aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/pgen.go
blob: 52b1ed351d64d9428c5156fb74a9dc657bb75211 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gc

import (
	"cmd/compile/internal/ssa"
	"cmd/compile/internal/types"
	"cmd/internal/dwarf"
	"cmd/internal/obj"
	"cmd/internal/objabi"
	"cmd/internal/src"
	"cmd/internal/sys"
	"internal/race"
	"math/rand"
	"sort"
	"sync"
	"time"
)

// "Portable" code generation.

var (
	nBackendWorkers int     // number of concurrent backend workers, set by a compiler flag
	compilequeue    []*Node // functions waiting to be compiled
)

func emitptrargsmap(fn *Node) {
	if fn.funcname() == "_" || fn.Func.Nname.Sym.Linkname != "" {
		return
	}
	lsym := Ctxt.Lookup(fn.Func.lsym.Name + ".args_stackmap")

	nptr := int(fn.Type.ArgWidth() / int64(Widthptr))
	bv := bvalloc(int32(nptr) * 2)
	nbitmap := 1
	if fn.Type.NumResults() > 0 {
		nbitmap = 2
	}
	off := duint32(lsym, 0, uint32(nbitmap))
	off = duint32(lsym, off, uint32(bv.n))

	if fn.IsMethod() {
		onebitwalktype1(fn.Type.Recvs(), 0, bv)
	}
	if fn.Type.NumParams() > 0 {
		onebitwalktype1(fn.Type.Params(), 0, bv)
	}
	off = dbvec(lsym, off, bv)

	if fn.Type.NumResults() > 0 {
		onebitwalktype1(fn.Type.Results(), 0, bv)
		off = dbvec(lsym, off, bv)
	}

	ggloblsym(lsym, int32(off), obj.RODATA|obj.LOCAL)
}

// cmpstackvarlt reports whether the stack variable a sorts before b.
//
// Sort the list of stack variables. Autos after anything else,
// within autos, unused after used, within used, things with
// pointers first, zeroed things first, and then decreasing size.
// Because autos are laid out in decreasing addresses
// on the stack, pointers first, zeroed things first and decreasing size
// really means, in memory, things with pointers needing zeroing at
// the top of the stack and increasing in size.
// Non-autos sort on offset.
func cmpstackvarlt(a, b *Node) bool {
	if (a.Class() == PAUTO) != (b.Class() == PAUTO) {
		return b.Class() == PAUTO
	}

	if a.Class() != PAUTO {
		return a.Xoffset < b.Xoffset
	}

	if a.Name.Used() != b.Name.Used() {
		return a.Name.Used()
	}

	ap := a.Type.HasPointers()
	bp := b.Type.HasPointers()
	if ap != bp {
		return ap
	}

	ap = a.Name.Needzero()
	bp = b.Name.Needzero()
	if ap != bp {
		return ap
	}

	if a.Type.Width != b.Type.Width {
		return a.Type.Width > b.Type.Width
	}

	return a.Sym.Name < b.Sym.Name
}

// byStackvar implements sort.Interface for []*Node using cmpstackvarlt.
type byStackVar []*Node

func (s byStackVar) Len() int           { return len(s) }
func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) }
func (s byStackVar) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }

func (s *ssafn) AllocFrame(f *ssa.Func) {
	s.stksize = 0
	s.stkptrsize = 0
	fn := s.curfn.Func

	// Mark the PAUTO's unused.
	for _, ln := range fn.Dcl {
		if ln.Class() == PAUTO {
			ln.Name.SetUsed(false)
		}
	}

	for _, l := range f.RegAlloc {
		if ls, ok := l.(ssa.LocalSlot); ok {
			ls.N.(*Node).Name.SetUsed(true)
		}
	}

	scratchUsed := false
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			if n, ok := v.Aux.(*Node); ok {
				switch n.Class() {
				case PPARAM, PPARAMOUT:
					// Don't modify nodfp; it is a global.
					if n != nodfp {
						n.Name.SetUsed(true)
					}
				case PAUTO:
					n.Name.SetUsed(true)
				}
			}
			if !scratchUsed {
				scratchUsed = v.Op.UsesScratch()
			}

		}
	}

	if f.Config.NeedsFpScratch && scratchUsed {
		s.scratchFpMem = tempAt(src.NoXPos, s.curfn, types.Types[TUINT64])
	}

	sort.Sort(byStackVar(fn.Dcl))

	// Reassign stack offsets of the locals that are used.
	lastHasPtr := false
	for i, n := range fn.Dcl {
		if n.Op != ONAME || n.Class() != PAUTO {
			continue
		}
		if !n.Name.Used() {
			fn.Dcl = fn.Dcl[:i]
			break
		}

		dowidth(n.Type)
		w := n.Type.Width
		if w >= thearch.MAXWIDTH || w < 0 {
			Fatalf("bad width")
		}
		if w == 0 && lastHasPtr {
			// Pad between a pointer-containing object and a zero-sized object.
			// This prevents a pointer to the zero-sized object from being interpreted
			// as a pointer to the pointer-containing object (and causing it
			// to be scanned when it shouldn't be). See issue 24993.
			w = 1
		}
		s.stksize += w
		s.stksize = Rnd(s.stksize, int64(n.Type.Align))
		if n.Type.HasPointers() {
			s.stkptrsize = s.stksize
			lastHasPtr = true
		} else {
			lastHasPtr = false
		}
		if thearch.LinkArch.InFamily(sys.MIPS, sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) {
			s.stksize = Rnd(s.stksize, int64(Widthptr))
		}
		n.Xoffset = -s.stksize
	}

	s.stksize = Rnd(s.stksize, int64(Widthreg))
	s.stkptrsize = Rnd(s.stkptrsize, int64(Widthreg))
}

func funccompile(fn *Node) {
	if Curfn != nil {
		Fatalf("funccompile %v inside %v", fn.Func.Nname.Sym, Curfn.Func.Nname.Sym)
	}

	if fn.Type == nil {
		if nerrors == 0 {
			Fatalf("funccompile missing type")
		}
		return
	}

	// assign parameter offsets
	dowidth(fn.Type)

	if fn.Nbody.Len() == 0 {
		// Initialize ABI wrappers if necessary.
		fn.Func.initLSym(false)
		emitptrargsmap(fn)
		return
	}

	dclcontext = PAUTO
	Curfn = fn

	compile(fn)

	Curfn = nil
	dclcontext = PEXTERN
}

func compile(fn *Node) {
	saveerrors()

	order(fn)
	if nerrors != 0 {
		return
	}

	// Set up the function's LSym early to avoid data races with the assemblers.
	// Do this before walk, as walk needs the LSym to set attributes/relocations
	// (e.g. in markTypeUsedInInterface).
	fn.Func.initLSym(true)

	walk(fn)
	if nerrors != 0 {
		return
	}
	if instrumenting {
		instrument(fn)
	}

	// From this point, there should be no uses of Curfn. Enforce that.
	Curfn = nil

	if fn.funcname() == "_" {
		// We don't need to generate code for this function, just report errors in its body.
		// At this point we've generated any errors needed.
		// (Beyond here we generate only non-spec errors, like "stack frame too large".)
		// See issue 29870.
		return
	}

	// Make sure type syms are declared for all types that might
	// be types of stack objects. We need to do this here
	// because symbols must be allocated before the parallel
	// phase of the compiler.
	for _, n := range fn.Func.Dcl {
		switch n.Class() {
		case PPARAM, PPARAMOUT, PAUTO:
			if livenessShouldTrack(n) && n.Name.Addrtaken() {
				dtypesym(n.Type)
				// Also make sure we allocate a linker symbol
				// for the stack object data, for the same reason.
				if fn.Func.lsym.Func.StackObjects == nil {
					fn.Func.lsym.Func.StackObjects = Ctxt.Lookup(fn.Func.lsym.Name + ".stkobj")
				}
			}
		}
	}

	if compilenow(fn) {
		compileSSA(fn, 0)
	} else {
		compilequeue = append(compilequeue, fn)
	}
}

// compilenow reports whether to compile immediately.
// If functions are not compiled immediately,
// they are enqueued in compilequeue,
// which is drained by compileFunctions.
func compilenow(fn *Node) bool {
	// Issue 38068: if this function is a method AND an inline
	// candidate AND was not inlined (yet), put it onto the compile
	// queue instead of compiling it immediately. This is in case we
	// wind up inlining it into a method wrapper that is generated by
	// compiling a function later on in the xtop list.
	if fn.IsMethod() && isInlinableButNotInlined(fn) {
		return false
	}
	return nBackendWorkers == 1 && Debug_compilelater == 0
}

// isInlinableButNotInlined returns true if 'fn' was marked as an
// inline candidate but then never inlined (presumably because we
// found no call sites).
func isInlinableButNotInlined(fn *Node) bool {
	if fn.Func.Nname.Func.Inl == nil {
		return false
	}
	if fn.Sym == nil {
		return true
	}
	return !fn.Sym.Linksym().WasInlined()
}

const maxStackSize = 1 << 30

// compileSSA builds an SSA backend function,
// uses it to generate a plist,
// and flushes that plist to machine code.
// worker indicates which of the backend workers is doing the processing.
func compileSSA(fn *Node, worker int) {
	f := buildssa(fn, worker)
	// Note: check arg size to fix issue 25507.
	if f.Frontend().(*ssafn).stksize >= maxStackSize || fn.Type.ArgWidth() >= maxStackSize {
		largeStackFramesMu.Lock()
		largeStackFrames = append(largeStackFrames, largeStack{locals: f.Frontend().(*ssafn).stksize, args: fn.Type.ArgWidth(), pos: fn.Pos})
		largeStackFramesMu.Unlock()
		return
	}
	pp := newProgs(fn, worker)
	defer pp.Free()
	genssa(f, pp)
	// Check frame size again.
	// The check above included only the space needed for local variables.
	// After genssa, the space needed includes local variables and the callee arg region.
	// We must do this check prior to calling pp.Flush.
	// If there are any oversized stack frames,
	// the assembler may emit inscrutable complaints about invalid instructions.
	if pp.Text.To.Offset >= maxStackSize {
		largeStackFramesMu.Lock()
		locals := f.Frontend().(*ssafn).stksize
		largeStackFrames = append(largeStackFrames, largeStack{locals: locals, args: fn.Type.ArgWidth(), callee: pp.Text.To.Offset - locals, pos: fn.Pos})
		largeStackFramesMu.Unlock()
		return
	}

	pp.Flush() // assemble, fill in boilerplate, etc.
	// fieldtrack must be called after pp.Flush. See issue 20014.
	fieldtrack(pp.Text.From.Sym, fn.Func.FieldTrack)
}

func init() {
	if race.Enabled {
		rand.Seed(time.Now().UnixNano())
	}
}

// compileFunctions compiles all functions in compilequeue.
// It fans out nBackendWorkers to do the work
// and waits for them to complete.
func compileFunctions() {
	if len(compilequeue) != 0 {
		sizeCalculationDisabled = true // not safe to calculate sizes concurrently
		if race.Enabled {
			// Randomize compilation order to try to shake out races.
			tmp := make([]*Node, len(compilequeue))
			perm := rand.Perm(len(compilequeue))
			for i, v := range perm {
				tmp[v] = compilequeue[i]
			}
			copy(compilequeue, tmp)
		} else {
			// Compile the longest functions first,
			// since they're most likely to be the slowest.
			// This helps avoid stragglers.
			sort.Slice(compilequeue, func(i, j int) bool {
				return compilequeue[i].Nbody.Len() > compilequeue[j].Nbody.Len()
			})
		}
		var wg sync.WaitGroup
		Ctxt.InParallel = true
		c := make(chan *Node, nBackendWorkers)
		for i := 0; i < nBackendWorkers; i++ {
			wg.Add(1)
			go func(worker int) {
				for fn := range c {
					compileSSA(fn, worker)
				}
				wg.Done()
			}(i)
		}
		for _, fn := range compilequeue {
			c <- fn
		}
		close(c)
		compilequeue = nil
		wg.Wait()
		Ctxt.InParallel = false
		sizeCalculationDisabled = false
	}
}

func debuginfo(fnsym *obj.LSym, infosym *obj.LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) {
	fn := curfn.(*Node)
	if fn.Func.Nname != nil {
		if expect := fn.Func.Nname.Sym.Linksym(); fnsym != expect {
			Fatalf("unexpected fnsym: %v != %v", fnsym, expect)
		}
	}

	var apdecls []*Node
	// Populate decls for fn.
	for _, n := range fn.Func.Dcl {
		if n.Op != ONAME { // might be OTYPE or OLITERAL
			continue
		}
		switch n.Class() {
		case PAUTO:
			if !n.Name.Used() {
				// Text == nil -> generating abstract function
				if fnsym.Func.Text != nil {
					Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)")
				}
				continue
			}
		case PPARAM, PPARAMOUT:
		default:
			continue
		}
		apdecls = append(apdecls, n)
		fnsym.Func.RecordAutoType(ngotype(n).Linksym())
	}

	decls, dwarfVars := createDwarfVars(fnsym, fn.Func, apdecls)

	// For each type referenced by the functions auto vars but not
	// already referenced by a dwarf var, attach a dummy relocation to
	// the function symbol to insure that the type included in DWARF
	// processing during linking.
	typesyms := []*obj.LSym{}
	for t, _ := range fnsym.Func.Autot {
		typesyms = append(typesyms, t)
	}
	sort.Sort(obj.BySymName(typesyms))
	for _, sym := range typesyms {
		r := obj.Addrel(infosym)
		r.Sym = sym
		r.Type = objabi.R_USETYPE
	}
	fnsym.Func.Autot = nil

	var varScopes []ScopeID
	for _, decl := range decls {
		pos := declPos(decl)
		varScopes = append(varScopes, findScope(fn.Func.Marks, pos))
	}

	scopes := assembleScopes(fnsym, fn, dwarfVars, varScopes)
	var inlcalls dwarf.InlCalls
	if genDwarfInline > 0 {
		inlcalls = assembleInlines(fnsym, dwarfVars)
	}
	return scopes, inlcalls
}

func declPos(decl *Node) src.XPos {
	if decl.Name.Defn != nil && (decl.Name.Captured() || decl.Name.Byval()) {
		// It's not clear which position is correct for captured variables here:
		// * decl.Pos is the wrong position for captured variables, in the inner
		//   function, but it is the right position in the outer function.
		// * decl.Name.Defn is nil for captured variables that were arguments
		//   on the outer function, however the decl.Pos for those seems to be
		//   correct.
		// * decl.Name.Defn is the "wrong" thing for variables declared in the
		//   header of a type switch, it's their position in the header, rather
		//   than the position of the case statement. In principle this is the
		//   right thing, but here we prefer the latter because it makes each
		//   instance of the header variable local to the lexical block of its
		//   case statement.
		// This code is probably wrong for type switch variables that are also
		// captured.
		return decl.Name.Defn.Pos
	}
	return decl.Pos
}

// createSimpleVars creates a DWARF entry for every variable declared in the
// function, claiming that they are permanently on the stack.
func createSimpleVars(fnsym *obj.LSym, apDecls []*Node) ([]*Node, []*dwarf.Var, map[*Node]bool) {
	var vars []*dwarf.Var
	var decls []*Node
	selected := make(map[*Node]bool)
	for _, n := range apDecls {
		if n.IsAutoTmp() {
			continue
		}

		decls = append(decls, n)
		vars = append(vars, createSimpleVar(fnsym, n))
		selected[n] = true
	}
	return decls, vars, selected
}

func createSimpleVar(fnsym *obj.LSym, n *Node) *dwarf.Var {
	var abbrev int
	offs := n.Xoffset

	switch n.Class() {
	case PAUTO:
		abbrev = dwarf.DW_ABRV_AUTO
		if Ctxt.FixedFrameSize() == 0 {
			offs -= int64(Widthptr)
		}
		if objabi.Framepointer_enabled || objabi.GOARCH == "arm64" {
			// There is a word space for FP on ARM64 even if the frame pointer is disabled
			offs -= int64(Widthptr)
		}

	case PPARAM, PPARAMOUT:
		abbrev = dwarf.DW_ABRV_PARAM
		offs += Ctxt.FixedFrameSize()
	default:
		Fatalf("createSimpleVar unexpected class %v for node %v", n.Class(), n)
	}

	typename := dwarf.InfoPrefix + typesymname(n.Type)
	delete(fnsym.Func.Autot, ngotype(n).Linksym())
	inlIndex := 0
	if genDwarfInline > 1 {
		if n.Name.InlFormal() || n.Name.InlLocal() {
			inlIndex = posInlIndex(n.Pos) + 1
			if n.Name.InlFormal() {
				abbrev = dwarf.DW_ABRV_PARAM
			}
		}
	}
	declpos := Ctxt.InnermostPos(declPos(n))
	return &dwarf.Var{
		Name:          n.Sym.Name,
		IsReturnValue: n.Class() == PPARAMOUT,
		IsInlFormal:   n.Name.InlFormal(),
		Abbrev:        abbrev,
		StackOffset:   int32(offs),
		Type:          Ctxt.Lookup(typename),
		DeclFile:      declpos.RelFilename(),
		DeclLine:      declpos.RelLine(),
		DeclCol:       declpos.Col(),
		InlIndex:      int32(inlIndex),
		ChildIndex:    -1,
	}
}

// createComplexVars creates recomposed DWARF vars with location lists,
// suitable for describing optimized code.
func createComplexVars(fnsym *obj.LSym, fn *Func) ([]*Node, []*dwarf.Var, map[*Node]bool) {
	debugInfo := fn.DebugInfo

	// Produce a DWARF variable entry for each user variable.
	var decls []*Node
	var vars []*dwarf.Var
	ssaVars := make(map[*Node]bool)

	for varID, dvar := range debugInfo.Vars {
		n := dvar.(*Node)
		ssaVars[n] = true
		for _, slot := range debugInfo.VarSlots[varID] {
			ssaVars[debugInfo.Slots[slot].N.(*Node)] = true
		}

		if dvar := createComplexVar(fnsym, fn, ssa.VarID(varID)); dvar != nil {
			decls = append(decls, n)
			vars = append(vars, dvar)
		}
	}

	return decls, vars, ssaVars
}

// createDwarfVars process fn, returning a list of DWARF variables and the
// Nodes they represent.
func createDwarfVars(fnsym *obj.LSym, fn *Func, apDecls []*Node) ([]*Node, []*dwarf.Var) {
	// Collect a raw list of DWARF vars.
	var vars []*dwarf.Var
	var decls []*Node
	var selected map[*Node]bool
	if Ctxt.Flag_locationlists && Ctxt.Flag_optimize && fn.DebugInfo != nil {
		decls, vars, selected = createComplexVars(fnsym, fn)
	} else {
		decls, vars, selected = createSimpleVars(fnsym, apDecls)
	}

	dcl := apDecls
	if fnsym.WasInlined() {
		dcl = preInliningDcls(fnsym)
	}

	// If optimization is enabled, the list above will typically be
	// missing some of the original pre-optimization variables in the
	// function (they may have been promoted to registers, folded into
	// constants, dead-coded away, etc).  Input arguments not eligible
	// for SSA optimization are also missing.  Here we add back in entries
	// for selected missing vars. Note that the recipe below creates a
	// conservative location. The idea here is that we want to
	// communicate to the user that "yes, there is a variable named X
	// in this function, but no, I don't have enough information to
	// reliably report its contents."
	// For non-SSA-able arguments, however, the correct information
	// is known -- they have a single home on the stack.
	for _, n := range dcl {
		if _, found := selected[n]; found {
			continue
		}
		c := n.Sym.Name[0]
		if c == '.' || n.Type.IsUntyped() {
			continue
		}
		if n.Class() == PPARAM && !canSSAType(n.Type) {
			// SSA-able args get location lists, and may move in and
			// out of registers, so those are handled elsewhere.
			// Autos and named output params seem to get handled
			// with VARDEF, which creates location lists.
			// Args not of SSA-able type are treated here; they
			// are homed on the stack in a single place for the
			// entire call.
			vars = append(vars, createSimpleVar(fnsym, n))
			decls = append(decls, n)
			continue
		}
		typename := dwarf.InfoPrefix + typesymname(n.Type)
		decls = append(decls, n)
		abbrev := dwarf.DW_ABRV_AUTO_LOCLIST
		isReturnValue := (n.Class() == PPARAMOUT)
		if n.Class() == PPARAM || n.Class() == PPARAMOUT {
			abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
		} else if n.Class() == PAUTOHEAP {
			// If dcl in question has been promoted to heap, do a bit
			// of extra work to recover original class (auto or param);
			// see issue 30908. This insures that we get the proper
			// signature in the abstract function DIE, but leaves a
			// misleading location for the param (we want pointer-to-heap
			// and not stack).
			// TODO(thanm): generate a better location expression
			stackcopy := n.Name.Param.Stackcopy
			if stackcopy != nil && (stackcopy.Class() == PPARAM || stackcopy.Class() == PPARAMOUT) {
				abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
				isReturnValue = (stackcopy.Class() == PPARAMOUT)
			}
		}
		inlIndex := 0
		if genDwarfInline > 1 {
			if n.Name.InlFormal() || n.Name.InlLocal() {
				inlIndex = posInlIndex(n.Pos) + 1
				if n.Name.InlFormal() {
					abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
				}
			}
		}
		declpos := Ctxt.InnermostPos(n.Pos)
		vars = append(vars, &dwarf.Var{
			Name:          n.Sym.Name,
			IsReturnValue: isReturnValue,
			Abbrev:        abbrev,
			StackOffset:   int32(n.Xoffset),
			Type:          Ctxt.Lookup(typename),
			DeclFile:      declpos.RelFilename(),
			DeclLine:      declpos.RelLine(),
			DeclCol:       declpos.Col(),
			InlIndex:      int32(inlIndex),
			ChildIndex:    -1,
		})
		// Record go type of to insure that it gets emitted by the linker.
		fnsym.Func.RecordAutoType(ngotype(n).Linksym())
	}

	return decls, vars
}

// Given a function that was inlined at some point during the
// compilation, return a sorted list of nodes corresponding to the
// autos/locals in that function prior to inlining. If this is a
// function that is not local to the package being compiled, then the
// names of the variables may have been "versioned" to avoid conflicts
// with local vars; disregard this versioning when sorting.
func preInliningDcls(fnsym *obj.LSym) []*Node {
	fn := Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*Node)
	var rdcl []*Node
	for _, n := range fn.Func.Inl.Dcl {
		c := n.Sym.Name[0]
		// Avoid reporting "_" parameters, since if there are more than
		// one, it can result in a collision later on, as in #23179.
		if unversion(n.Sym.Name) == "_" || c == '.' || n.Type.IsUntyped() {
			continue
		}
		rdcl = append(rdcl, n)
	}
	return rdcl
}

// stackOffset returns the stack location of a LocalSlot relative to the
// stack pointer, suitable for use in a DWARF location entry. This has nothing
// to do with its offset in the user variable.
func stackOffset(slot ssa.LocalSlot) int32 {
	n := slot.N.(*Node)
	var base int64
	switch n.Class() {
	case PAUTO:
		if Ctxt.FixedFrameSize() == 0 {
			base -= int64(Widthptr)
		}
		if objabi.Framepointer_enabled || objabi.GOARCH == "arm64" {
			// There is a word space for FP on ARM64 even if the frame pointer is disabled
			base -= int64(Widthptr)
		}
	case PPARAM, PPARAMOUT:
		base += Ctxt.FixedFrameSize()
	}
	return int32(base + n.Xoffset + slot.Off)
}

// createComplexVar builds a single DWARF variable entry and location list.
func createComplexVar(fnsym *obj.LSym, fn *Func, varID ssa.VarID) *dwarf.Var {
	debug := fn.DebugInfo
	n := debug.Vars[varID].(*Node)

	var abbrev int
	switch n.Class() {
	case PAUTO:
		abbrev = dwarf.DW_ABRV_AUTO_LOCLIST
	case PPARAM, PPARAMOUT:
		abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
	default:
		return nil
	}

	gotype := ngotype(n).Linksym()
	delete(fnsym.Func.Autot, gotype)
	typename := dwarf.InfoPrefix + gotype.Name[len("type."):]
	inlIndex := 0
	if genDwarfInline > 1 {
		if n.Name.InlFormal() || n.Name.InlLocal() {
			inlIndex = posInlIndex(n.Pos) + 1
			if n.Name.InlFormal() {
				abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
			}
		}
	}
	declpos := Ctxt.InnermostPos(n.Pos)
	dvar := &dwarf.Var{
		Name:          n.Sym.Name,
		IsReturnValue: n.Class() == PPARAMOUT,
		IsInlFormal:   n.Name.InlFormal(),
		Abbrev:        abbrev,
		Type:          Ctxt.Lookup(typename),
		// The stack offset is used as a sorting key, so for decomposed
		// variables just give it the first one. It's not used otherwise.
		// This won't work well if the first slot hasn't been assigned a stack
		// location, but it's not obvious how to do better.
		StackOffset: stackOffset(debug.Slots[debug.VarSlots[varID][0]]),
		DeclFile:    declpos.RelFilename(),
		DeclLine:    declpos.RelLine(),
		DeclCol:     declpos.Col(),
		InlIndex:    int32(inlIndex),
		ChildIndex:  -1,
	}
	list := debug.LocationLists[varID]
	if len(list) != 0 {
		dvar.PutLocationList = func(listSym, startPC dwarf.Sym) {
			debug.PutLocationList(list, Ctxt, listSym.(*obj.LSym), startPC.(*obj.LSym))
		}
	}
	return dvar
}

// fieldtrack adds R_USEFIELD relocations to fnsym to record any
// struct fields that it used.
func fieldtrack(fnsym *obj.LSym, tracked map[*types.Sym]struct{}) {
	if fnsym == nil {
		return
	}
	if objabi.Fieldtrack_enabled == 0 || len(tracked) == 0 {
		return
	}

	trackSyms := make([]*types.Sym, 0, len(tracked))
	for sym := range tracked {
		trackSyms = append(trackSyms, sym)
	}
	sort.Sort(symByName(trackSyms))
	for _, sym := range trackSyms {
		r := obj.Addrel(fnsym)
		r.Sym = sym.Linksym()
		r.Type = objabi.R_USEFIELD
	}
}

type symByName []*types.Sym

func (a symByName) Len() int           { return len(a) }
func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name }
func (a symByName) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }