunc", t)
		eqfunc = typesymprefix(".eqfunc", t)

		genhash(hash, t)
		geneq(eq, t)

		// make Go funcs (closures) for calling hash and equal from Go
		dsymptr(hashfunc, 0, hash, 0)

		ggloblsym(hashfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
		dsymptr(eqfunc, 0, eq, 0)
		ggloblsym(eqfunc, int32(Widthptr), obj.DUPOK|obj.RODATA)
	}

	// ../../../../runtime/alg.go:/typeAlg
	ot := 0

	ot = dsymptr(s, ot, hashfunc, 0)
	ot = dsymptr(s, ot, eqfunc, 0)
	ggloblsym(s, int32(ot), obj.DUPOK|obj.RODATA)
	return s
}

// maxPtrmaskBytes is the maximum length of a GC ptrmask bitmap,
// which holds 1-bit entries describing where pointers are in a given type.
// 16 bytes is enough to describe 128 pointer-sized words, 512 or 1024 bytes
// depending on the system. Above this length, the GC information is
// recorded as a GC program, which can express repetition compactly.
// In either form, the information is used by the runtime to initialize the
// heap bitmap, and for large types (like 128 or more words), they are
// roughly the same speed. GC programs are never much larger and often
// more compact. (If large arrays are involved, they can be arbitrarily more
// compact.)
//
// The cutoff must be large enough that any allocation large enough to
// use a GC program is large enough that it does not share heap bitmap
// bytes with any other objects, allowing the GC program execution to
// assume an aligned start and not use atomic operations. In the current
// runtime, this means all malloc size classes larger than the cutoff must
// be multiples of four words. On 32-bit systems that's 16 bytes, and
// all size classes >= 16 bytes are 16-byte aligned, so no real constraint.
// On 64-bit systems, that's 32 bytes, and 32-byte alignment is guaranteed
// for size classes >= 256 bytes. On a 64-bit system, 256 bytes allocated
// is 32 pointers, the bits for which fit in 4 bytes. So maxPtrmaskBytes
// must be >= 4.
//
// We used to use 16 because the GC programs do have some constant overhead
// to get started, and processing 128 pointers seems to be enough to
// amortize that overhead well.
//
// To make sure that the runtime's chansend can call typeBitsBulkBarrier,
// we raised the limit to 2048, so that even 32-bit systems are guaranteed to
// use bitmaps for objects up to 64 kB in size.
//
// Also known to reflect/type.go.
//
const maxPtrmaskBytes = 2048

// dgcsym emits and returns a data symbol containing GC information for type t,
// along with a boolean reporting whether the UseGCProg bit should be set in
// the type kind, and the ptrdata field to record in the reflect type information.
func dgcsym(t *Type) (sym *Sym, useGCProg bool, ptrdata int64) {
	ptrdata = typeptrdata(t)
	if ptrdata/int64(Widthptr) <= maxPtrmaskBytes*8 {
		sym = dgcptrmask(t)
		return
	}

	useGCProg = true
	sym, ptrdata = dgcprog(t)
	return
}

// dgcptrmask emits and returns the symbol containing a pointer mask for type t.
func dgcptrmask(t *Type) *Sym {
	ptrmask := make([]byte, (typeptrdata(t)/int64(Widthptr)+7)/8)
	fillptrmask(t, ptrmask)
	p := fmt.Sprintf("gcbits.%x", ptrmask)

	sym := Pkglookup(p, Runtimepkg)
	if sym.Flags&SymUniq == 0 {
		sym.Flags |= SymUniq
		for i, x := range ptrmask {
			duint8(sym, i, x)
		}
		ggloblsym(sym, int32(len(ptrmask)), obj.DUPOK|obj.RODATA|obj.LOCAL)
	}
	return sym
}

// fillptrmask fills in ptrmask with 1s corresponding to the
// word offsets in t that hold pointers.
// ptrmask is assumed to fit at least typeptrdata(t)/Widthptr bits.
func fillptrmask(t *Type, ptrmask []byte) {
	for i := range ptrmask {
		ptrmask[i] = 0
	}
	if !haspointers(t) {
		return
	}

	vec := bvalloc(8 * int32(len(ptrmask)))
	xoffset := int64(0)
	onebitwalktype1(t, &xoffset, vec)

	nptr := typeptrdata(t) / int64(Widthptr)
	for i := int64(0); i < nptr; i++ {
		if vec.Get(int32(i)) {
			ptrmask[i/8] |= 1 << (uint(i) % 8)
		}
	}
}

// dgcprog emits and returns the symbol containing a GC program for type t
// along with the size of the data described by the program (in the range [typeptrdata(t), t.Width]).
// In practice, the size is typeptrdata(t) except for non-trivial arrays.
// For non-trivial arrays, the program describes the full t.Width size.
func dgcprog(t *Type) (*Sym, int64) {
	dowidth(t)
	if t.Width == BADWIDTH {
		Fatalf("dgcprog: %v badwidth", t)
	}
	sym := typesymprefix(".gcprog", t)
	var p GCProg
	p.init(sym)
	p.emit(t, 0)
	offset := p.w.BitIndex() * int64(Widthptr)
	p.end()
	if ptrdata := typeptrdata(t); offset < ptrdata || offset > t.Width {
		Fatalf("dgcprog: %v: offset=%d but ptrdata=%d size=%d", t, offset, ptrdata, t.Width)
	}
	return sym, offset
}

type GCProg struct {
	sym    *Sym
	symoff int
	w      gcprog.Writer
}

var Debug_gcprog int // set by -d gcprog

func (p *GCProg) init(sym *Sym) {
	p.sym = sym
	p.symoff = 4 // first 4 bytes hold program length
	p.w.Init(p.writeByte)
	if Debug_gcprog > 0 {
		fmt.Fprintf(os.Stderr, "compile: start GCProg for %v\n", sym)
		p.w.Debug(os.Stderr)
	}
}

func (p *GCProg) writeByte(x byte) {
	p.symoff = duint8(p.sym, p.symoff, x)
}

func (p *GCProg) end() {
	p.w.End()
	duint32(p.sym, 0, uint32(p.symoff-4))
	ggloblsym(p.sym, int32(p.symoff), obj.DUPOK|obj.RODATA|obj.LOCAL)
	if Debug_gcprog > 0 {
		fmt.Fprintf(os.Stderr, "compile: end GCProg for %v\n", p.sym)
	}
}

func (p *GCProg) emit(t *Type, offset int64) {
	dowidth(t)
	if !haspointers(t) {
		return
	}
	if t.Width == int64(Widthptr) {
		p.w.Ptr(offset / int64(Widthptr))
		return
	}
	switch t.Etype {
	default:
		Fatalf("GCProg.emit: unexpected type %v", t)

	case TSTRING:
		p.w.Ptr(offset / int64(Widthptr))

	case TINTER:
		p.w.Ptr(offset / int64(Widthptr))
		p.w.Ptr(offset/int64(Widthptr) + 1)

	case TSLICE:
		p.w.Ptr(offset / int64(Widthptr))

	case TARRAY:
		if t.NumElem() == 0 {
			// should have been handled by haspointers check above
			Fatalf("GCProg.emit: empty array")
		}

		// Flatten array-of-array-of-array to just a big array by multiplying counts.
		count := t.NumElem()
		elem := t.Elem()
		for elem.IsArray() {
			count *= elem.NumElem()
			elem = elem.Elem()
		}

		if !p.w.ShouldRepeat(elem.Width/int64(Widthptr), count) {
			// Cheaper to just emit the bits.
			for i := int64(0); i < count; i++ {
				p.emit(elem, offset+i*elem.Width)
			}
			return
		}
		p.emit(elem, offset)
		p.w.ZeroUntil((offset + elem.Width) / int64(Widthptr))
		p.w.Repeat(elem.Width/int64(Widthptr), count-1)

	case TSTRUCT:
		for _, t1 := range t.Fields().Slice() {
			p.emit(t1.Type, offset+t1.Offset)
		}
	}
}

// zeroaddr returns the address of a symbol with at least
// size bytes of zeros.
func zeroaddr(size int64) *Node {
	if size >= 1<<31 {
		Fatalf("map value too big %d", size)
	}
	if zerosize < size {
		zerosize = size
	}
	s := Pkglookup("zero", mappkg)
	if s.Def == nil {
		x := newname(s)
		x.Type = Types[TUINT8]
		x.Class = PEXTERN
		x.Typecheck = 1
		s.Def = x
	}
	z := nod(OADDR, s.Def, nil)
	z.Type = ptrto(Types[TUINT8])
	z.Addable = true
	z.Typecheck = 1
	return z
}