aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/plive.go
blob: a9ea37701e43dcae4f7561f71c7edb6fe3b44d38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector liveness bitmap generation.

// The command line flag -live causes this code to print debug information.
// The levels are:
//
//	-live (aka -live=1): print liveness lists as code warnings at safe points
//	-live=2: print an assembly listing with liveness annotations
//
// Each level includes the earlier output as well.

package gc

import (
	"cmd/compile/internal/ssa"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"cmd/internal/objabi"
	"crypto/md5"
	"fmt"
	"strings"
)

// go115ReduceLiveness disables register maps and only produces stack
// maps at call sites.
//
// In Go 1.15, we changed debug call injection to use conservative
// scanning instead of precise pointer maps, so these are no longer
// necessary.
//
// Keep in sync with runtime/preempt.go:go115ReduceLiveness.
const go115ReduceLiveness = true

// OpVarDef is an annotation for the liveness analysis, marking a place
// where a complete initialization (definition) of a variable begins.
// Since the liveness analysis can see initialization of single-word
// variables quite easy, OpVarDef is only needed for multi-word
// variables satisfying isfat(n.Type). For simplicity though, buildssa
// emits OpVarDef regardless of variable width.
//
// An 'OpVarDef x' annotation in the instruction stream tells the liveness
// analysis to behave as though the variable x is being initialized at that
// point in the instruction stream. The OpVarDef must appear before the
// actual (multi-instruction) initialization, and it must also appear after
// any uses of the previous value, if any. For example, if compiling:
//
//	x = x[1:]
//
// it is important to generate code like:
//
//	base, len, cap = pieces of x[1:]
//	OpVarDef x
//	x = {base, len, cap}
//
// If instead the generated code looked like:
//
//	OpVarDef x
//	base, len, cap = pieces of x[1:]
//	x = {base, len, cap}
//
// then the liveness analysis would decide the previous value of x was
// unnecessary even though it is about to be used by the x[1:] computation.
// Similarly, if the generated code looked like:
//
//	base, len, cap = pieces of x[1:]
//	x = {base, len, cap}
//	OpVarDef x
//
// then the liveness analysis will not preserve the new value of x, because
// the OpVarDef appears to have "overwritten" it.
//
// OpVarDef is a bit of a kludge to work around the fact that the instruction
// stream is working on single-word values but the liveness analysis
// wants to work on individual variables, which might be multi-word
// aggregates. It might make sense at some point to look into letting
// the liveness analysis work on single-word values as well, although
// there are complications around interface values, slices, and strings,
// all of which cannot be treated as individual words.
//
// OpVarKill is the opposite of OpVarDef: it marks a value as no longer needed,
// even if its address has been taken. That is, an OpVarKill annotation asserts
// that its argument is certainly dead, for use when the liveness analysis
// would not otherwise be able to deduce that fact.

// TODO: get rid of OpVarKill here. It's useful for stack frame allocation
// so the compiler can allocate two temps to the same location. Here it's now
// useless, since the implementation of stack objects.

// BlockEffects summarizes the liveness effects on an SSA block.
type BlockEffects struct {
	// Computed during Liveness.prologue using only the content of
	// individual blocks:
	//
	//	uevar: upward exposed variables (used before set in block)
	//	varkill: killed variables (set in block)
	uevar   varRegVec
	varkill varRegVec

	// Computed during Liveness.solve using control flow information:
	//
	//	livein: variables live at block entry
	//	liveout: variables live at block exit
	livein  varRegVec
	liveout varRegVec
}

// A collection of global state used by liveness analysis.
type Liveness struct {
	fn         *Node
	f          *ssa.Func
	vars       []*Node
	idx        map[*Node]int32
	stkptrsize int64

	be []BlockEffects

	// allUnsafe indicates that all points in this function are
	// unsafe-points.
	allUnsafe bool
	// unsafePoints bit i is set if Value ID i is an unsafe-point
	// (preemption is not allowed). Only valid if !allUnsafe.
	unsafePoints bvec

	// An array with a bit vector for each safe point in the
	// current Block during Liveness.epilogue. Indexed in Value
	// order for that block. Additionally, for the entry block
	// livevars[0] is the entry bitmap. Liveness.compact moves
	// these to stackMaps and regMaps.
	livevars []varRegVec

	// livenessMap maps from safe points (i.e., CALLs) to their
	// liveness map indexes.
	livenessMap LivenessMap
	stackMapSet bvecSet
	stackMaps   []bvec
	regMapSet   map[liveRegMask]int
	regMaps     []liveRegMask

	cache progeffectscache
}

// LivenessMap maps from *ssa.Value to LivenessIndex.
type LivenessMap struct {
	vals map[ssa.ID]LivenessIndex
	// The set of live, pointer-containing variables at the deferreturn
	// call (only set when open-coded defers are used).
	deferreturn LivenessIndex
}

func (m *LivenessMap) reset() {
	if m.vals == nil {
		m.vals = make(map[ssa.ID]LivenessIndex)
	} else {
		for k := range m.vals {
			delete(m.vals, k)
		}
	}
	m.deferreturn = LivenessInvalid
}

func (m *LivenessMap) set(v *ssa.Value, i LivenessIndex) {
	m.vals[v.ID] = i
}

func (m LivenessMap) Get(v *ssa.Value) LivenessIndex {
	if !go115ReduceLiveness {
		// All safe-points are in the map, so if v isn't in
		// the map, it's an unsafe-point.
		if idx, ok := m.vals[v.ID]; ok {
			return idx
		}
		return LivenessInvalid
	}

	// If v isn't in the map, then it's a "don't care" and not an
	// unsafe-point.
	if idx, ok := m.vals[v.ID]; ok {
		return idx
	}
	return LivenessIndex{StackMapDontCare, StackMapDontCare, false}
}

// LivenessIndex stores the liveness map information for a Value.
type LivenessIndex struct {
	stackMapIndex int
	regMapIndex   int // only for !go115ReduceLiveness

	// isUnsafePoint indicates that this is an unsafe-point.
	//
	// Note that it's possible for a call Value to have a stack
	// map while also being an unsafe-point. This means it cannot
	// be preempted at this instruction, but that a preemption or
	// stack growth may happen in the called function.
	isUnsafePoint bool
}

// LivenessInvalid indicates an unsafe point with no stack map.
var LivenessInvalid = LivenessIndex{StackMapDontCare, StackMapDontCare, true} // only for !go115ReduceLiveness

// StackMapDontCare indicates that the stack map index at a Value
// doesn't matter.
//
// This is a sentinel value that should never be emitted to the PCDATA
// stream. We use -1000 because that's obviously never a valid stack
// index (but -1 is).
const StackMapDontCare = -1000

func (idx LivenessIndex) StackMapValid() bool {
	return idx.stackMapIndex != StackMapDontCare
}

func (idx LivenessIndex) RegMapValid() bool {
	return idx.regMapIndex != StackMapDontCare
}

type progeffectscache struct {
	retuevar    []int32
	tailuevar   []int32
	initialized bool
}

// varRegVec contains liveness bitmaps for variables and registers.
type varRegVec struct {
	vars bvec
	regs liveRegMask
}

func (v *varRegVec) Eq(v2 varRegVec) bool {
	return v.vars.Eq(v2.vars) && v.regs == v2.regs
}

func (v *varRegVec) Copy(v2 varRegVec) {
	v.vars.Copy(v2.vars)
	v.regs = v2.regs
}

func (v *varRegVec) Clear() {
	v.vars.Clear()
	v.regs = 0
}

func (v *varRegVec) Or(v1, v2 varRegVec) {
	v.vars.Or(v1.vars, v2.vars)
	v.regs = v1.regs | v2.regs
}

func (v *varRegVec) AndNot(v1, v2 varRegVec) {
	v.vars.AndNot(v1.vars, v2.vars)
	v.regs = v1.regs &^ v2.regs
}

// livenessShouldTrack reports whether the liveness analysis
// should track the variable n.
// We don't care about variables that have no pointers,
// nor do we care about non-local variables,
// nor do we care about empty structs (handled by the pointer check),
// nor do we care about the fake PAUTOHEAP variables.
func livenessShouldTrack(n *Node) bool {
	return n.Op == ONAME && (n.Class() == PAUTO || n.Class() == PPARAM || n.Class() == PPARAMOUT) && n.Type.HasPointers()
}

// getvariables returns the list of on-stack variables that we need to track
// and a map for looking up indices by *Node.
func getvariables(fn *Node) ([]*Node, map[*Node]int32) {
	var vars []*Node
	for _, n := range fn.Func.Dcl {
		if livenessShouldTrack(n) {
			vars = append(vars, n)
		}
	}
	idx := make(map[*Node]int32, len(vars))
	for i, n := range vars {
		idx[n] = int32(i)
	}
	return vars, idx
}

func (lv *Liveness) initcache() {
	if lv.cache.initialized {
		Fatalf("liveness cache initialized twice")
		return
	}
	lv.cache.initialized = true

	for i, node := range lv.vars {
		switch node.Class() {
		case PPARAM:
			// A return instruction with a p.to is a tail return, which brings
			// the stack pointer back up (if it ever went down) and then jumps
			// to a new function entirely. That form of instruction must read
			// all the parameters for correctness, and similarly it must not
			// read the out arguments - they won't be set until the new
			// function runs.
			lv.cache.tailuevar = append(lv.cache.tailuevar, int32(i))

		case PPARAMOUT:
			// All results are live at every return point.
			// Note that this point is after escaping return values
			// are copied back to the stack using their PAUTOHEAP references.
			lv.cache.retuevar = append(lv.cache.retuevar, int32(i))
		}
	}
}

// A liveEffect is a set of flags that describe an instruction's
// liveness effects on a variable.
//
// The possible flags are:
//	uevar - used by the instruction
//	varkill - killed by the instruction (set)
// A kill happens after the use (for an instruction that updates a value, for example).
type liveEffect int

const (
	uevar liveEffect = 1 << iota
	varkill
)

// valueEffects returns the index of a variable in lv.vars and the
// liveness effects v has on that variable.
// If v does not affect any tracked variables, it returns -1, 0.
func (lv *Liveness) valueEffects(v *ssa.Value) (int32, liveEffect) {
	n, e := affectedNode(v)
	if e == 0 || n == nil || n.Op != ONAME { // cheapest checks first
		return -1, 0
	}

	// AllocFrame has dropped unused variables from
	// lv.fn.Func.Dcl, but they might still be referenced by
	// OpVarFoo pseudo-ops. Ignore them to prevent "lost track of
	// variable" ICEs (issue 19632).
	switch v.Op {
	case ssa.OpVarDef, ssa.OpVarKill, ssa.OpVarLive, ssa.OpKeepAlive:
		if !n.Name.Used() {
			return -1, 0
		}
	}

	var effect liveEffect
	// Read is a read, obviously.
	//
	// Addr is a read also, as any subsequent holder of the pointer must be able
	// to see all the values (including initialization) written so far.
	// This also prevents a variable from "coming back from the dead" and presenting
	// stale pointers to the garbage collector. See issue 28445.
	if e&(ssa.SymRead|ssa.SymAddr) != 0 {
		effect |= uevar
	}
	if e&ssa.SymWrite != 0 && (!isfat(n.Type) || v.Op == ssa.OpVarDef) {
		effect |= varkill
	}

	if effect == 0 {
		return -1, 0
	}

	if pos, ok := lv.idx[n]; ok {
		return pos, effect
	}
	return -1, 0
}

// affectedNode returns the *Node affected by v
func affectedNode(v *ssa.Value) (*Node, ssa.SymEffect) {
	// Special cases.
	switch v.Op {
	case ssa.OpLoadReg:
		n, _ := AutoVar(v.Args[0])
		return n, ssa.SymRead
	case ssa.OpStoreReg:
		n, _ := AutoVar(v)
		return n, ssa.SymWrite

	case ssa.OpVarLive:
		return v.Aux.(*Node), ssa.SymRead
	case ssa.OpVarDef, ssa.OpVarKill:
		return v.Aux.(*Node), ssa.SymWrite
	case ssa.OpKeepAlive:
		n, _ := AutoVar(v.Args[0])
		return n, ssa.SymRead
	}

	e := v.Op.SymEffect()
	if e == 0 {
		return nil, 0
	}

	switch a := v.Aux.(type) {
	case nil, *obj.LSym:
		// ok, but no node
		return nil, e
	case *Node:
		return a, e
	default:
		Fatalf("weird aux: %s", v.LongString())
		return nil, e
	}
}

// regEffects returns the registers affected by v.
func (lv *Liveness) regEffects(v *ssa.Value) (uevar, kill liveRegMask) {
	if go115ReduceLiveness {
		return 0, 0
	}
	if v.Op == ssa.OpPhi {
		// All phi node arguments must come from the same
		// register and the result must also go to that
		// register, so there's no overall effect.
		return 0, 0
	}
	addLocs := func(mask liveRegMask, v *ssa.Value, ptrOnly bool) liveRegMask {
		if int(v.ID) >= len(lv.f.RegAlloc) {
			// v has no allocated registers.
			return mask
		}
		loc := lv.f.RegAlloc[v.ID]
		if loc == nil {
			// v has no allocated registers.
			return mask
		}
		if v.Op == ssa.OpGetG {
			// GetG represents the G register, which is a
			// pointer, but not a valid GC register. The
			// current G is always reachable, so it's okay
			// to ignore this register.
			return mask
		}

		// Collect registers and types from v's location.
		var regs [2]*ssa.Register
		nreg := 0
		switch loc := loc.(type) {
		case ssa.LocalSlot:
			return mask
		case *ssa.Register:
			if ptrOnly && !v.Type.HasPointers() {
				return mask
			}
			regs[0] = loc
			nreg = 1
		case ssa.LocPair:
			// The value will have TTUPLE type, and the
			// children are nil or *ssa.Register.
			if v.Type.Etype != types.TTUPLE {
				v.Fatalf("location pair %s has non-tuple type %v", loc, v.Type)
			}
			for i, loc1 := range &loc {
				if loc1 == nil {
					continue
				}
				if ptrOnly && !v.Type.FieldType(i).HasPointers() {
					continue
				}
				regs[nreg] = loc1.(*ssa.Register)
				nreg++
			}
		default:
			v.Fatalf("weird RegAlloc location: %s (%T)", loc, loc)
		}

		// Add register locations to vars.
		for _, reg := range regs[:nreg] {
			if reg.GCNum() == -1 {
				if ptrOnly {
					v.Fatalf("pointer in non-pointer register %v", reg)
				} else {
					continue
				}
			}
			mask |= 1 << uint(reg.GCNum())
		}
		return mask
	}

	// v clobbers all registers it writes to (whether or not the
	// write is pointer-typed).
	kill = addLocs(0, v, false)
	for _, arg := range v.Args {
		// v uses all registers is reads from, but we only
		// care about marking those containing pointers.
		uevar = addLocs(uevar, arg, true)
	}
	return uevar, kill
}

type liveRegMask uint32 // only if !go115ReduceLiveness

func (m liveRegMask) niceString(config *ssa.Config) string {
	if m == 0 {
		return "<none>"
	}
	str := ""
	for i, reg := range config.GCRegMap {
		if m&(1<<uint(i)) != 0 {
			if str != "" {
				str += ","
			}
			str += reg.String()
		}
	}
	return str
}

type livenessFuncCache struct {
	be          []BlockEffects
	livenessMap LivenessMap
}

// Constructs a new liveness structure used to hold the global state of the
// liveness computation. The cfg argument is a slice of *BasicBlocks and the
// vars argument is a slice of *Nodes.
func newliveness(fn *Node, f *ssa.Func, vars []*Node, idx map[*Node]int32, stkptrsize int64) *Liveness {
	lv := &Liveness{
		fn:         fn,
		f:          f,
		vars:       vars,
		idx:        idx,
		stkptrsize: stkptrsize,

		regMapSet: make(map[liveRegMask]int),
	}

	// Significant sources of allocation are kept in the ssa.Cache
	// and reused. Surprisingly, the bit vectors themselves aren't
	// a major source of allocation, but the liveness maps are.
	if lc, _ := f.Cache.Liveness.(*livenessFuncCache); lc == nil {
		// Prep the cache so liveness can fill it later.
		f.Cache.Liveness = new(livenessFuncCache)
	} else {
		if cap(lc.be) >= f.NumBlocks() {
			lv.be = lc.be[:f.NumBlocks()]
		}
		lv.livenessMap = LivenessMap{vals: lc.livenessMap.vals, deferreturn: LivenessInvalid}
		lc.livenessMap.vals = nil
	}
	if lv.be == nil {
		lv.be = make([]BlockEffects, f.NumBlocks())
	}

	nblocks := int32(len(f.Blocks))
	nvars := int32(len(vars))
	bulk := bvbulkalloc(nvars, nblocks*7)
	for _, b := range f.Blocks {
		be := lv.blockEffects(b)

		be.uevar = varRegVec{vars: bulk.next()}
		be.varkill = varRegVec{vars: bulk.next()}
		be.livein = varRegVec{vars: bulk.next()}
		be.liveout = varRegVec{vars: bulk.next()}
	}
	lv.livenessMap.reset()

	lv.markUnsafePoints()
	return lv
}

func (lv *Liveness) blockEffects(b *ssa.Block) *BlockEffects {
	return &lv.be[b.ID]
}

// NOTE: The bitmap for a specific type t could be cached in t after
// the first run and then simply copied into bv at the correct offset
// on future calls with the same type t.
func onebitwalktype1(t *types.Type, off int64, bv bvec) {
	if t.Align > 0 && off&int64(t.Align-1) != 0 {
		Fatalf("onebitwalktype1: invalid initial alignment: type %v has alignment %d, but offset is %v", t, t.Align, off)
	}
	if !t.HasPointers() {
		// Note: this case ensures that pointers to go:notinheap types
		// are not considered pointers by garbage collection and stack copying.
		return
	}

	switch t.Etype {
	case TPTR, TUNSAFEPTR, TFUNC, TCHAN, TMAP:
		if off&int64(Widthptr-1) != 0 {
			Fatalf("onebitwalktype1: invalid alignment, %v", t)
		}
		bv.Set(int32(off / int64(Widthptr))) // pointer

	case TSTRING:
		// struct { byte *str; intgo len; }
		if off&int64(Widthptr-1) != 0 {
			Fatalf("onebitwalktype1: invalid alignment, %v", t)
		}
		bv.Set(int32(off / int64(Widthptr))) //pointer in first slot

	case TINTER:
		// struct { Itab *tab;	void *data; }
		// or, when isnilinter(t)==true:
		// struct { Type *type; void *data; }
		if off&int64(Widthptr-1) != 0 {
			Fatalf("onebitwalktype1: invalid alignment, %v", t)
		}
		// The first word of an interface is a pointer, but we don't
		// treat it as such.
		// 1. If it is a non-empty interface, the pointer points to an itab
		//    which is always in persistentalloc space.
		// 2. If it is an empty interface, the pointer points to a _type.
		//   a. If it is a compile-time-allocated type, it points into
		//      the read-only data section.
		//   b. If it is a reflect-allocated type, it points into the Go heap.
		//      Reflect is responsible for keeping a reference to
		//      the underlying type so it won't be GCd.
		// If we ever have a moving GC, we need to change this for 2b (as
		// well as scan itabs to update their itab._type fields).
		bv.Set(int32(off/int64(Widthptr) + 1)) // pointer in second slot

	case TSLICE:
		// struct { byte *array; uintgo len; uintgo cap; }
		if off&int64(Widthptr-1) != 0 {
			Fatalf("onebitwalktype1: invalid TARRAY alignment, %v", t)
		}
		bv.Set(int32(off / int64(Widthptr))) // pointer in first slot (BitsPointer)

	case TARRAY:
		elt := t.Elem()
		if elt.Width == 0 {
			// Short-circuit for #20739.
			break
		}
		for i := int64(0); i < t.NumElem(); i++ {
			onebitwalktype1(elt, off, bv)
			off += elt.Width
		}

	case TSTRUCT:
		for _, f := range t.Fields().Slice() {
			onebitwalktype1(f.Type, off+f.Offset, bv)
		}

	default:
		Fatalf("onebitwalktype1: unexpected type, %v", t)
	}
}

// usedRegs returns the maximum width of the live register map.
func (lv *Liveness) usedRegs() int32 {
	var any liveRegMask
	for _, live := range lv.regMaps {
		any |= live
	}
	i := int32(0)
	for any != 0 {
		any >>= 1
		i++
	}
	return i
}

// Generates live pointer value maps for arguments and local variables. The
// this argument and the in arguments are always assumed live. The vars
// argument is a slice of *Nodes.
func (lv *Liveness) pointerMap(liveout bvec, vars []*Node, args, locals bvec) {
	for i := int32(0); ; i++ {
		i = liveout.Next(i)
		if i < 0 {
			break
		}
		node := vars[i]
		switch node.Class() {
		case PAUTO:
			onebitwalktype1(node.Type, node.Xoffset+lv.stkptrsize, locals)

		case PPARAM, PPARAMOUT:
			onebitwalktype1(node.Type, node.Xoffset, args)
		}
	}
}

// allUnsafe indicates that all points in this function are
// unsafe-points.
func allUnsafe(f *ssa.Func) bool {
	// The runtime assumes the only safe-points are function
	// prologues (because that's how it used to be). We could and
	// should improve that, but for now keep consider all points
	// in the runtime unsafe. obj will add prologues and their
	// safe-points.
	//
	// go:nosplit functions are similar. Since safe points used to
	// be coupled with stack checks, go:nosplit often actually
	// means "no safe points in this function".
	return compiling_runtime || f.NoSplit
}

// markUnsafePoints finds unsafe points and computes lv.unsafePoints.
func (lv *Liveness) markUnsafePoints() {
	if allUnsafe(lv.f) {
		// No complex analysis necessary.
		lv.allUnsafe = true
		return
	}

	lv.unsafePoints = bvalloc(int32(lv.f.NumValues()))

	// Mark architecture-specific unsafe points.
	for _, b := range lv.f.Blocks {
		for _, v := range b.Values {
			if v.Op.UnsafePoint() {
				lv.unsafePoints.Set(int32(v.ID))
			}
		}
	}

	// Mark write barrier unsafe points.
	for _, wbBlock := range lv.f.WBLoads {
		if wbBlock.Kind == ssa.BlockPlain && len(wbBlock.Values) == 0 {
			// The write barrier block was optimized away
			// but we haven't done dead block elimination.
			// (This can happen in -N mode.)
			continue
		}
		// Check that we have the expected diamond shape.
		if len(wbBlock.Succs) != 2 {
			lv.f.Fatalf("expected branch at write barrier block %v", wbBlock)
		}
		s0, s1 := wbBlock.Succs[0].Block(), wbBlock.Succs[1].Block()
		if s0 == s1 {
			// There's no difference between write barrier on and off.
			// Thus there's no unsafe locations. See issue 26024.
			continue
		}
		if s0.Kind != ssa.BlockPlain || s1.Kind != ssa.BlockPlain {
			lv.f.Fatalf("expected successors of write barrier block %v to be plain", wbBlock)
		}
		if s0.Succs[0].Block() != s1.Succs[0].Block() {
			lv.f.Fatalf("expected successors of write barrier block %v to converge", wbBlock)
		}

		// Flow backwards from the control value to find the
		// flag load. We don't know what lowered ops we're
		// looking for, but all current arches produce a
		// single op that does the memory load from the flag
		// address, so we look for that.
		var load *ssa.Value
		v := wbBlock.Controls[0]
		for {
			if sym, ok := v.Aux.(*obj.LSym); ok && sym == writeBarrier {
				load = v
				break
			}
			switch v.Op {
			case ssa.Op386TESTL:
				// 386 lowers Neq32 to (TESTL cond cond),
				if v.Args[0] == v.Args[1] {
					v = v.Args[0]
					continue
				}
			case ssa.Op386MOVLload, ssa.OpARM64MOVWUload, ssa.OpPPC64MOVWZload, ssa.OpWasmI64Load32U:
				// Args[0] is the address of the write
				// barrier control. Ignore Args[1],
				// which is the mem operand.
				// TODO: Just ignore mem operands?
				v = v.Args[0]
				continue
			}
			// Common case: just flow backwards.
			if len(v.Args) != 1 {
				v.Fatalf("write barrier control value has more than one argument: %s", v.LongString())
			}
			v = v.Args[0]
		}

		// Mark everything after the load unsafe.
		found := false
		for _, v := range wbBlock.Values {
			found = found || v == load
			if found {
				lv.unsafePoints.Set(int32(v.ID))
			}
		}

		// Mark the two successor blocks unsafe. These come
		// back together immediately after the direct write in
		// one successor and the last write barrier call in
		// the other, so there's no need to be more precise.
		for _, succ := range wbBlock.Succs {
			for _, v := range succ.Block().Values {
				lv.unsafePoints.Set(int32(v.ID))
			}
		}
	}

	// Find uintptr -> unsafe.Pointer conversions and flood
	// unsafeness back to a call (which is always a safe point).
	//
	// Looking for the uintptr -> unsafe.Pointer conversion has a
	// few advantages over looking for unsafe.Pointer -> uintptr
	// conversions:
	//
	// 1. We avoid needlessly blocking safe-points for
	// unsafe.Pointer -> uintptr conversions that never go back to
	// a Pointer.
	//
	// 2. We don't have to detect calls to reflect.Value.Pointer,
	// reflect.Value.UnsafeAddr, and reflect.Value.InterfaceData,
	// which are implicit unsafe.Pointer -> uintptr conversions.
	// We can't even reliably detect this if there's an indirect
	// call to one of these methods.
	//
	// TODO: For trivial unsafe.Pointer arithmetic, it would be
	// nice to only flood as far as the unsafe.Pointer -> uintptr
	// conversion, but it's hard to know which argument of an Add
	// or Sub to follow.
	var flooded bvec
	var flood func(b *ssa.Block, vi int)
	flood = func(b *ssa.Block, vi int) {
		if flooded.n == 0 {
			flooded = bvalloc(int32(lv.f.NumBlocks()))
		}
		if flooded.Get(int32(b.ID)) {
			return
		}
		for i := vi - 1; i >= 0; i-- {
			v := b.Values[i]
			if v.Op.IsCall() {
				// Uintptrs must not contain live
				// pointers across calls, so stop
				// flooding.
				return
			}
			lv.unsafePoints.Set(int32(v.ID))
		}
		if vi == len(b.Values) {
			// We marked all values in this block, so no
			// need to flood this block again.
			flooded.Set(int32(b.ID))
		}
		for _, pred := range b.Preds {
			flood(pred.Block(), len(pred.Block().Values))
		}
	}
	for _, b := range lv.f.Blocks {
		for i, v := range b.Values {
			if !(v.Op == ssa.OpConvert && v.Type.IsPtrShaped()) {
				continue
			}
			// Flood the unsafe-ness of this backwards
			// until we hit a call.
			flood(b, i+1)
		}
	}
}

// Returns true for instructions that must have a stack map.
//
// This does not necessarily mean the instruction is a safe-point. In
// particular, call Values can have a stack map in case the callee
// grows the stack, but not themselves be a safe-point.
func (lv *Liveness) hasStackMap(v *ssa.Value) bool {
	// The runtime only has safe-points in function prologues, so
	// we only need stack maps at call sites. go:nosplit functions
	// are similar.
	if go115ReduceLiveness || compiling_runtime || lv.f.NoSplit {
		if !v.Op.IsCall() {
			return false
		}
		// typedmemclr and typedmemmove are write barriers and
		// deeply non-preemptible. They are unsafe points and
		// hence should not have liveness maps.
		if sym, ok := v.Aux.(*ssa.AuxCall); ok && (sym.Fn == typedmemclr || sym.Fn == typedmemmove) {
			return false
		}
		return true
	}

	switch v.Op {
	case ssa.OpInitMem, ssa.OpArg, ssa.OpSP, ssa.OpSB,
		ssa.OpSelect0, ssa.OpSelect1, ssa.OpGetG,
		ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive,
		ssa.OpPhi:
		// These don't produce code (see genssa).
		return false
	}
	return !lv.unsafePoints.Get(int32(v.ID))
}

// Initializes the sets for solving the live variables. Visits all the
// instructions in each basic block to summarizes the information at each basic
// block
func (lv *Liveness) prologue() {
	lv.initcache()

	for _, b := range lv.f.Blocks {
		be := lv.blockEffects(b)

		// Walk the block instructions backward and update the block
		// effects with the each prog effects.
		for j := len(b.Values) - 1; j >= 0; j-- {
			pos, e := lv.valueEffects(b.Values[j])
			regUevar, regKill := lv.regEffects(b.Values[j])
			if e&varkill != 0 {
				be.varkill.vars.Set(pos)
				be.uevar.vars.Unset(pos)
			}
			be.varkill.regs |= regKill
			be.uevar.regs &^= regKill
			if e&uevar != 0 {
				be.uevar.vars.Set(pos)
			}
			be.uevar.regs |= regUevar
		}
	}
}

// Solve the liveness dataflow equations.
func (lv *Liveness) solve() {
	// These temporary bitvectors exist to avoid successive allocations and
	// frees within the loop.
	nvars := int32(len(lv.vars))
	newlivein := varRegVec{vars: bvalloc(nvars)}
	newliveout := varRegVec{vars: bvalloc(nvars)}

	// Walk blocks in postorder ordering. This improves convergence.
	po := lv.f.Postorder()

	// Iterate through the blocks in reverse round-robin fashion. A work
	// queue might be slightly faster. As is, the number of iterations is
	// so low that it hardly seems to be worth the complexity.

	for change := true; change; {
		change = false
		for _, b := range po {
			be := lv.blockEffects(b)

			newliveout.Clear()
			switch b.Kind {
			case ssa.BlockRet:
				for _, pos := range lv.cache.retuevar {
					newliveout.vars.Set(pos)
				}
			case ssa.BlockRetJmp:
				for _, pos := range lv.cache.tailuevar {
					newliveout.vars.Set(pos)
				}
			case ssa.BlockExit:
				// panic exit - nothing to do
			default:
				// A variable is live on output from this block
				// if it is live on input to some successor.
				//
				// out[b] = \bigcup_{s \in succ[b]} in[s]
				newliveout.Copy(lv.blockEffects(b.Succs[0].Block()).livein)
				for _, succ := range b.Succs[1:] {
					newliveout.Or(newliveout, lv.blockEffects(succ.Block()).livein)
				}
			}

			if !be.liveout.Eq(newliveout) {
				change = true
				be.liveout.Copy(newliveout)
			}

			// A variable is live on input to this block
			// if it is used by this block, or live on output from this block and
			// not set by the code in this block.
			//
			// in[b] = uevar[b] \cup (out[b] \setminus varkill[b])
			newlivein.AndNot(be.liveout, be.varkill)
			be.livein.Or(newlivein, be.uevar)
		}
	}
}

// Visits all instructions in a basic block and computes a bit vector of live
// variables at each safe point locations.
func (lv *Liveness) epilogue() {
	nvars := int32(len(lv.vars))
	liveout := varRegVec{vars: bvalloc(nvars)}
	livedefer := bvalloc(nvars) // always-live variables

	// If there is a defer (that could recover), then all output
	// parameters are live all the time.  In addition, any locals
	// that are pointers to heap-allocated output parameters are
	// also always live (post-deferreturn code needs these
	// pointers to copy values back to the stack).
	// TODO: if the output parameter is heap-allocated, then we
	// don't need to keep the stack copy live?
	if lv.fn.Func.HasDefer() {
		for i, n := range lv.vars {
			if n.Class() == PPARAMOUT {
				if n.Name.IsOutputParamHeapAddr() {
					// Just to be paranoid.  Heap addresses are PAUTOs.
					Fatalf("variable %v both output param and heap output param", n)
				}
				if n.Name.Param.Heapaddr != nil {
					// If this variable moved to the heap, then
					// its stack copy is not live.
					continue
				}
				// Note: zeroing is handled by zeroResults in walk.go.
				livedefer.Set(int32(i))
			}
			if n.Name.IsOutputParamHeapAddr() {
				// This variable will be overwritten early in the function
				// prologue (from the result of a mallocgc) but we need to
				// zero it in case that malloc causes a stack scan.
				n.Name.SetNeedzero(true)
				livedefer.Set(int32(i))
			}
			if n.Name.OpenDeferSlot() {
				// Open-coded defer args slots must be live
				// everywhere in a function, since a panic can
				// occur (almost) anywhere. Because it is live
				// everywhere, it must be zeroed on entry.
				livedefer.Set(int32(i))
				// It was already marked as Needzero when created.
				if !n.Name.Needzero() {
					Fatalf("all pointer-containing defer arg slots should have Needzero set")
				}
			}
		}
	}

	// We must analyze the entry block first. The runtime assumes
	// the function entry map is index 0. Conveniently, layout
	// already ensured that the entry block is first.
	if lv.f.Entry != lv.f.Blocks[0] {
		lv.f.Fatalf("entry block must be first")
	}

	{
		// Reserve an entry for function entry.
		live := bvalloc(nvars)
		lv.livevars = append(lv.livevars, varRegVec{vars: live})
	}

	for _, b := range lv.f.Blocks {
		be := lv.blockEffects(b)
		firstBitmapIndex := len(lv.livevars)

		// Walk forward through the basic block instructions and
		// allocate liveness maps for those instructions that need them.
		for _, v := range b.Values {
			if !lv.hasStackMap(v) {
				continue
			}

			live := bvalloc(nvars)
			lv.livevars = append(lv.livevars, varRegVec{vars: live})
		}

		// walk backward, construct maps at each safe point
		index := int32(len(lv.livevars) - 1)

		liveout.Copy(be.liveout)
		for i := len(b.Values) - 1; i >= 0; i-- {
			v := b.Values[i]

			if lv.hasStackMap(v) {
				// Found an interesting instruction, record the
				// corresponding liveness information.

				live := &lv.livevars[index]
				live.Or(*live, liveout)
				live.vars.Or(live.vars, livedefer) // only for non-entry safe points
				index--
			}

			// Update liveness information.
			pos, e := lv.valueEffects(v)
			regUevar, regKill := lv.regEffects(v)
			if e&varkill != 0 {
				liveout.vars.Unset(pos)
			}
			liveout.regs &^= regKill
			if e&uevar != 0 {
				liveout.vars.Set(pos)
			}
			liveout.regs |= regUevar
		}

		if b == lv.f.Entry {
			if index != 0 {
				Fatalf("bad index for entry point: %v", index)
			}

			// Check to make sure only input variables are live.
			for i, n := range lv.vars {
				if !liveout.vars.Get(int32(i)) {
					continue
				}
				if n.Class() == PPARAM {
					continue // ok
				}
				Fatalf("bad live variable at entry of %v: %L", lv.fn.Func.Nname, n)
			}

			// Record live variables.
			live := &lv.livevars[index]
			live.Or(*live, liveout)
		}

		// Check that no registers are live across calls.
		// For closure calls, the CALLclosure is the last use
		// of the context register, so it's dead after the call.
		index = int32(firstBitmapIndex)
		for _, v := range b.Values {
			if lv.hasStackMap(v) {
				live := lv.livevars[index]
				if v.Op.IsCall() && live.regs != 0 {
					lv.printDebug()
					v.Fatalf("%v register %s recorded as live at call", lv.fn.Func.Nname, live.regs.niceString(lv.f.Config))
				}
				index++
			}
		}

		// The liveness maps for this block are now complete. Compact them.
		lv.compact(b)
	}

	// If we have an open-coded deferreturn call, make a liveness map for it.
	if lv.fn.Func.OpenCodedDeferDisallowed() {
		lv.livenessMap.deferreturn = LivenessInvalid
	} else {
		lv.livenessMap.deferreturn = LivenessIndex{
			stackMapIndex: lv.stackMapSet.add(livedefer),
			regMapIndex:   0, // entry regMap, containing no live registers
			isUnsafePoint: false,
		}
	}

	// Done compacting. Throw out the stack map set.
	lv.stackMaps = lv.stackMapSet.extractUniqe()
	lv.stackMapSet = bvecSet{}

	// Useful sanity check: on entry to the function,
	// the only things that can possibly be live are the
	// input parameters.
	for j, n := range lv.vars {
		if n.Class() != PPARAM && lv.stackMaps[0].Get(int32(j)) {
			lv.f.Fatalf("%v %L recorded as live on entry", lv.fn.Func.Nname, n)
		}
	}
	if !go115ReduceLiveness {
		// Check that no registers are live at function entry.
		// The context register, if any, comes from a
		// LoweredGetClosurePtr operation first thing in the function,
		// so it doesn't appear live at entry.
		if regs := lv.regMaps[0]; regs != 0 {
			lv.printDebug()
			lv.f.Fatalf("%v register %s recorded as live on entry", lv.fn.Func.Nname, regs.niceString(lv.f.Config))
		}
	}
}

// Compact coalesces identical bitmaps from lv.livevars into the sets
// lv.stackMapSet and lv.regMaps.
//
// Compact clears lv.livevars.
//
// There are actually two lists of bitmaps, one list for the local variables and one
// list for the function arguments. Both lists are indexed by the same PCDATA
// index, so the corresponding pairs must be considered together when
// merging duplicates. The argument bitmaps change much less often during
// function execution than the local variable bitmaps, so it is possible that
// we could introduce a separate PCDATA index for arguments vs locals and
// then compact the set of argument bitmaps separately from the set of
// local variable bitmaps. As of 2014-04-02, doing this to the godoc binary
// is actually a net loss: we save about 50k of argument bitmaps but the new
// PCDATA tables cost about 100k. So for now we keep using a single index for
// both bitmap lists.
func (lv *Liveness) compact(b *ssa.Block) {
	add := func(live varRegVec, isUnsafePoint bool) LivenessIndex { // only if !go115ReduceLiveness
		// Deduplicate the stack map.
		stackIndex := lv.stackMapSet.add(live.vars)
		// Deduplicate the register map.
		regIndex, ok := lv.regMapSet[live.regs]
		if !ok {
			regIndex = len(lv.regMapSet)
			lv.regMapSet[live.regs] = regIndex
			lv.regMaps = append(lv.regMaps, live.regs)
		}
		return LivenessIndex{stackIndex, regIndex, isUnsafePoint}
	}
	pos := 0
	if b == lv.f.Entry {
		// Handle entry stack map.
		if !go115ReduceLiveness {
			add(lv.livevars[0], false)
		} else {
			lv.stackMapSet.add(lv.livevars[0].vars)
		}
		pos++
	}
	for _, v := range b.Values {
		if go115ReduceLiveness {
			hasStackMap := lv.hasStackMap(v)
			isUnsafePoint := lv.allUnsafe || lv.unsafePoints.Get(int32(v.ID))
			idx := LivenessIndex{StackMapDontCare, StackMapDontCare, isUnsafePoint}
			if hasStackMap {
				idx.stackMapIndex = lv.stackMapSet.add(lv.livevars[pos].vars)
				pos++
			}
			if hasStackMap || isUnsafePoint {
				lv.livenessMap.set(v, idx)
			}
		} else if lv.hasStackMap(v) {
			isUnsafePoint := lv.allUnsafe || lv.unsafePoints.Get(int32(v.ID))
			lv.livenessMap.set(v, add(lv.livevars[pos], isUnsafePoint))
			pos++
		}
	}

	// Reset livevars.
	lv.livevars = lv.livevars[:0]
}

func (lv *Liveness) showlive(v *ssa.Value, live bvec) {
	if debuglive == 0 || lv.fn.funcname() == "init" || strings.HasPrefix(lv.fn.funcname(), ".") {
		return
	}
	if !(v == nil || v.Op.IsCall()) {
		// Historically we only printed this information at
		// calls. Keep doing so.
		return
	}
	if live.IsEmpty() {
		return
	}

	pos := lv.fn.Func.Nname.Pos
	if v != nil {
		pos = v.Pos
	}

	s := "live at "
	if v == nil {
		s += fmt.Sprintf("entry to %s:", lv.fn.funcname())
	} else if sym, ok := v.Aux.(*ssa.AuxCall); ok && sym.Fn != nil {
		fn := sym.Fn.Name
		if pos := strings.Index(fn, "."); pos >= 0 {
			fn = fn[pos+1:]
		}
		s += fmt.Sprintf("call to %s:", fn)
	} else {
		s += "indirect call:"
	}

	for j, n := range lv.vars {
		if live.Get(int32(j)) {
			s += fmt.Sprintf(" %v", n)
		}
	}

	Warnl(pos, s)
}

func (lv *Liveness) printbvec(printed bool, name string, live varRegVec) bool {
	if live.vars.IsEmpty() && live.regs == 0 {
		return printed
	}

	if !printed {
		fmt.Printf("\t")
	} else {
		fmt.Printf(" ")
	}
	fmt.Printf("%s=", name)

	comma := ""
	for i, n := range lv.vars {
		if !live.vars.Get(int32(i)) {
			continue
		}
		fmt.Printf("%s%s", comma, n.Sym.Name)
		comma = ","
	}
	fmt.Printf("%s%s", comma, live.regs.niceString(lv.f.Config))
	return true
}

// printeffect is like printbvec, but for valueEffects and regEffects.
func (lv *Liveness) printeffect(printed bool, name string, pos int32, x bool, regMask liveRegMask) bool {
	if !x && regMask == 0 {
		return printed
	}
	if !printed {
		fmt.Printf("\t")
	} else {
		fmt.Printf(" ")
	}
	fmt.Printf("%s=", name)
	if x {
		fmt.Printf("%s", lv.vars[pos].Sym.Name)
	}
	for j, reg := range lv.f.Config.GCRegMap {
		if regMask&(1<<uint(j)) != 0 {
			if x {
				fmt.Printf(",")
			}
			x = true
			fmt.Printf("%v", reg)
		}
	}
	return true
}

// Prints the computed liveness information and inputs, for debugging.
// This format synthesizes the information used during the multiple passes
// into a single presentation.
func (lv *Liveness) printDebug() {
	fmt.Printf("liveness: %s\n", lv.fn.funcname())

	for i, b := range lv.f.Blocks {
		if i > 0 {
			fmt.Printf("\n")
		}

		// bb#0 pred=1,2 succ=3,4
		fmt.Printf("bb#%d pred=", b.ID)
		for j, pred := range b.Preds {
			if j > 0 {
				fmt.Printf(",")
			}
			fmt.Printf("%d", pred.Block().ID)
		}
		fmt.Printf(" succ=")
		for j, succ := range b.Succs {
			if j > 0 {
				fmt.Printf(",")
			}
			fmt.Printf("%d", succ.Block().ID)
		}
		fmt.Printf("\n")

		be := lv.blockEffects(b)

		// initial settings
		printed := false
		printed = lv.printbvec(printed, "uevar", be.uevar)
		printed = lv.printbvec(printed, "livein", be.livein)
		if printed {
			fmt.Printf("\n")
		}

		// program listing, with individual effects listed

		if b == lv.f.Entry {
			live := lv.stackMaps[0]
			fmt.Printf("(%s) function entry\n", linestr(lv.fn.Func.Nname.Pos))
			fmt.Printf("\tlive=")
			printed = false
			for j, n := range lv.vars {
				if !live.Get(int32(j)) {
					continue
				}
				if printed {
					fmt.Printf(",")
				}
				fmt.Printf("%v", n)
				printed = true
			}
			fmt.Printf("\n")
		}

		for _, v := range b.Values {
			fmt.Printf("(%s) %v\n", linestr(v.Pos), v.LongString())

			pcdata := lv.livenessMap.Get(v)

			pos, effect := lv.valueEffects(v)
			regUevar, regKill := lv.regEffects(v)
			printed = false
			printed = lv.printeffect(printed, "uevar", pos, effect&uevar != 0, regUevar)
			printed = lv.printeffect(printed, "varkill", pos, effect&varkill != 0, regKill)
			if printed {
				fmt.Printf("\n")
			}

			if pcdata.StackMapValid() || pcdata.RegMapValid() {
				fmt.Printf("\tlive=")
				printed = false
				if pcdata.StackMapValid() {
					live := lv.stackMaps[pcdata.stackMapIndex]
					for j, n := range lv.vars {
						if !live.Get(int32(j)) {
							continue
						}
						if printed {
							fmt.Printf(",")
						}
						fmt.Printf("%v", n)
						printed = true
					}
				}
				if pcdata.RegMapValid() { // only if !go115ReduceLiveness
					regLive := lv.regMaps[pcdata.regMapIndex]
					if regLive != 0 {
						if printed {
							fmt.Printf(",")
						}
						fmt.Printf("%s", regLive.niceString(lv.f.Config))
						printed = true
					}
				}
				fmt.Printf("\n")
			}

			if pcdata.isUnsafePoint {
				fmt.Printf("\tunsafe-point\n")
			}
		}

		// bb bitsets
		fmt.Printf("end\n")
		printed = false
		printed = lv.printbvec(printed, "varkill", be.varkill)
		printed = lv.printbvec(printed, "liveout", be.liveout)
		if printed {
			fmt.Printf("\n")
		}
	}

	fmt.Printf("\n")
}

// Dumps a slice of bitmaps to a symbol as a sequence of uint32 values. The
// first word dumped is the total number of bitmaps. The second word is the
// length of the bitmaps. All bitmaps are assumed to be of equal length. The
// remaining bytes are the raw bitmaps.
func (lv *Liveness) emit() (argsSym, liveSym, regsSym *obj.LSym) {
	// Size args bitmaps to be just large enough to hold the largest pointer.
	// First, find the largest Xoffset node we care about.
	// (Nodes without pointers aren't in lv.vars; see livenessShouldTrack.)
	var maxArgNode *Node
	for _, n := range lv.vars {
		switch n.Class() {
		case PPARAM, PPARAMOUT:
			if maxArgNode == nil || n.Xoffset > maxArgNode.Xoffset {
				maxArgNode = n
			}
		}
	}
	// Next, find the offset of the largest pointer in the largest node.
	var maxArgs int64
	if maxArgNode != nil {
		maxArgs = maxArgNode.Xoffset + typeptrdata(maxArgNode.Type)
	}

	// Size locals bitmaps to be stkptrsize sized.
	// We cannot shrink them to only hold the largest pointer,
	// because their size is used to calculate the beginning
	// of the local variables frame.
	// Further discussion in https://golang.org/cl/104175.
	// TODO: consider trimming leading zeros.
	// This would require shifting all bitmaps.
	maxLocals := lv.stkptrsize

	// Temporary symbols for encoding bitmaps.
	var argsSymTmp, liveSymTmp, regsSymTmp obj.LSym

	args := bvalloc(int32(maxArgs / int64(Widthptr)))
	aoff := duint32(&argsSymTmp, 0, uint32(len(lv.stackMaps))) // number of bitmaps
	aoff = duint32(&argsSymTmp, aoff, uint32(args.n))          // number of bits in each bitmap

	locals := bvalloc(int32(maxLocals / int64(Widthptr)))
	loff := duint32(&liveSymTmp, 0, uint32(len(lv.stackMaps))) // number of bitmaps
	loff = duint32(&liveSymTmp, loff, uint32(locals.n))        // number of bits in each bitmap

	for _, live := range lv.stackMaps {
		args.Clear()
		locals.Clear()

		lv.pointerMap(live, lv.vars, args, locals)

		aoff = dbvec(&argsSymTmp, aoff, args)
		loff = dbvec(&liveSymTmp, loff, locals)
	}

	if !go115ReduceLiveness {
		regs := bvalloc(lv.usedRegs())
		roff := duint32(&regsSymTmp, 0, uint32(len(lv.regMaps))) // number of bitmaps
		roff = duint32(&regsSymTmp, roff, uint32(regs.n))        // number of bits in each bitmap
		if regs.n > 32 {
			// Our uint32 conversion below won't work.
			Fatalf("GP registers overflow uint32")
		}

		if regs.n > 0 {
			for _, live := range lv.regMaps {
				regs.Clear()
				regs.b[0] = uint32(live)
				roff = dbvec(&regsSymTmp, roff, regs)
			}
		}
	}

	// Give these LSyms content-addressable names,
	// so that they can be de-duplicated.
	// This provides significant binary size savings.
	//
	// These symbols will be added to Ctxt.Data by addGCLocals
	// after parallel compilation is done.
	makeSym := func(tmpSym *obj.LSym) *obj.LSym {
		return Ctxt.LookupInit(fmt.Sprintf("gclocals·%x", md5.Sum(tmpSym.P)), func(lsym *obj.LSym) {
			lsym.P = tmpSym.P
			lsym.Set(obj.AttrContentAddressable, true)
		})
	}
	if !go115ReduceLiveness {
		return makeSym(&argsSymTmp), makeSym(&liveSymTmp), makeSym(&regsSymTmp)
	}
	// TODO(go115ReduceLiveness): Remove regsSym result
	return makeSym(&argsSymTmp), makeSym(&liveSymTmp), nil
}

// Entry pointer for liveness analysis. Solves for the liveness of
// pointer variables in the function and emits a runtime data
// structure read by the garbage collector.
// Returns a map from GC safe points to their corresponding stack map index.
func liveness(e *ssafn, f *ssa.Func, pp *Progs) LivenessMap {
	// Construct the global liveness state.
	vars, idx := getvariables(e.curfn)
	lv := newliveness(e.curfn, f, vars, idx, e.stkptrsize)

	// Run the dataflow framework.
	lv.prologue()
	lv.solve()
	lv.epilogue()
	if debuglive > 0 {
		lv.showlive(nil, lv.stackMaps[0])
		for _, b := range f.Blocks {
			for _, val := range b.Values {
				if idx := lv.livenessMap.Get(val); idx.StackMapValid() {
					lv.showlive(val, lv.stackMaps[idx.stackMapIndex])
				}
			}
		}
	}
	if debuglive >= 2 {
		lv.printDebug()
	}

	// Update the function cache.
	{
		cache := f.Cache.Liveness.(*livenessFuncCache)
		if cap(lv.be) < 2000 { // Threshold from ssa.Cache slices.
			for i := range lv.be {
				lv.be[i] = BlockEffects{}
			}
			cache.be = lv.be
		}
		if len(lv.livenessMap.vals) < 2000 {
			cache.livenessMap = lv.livenessMap
		}
	}

	// Emit the live pointer map data structures
	ls := e.curfn.Func.lsym
	ls.Func.GCArgs, ls.Func.GCLocals, ls.Func.GCRegs = lv.emit()

	p := pp.Prog(obj.AFUNCDATA)
	Addrconst(&p.From, objabi.FUNCDATA_ArgsPointerMaps)
	p.To.Type = obj.TYPE_MEM
	p.To.Name = obj.NAME_EXTERN
	p.To.Sym = ls.Func.GCArgs

	p = pp.Prog(obj.AFUNCDATA)
	Addrconst(&p.From, objabi.FUNCDATA_LocalsPointerMaps)
	p.To.Type = obj.TYPE_MEM
	p.To.Name = obj.NAME_EXTERN
	p.To.Sym = ls.Func.GCLocals

	if !go115ReduceLiveness {
		p = pp.Prog(obj.AFUNCDATA)
		Addrconst(&p.From, objabi.FUNCDATA_RegPointerMaps)
		p.To.Type = obj.TYPE_MEM
		p.To.Name = obj.NAME_EXTERN
		p.To.Sym = ls.Func.GCRegs
	}

	return lv.livenessMap
}

// isfat reports whether a variable of type t needs multiple assignments to initialize.
// For example:
//
// 	type T struct { x, y int }
// 	x := T{x: 0, y: 1}
//
// Then we need:
//
// 	var t T
// 	t.x = 0
// 	t.y = 1
//
// to fully initialize t.
func isfat(t *types.Type) bool {
	if t != nil {
		switch t.Etype {
		case TSLICE, TSTRING,
			TINTER: // maybe remove later
			return true
		case TARRAY:
			// Array of 1 element, check if element is fat
			if t.NumElem() == 1 {
				return isfat(t.Elem())
			}
			return true
		case TSTRUCT:
			// Struct with 1 field, check if field is fat
			if t.NumFields() == 1 {
				return isfat(t.Field(0).Type)
			}
			return true
		}
	}

	return false
}