aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/pgen.go
blob: 542fd43b63117ccf0868bfe7b6fdbbeb57ba394f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gc

import (
	"cmd/compile/internal/ssa"
	"cmd/compile/internal/types"
	"cmd/internal/dwarf"
	"cmd/internal/obj"
	"cmd/internal/objabi"
	"cmd/internal/src"
	"cmd/internal/sys"
	"fmt"
	"math"
	"math/rand"
	"sort"
	"sync"
	"time"
)

// "Portable" code generation.

var (
	nBackendWorkers int     // number of concurrent backend workers, set by a compiler flag
	compilequeue    []*Node // functions waiting to be compiled
)

func emitptrargsmap() {
	if Curfn.funcname() == "_" {
		return
	}
	sym := lookup(fmt.Sprintf("%s.args_stackmap", Curfn.funcname()))
	lsym := sym.Linksym()

	nptr := int(Curfn.Type.ArgWidth() / int64(Widthptr))
	bv := bvalloc(int32(nptr) * 2)
	nbitmap := 1
	if Curfn.Type.Results().NumFields() > 0 {
		nbitmap = 2
	}
	off := duint32(lsym, 0, uint32(nbitmap))
	off = duint32(lsym, off, uint32(bv.n))
	var xoffset int64
	if Curfn.IsMethod() {
		xoffset = 0
		onebitwalktype1(Curfn.Type.Recvs(), &xoffset, bv)
	}

	if Curfn.Type.Params().NumFields() > 0 {
		xoffset = 0
		onebitwalktype1(Curfn.Type.Params(), &xoffset, bv)
	}

	off = dbvec(lsym, off, bv)
	if Curfn.Type.Results().NumFields() > 0 {
		xoffset = 0
		onebitwalktype1(Curfn.Type.Results(), &xoffset, bv)
		off = dbvec(lsym, off, bv)
	}

	ggloblsym(lsym, int32(off), obj.RODATA|obj.LOCAL)
}

// cmpstackvarlt reports whether the stack variable a sorts before b.
//
// Sort the list of stack variables. Autos after anything else,
// within autos, unused after used, within used, things with
// pointers first, zeroed things first, and then decreasing size.
// Because autos are laid out in decreasing addresses
// on the stack, pointers first, zeroed things first and decreasing size
// really means, in memory, things with pointers needing zeroing at
// the top of the stack and increasing in size.
// Non-autos sort on offset.
func cmpstackvarlt(a, b *Node) bool {
	if (a.Class() == PAUTO) != (b.Class() == PAUTO) {
		return b.Class() == PAUTO
	}

	if a.Class() != PAUTO {
		return a.Xoffset < b.Xoffset
	}

	if a.Name.Used() != b.Name.Used() {
		return a.Name.Used()
	}

	ap := types.Haspointers(a.Type)
	bp := types.Haspointers(b.Type)
	if ap != bp {
		return ap
	}

	ap = a.Name.Needzero()
	bp = b.Name.Needzero()
	if ap != bp {
		return ap
	}

	if a.Type.Width != b.Type.Width {
		return a.Type.Width > b.Type.Width
	}

	return a.Sym.Name < b.Sym.Name
}

// byStackvar implements sort.Interface for []*Node using cmpstackvarlt.
type byStackVar []*Node

func (s byStackVar) Len() int           { return len(s) }
func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) }
func (s byStackVar) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }

func (s *ssafn) AllocFrame(f *ssa.Func) {
	s.stksize = 0
	s.stkptrsize = 0
	fn := s.curfn.Func

	// Mark the PAUTO's unused.
	for _, ln := range fn.Dcl {
		if ln.Class() == PAUTO {
			ln.Name.SetUsed(false)
		}
	}

	for _, l := range f.RegAlloc {
		if ls, ok := l.(ssa.LocalSlot); ok {
			ls.N.(*Node).Name.SetUsed(true)
		}
	}

	scratchUsed := false
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			switch a := v.Aux.(type) {
			case *ssa.ArgSymbol:
				n := a.Node.(*Node)
				// Don't modify nodfp; it is a global.
				if n != nodfp {
					n.Name.SetUsed(true)
				}
			case *ssa.AutoSymbol:
				a.Node.(*Node).Name.SetUsed(true)
			}

			if !scratchUsed {
				scratchUsed = v.Op.UsesScratch()
			}
		}
	}

	if f.Config.NeedsFpScratch && scratchUsed {
		s.scratchFpMem = tempAt(src.NoXPos, s.curfn, types.Types[TUINT64])
	}

	sort.Sort(byStackVar(fn.Dcl))

	// Reassign stack offsets of the locals that are used.
	for i, n := range fn.Dcl {
		if n.Op != ONAME || n.Class() != PAUTO {
			continue
		}
		if !n.Name.Used() {
			fn.Dcl = fn.Dcl[:i]
			break
		}

		dowidth(n.Type)
		w := n.Type.Width
		if w >= thearch.MAXWIDTH || w < 0 {
			Fatalf("bad width")
		}
		s.stksize += w
		s.stksize = Rnd(s.stksize, int64(n.Type.Align))
		if types.Haspointers(n.Type) {
			s.stkptrsize = s.stksize
		}
		if thearch.LinkArch.InFamily(sys.MIPS, sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) {
			s.stksize = Rnd(s.stksize, int64(Widthptr))
		}
		n.Xoffset = -s.stksize
	}

	s.stksize = Rnd(s.stksize, int64(Widthreg))
	s.stkptrsize = Rnd(s.stkptrsize, int64(Widthreg))
}

func compile(fn *Node) {
	Curfn = fn
	dowidth(fn.Type)

	if fn.Nbody.Len() == 0 {
		emitptrargsmap()
		return
	}

	saveerrors()

	order(fn)
	if nerrors != 0 {
		return
	}

	walk(fn)
	if nerrors != 0 {
		return
	}
	if instrumenting {
		instrument(fn)
	}

	// From this point, there should be no uses of Curfn. Enforce that.
	Curfn = nil

	// Set up the function's LSym early to avoid data races with the assemblers.
	fn.Func.initLSym()

	if compilenow() {
		compileSSA(fn, 0)
	} else {
		compilequeue = append(compilequeue, fn)
	}
}

// compilenow reports whether to compile immediately.
// If functions are not compiled immediately,
// they are enqueued in compilequeue,
// which is drained by compileFunctions.
func compilenow() bool {
	return nBackendWorkers == 1 && Debug_compilelater == 0
}

const maxStackSize = 1 << 31

// compileSSA builds an SSA backend function,
// uses it to generate a plist,
// and flushes that plist to machine code.
// worker indicates which of the backend workers is doing the processing.
func compileSSA(fn *Node, worker int) {
	ssafn := buildssa(fn, worker)
	pp := newProgs(fn, worker)
	genssa(ssafn, pp)
	if pp.Text.To.Offset < maxStackSize {
		pp.Flush()
	} else {
		largeStackFramesMu.Lock()
		largeStackFrames = append(largeStackFrames, fn.Pos)
		largeStackFramesMu.Unlock()
	}
	// fieldtrack must be called after pp.Flush. See issue 20014.
	fieldtrack(pp.Text.From.Sym, fn.Func.FieldTrack)
	pp.Free()
}

func init() {
	if raceEnabled {
		rand.Seed(time.Now().UnixNano())
	}
}

// compileFunctions compiles all functions in compilequeue.
// It fans out nBackendWorkers to do the work
// and waits for them to complete.
func compileFunctions() {
	if len(compilequeue) != 0 {
		sizeCalculationDisabled = true // not safe to calculate sizes concurrently
		if raceEnabled {
			// Randomize compilation order to try to shake out races.
			tmp := make([]*Node, len(compilequeue))
			perm := rand.Perm(len(compilequeue))
			for i, v := range perm {
				tmp[v] = compilequeue[i]
			}
			copy(compilequeue, tmp)
		} else {
			// Compile the longest functions first,
			// since they're most likely to be the slowest.
			// This helps avoid stragglers.
			obj.SortSlice(compilequeue, func(i, j int) bool {
				return compilequeue[i].Nbody.Len() > compilequeue[j].Nbody.Len()
			})
		}
		var wg sync.WaitGroup
		c := make(chan *Node, nBackendWorkers)
		for i := 0; i < nBackendWorkers; i++ {
			wg.Add(1)
			go func(worker int) {
				for fn := range c {
					compileSSA(fn, worker)
				}
				wg.Done()
			}(i)
		}
		for _, fn := range compilequeue {
			c <- fn
		}
		close(c)
		compilequeue = nil
		wg.Wait()
		sizeCalculationDisabled = false
	}
}

func debuginfo(fnsym *obj.LSym, curfn interface{}) []dwarf.Scope {
	fn := curfn.(*Node)
	debugInfo := fn.Func.DebugInfo
	fn.Func.DebugInfo = nil
	if expect := fn.Func.Nname.Sym.Linksym(); fnsym != expect {
		Fatalf("unexpected fnsym: %v != %v", fnsym, expect)
	}

	var automDecls []*Node
	// Populate Automs for fn.
	for _, n := range fn.Func.Dcl {
		if n.Op != ONAME { // might be OTYPE or OLITERAL
			continue
		}
		var name obj.AddrName
		switch n.Class() {
		case PAUTO:
			if !n.Name.Used() {
				Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)")
			}
			name = obj.NAME_AUTO
		case PPARAM, PPARAMOUT:
			name = obj.NAME_PARAM
		default:
			continue
		}
		automDecls = append(automDecls, n)
		gotype := ngotype(n).Linksym()
		fnsym.Func.Autom = append(fnsym.Func.Autom, &obj.Auto{
			Asym:    Ctxt.Lookup(n.Sym.Name),
			Aoffset: int32(n.Xoffset),
			Name:    name,
			Gotype:  gotype,
		})
	}

	var dwarfVars []*dwarf.Var
	var decls []*Node
	if Ctxt.Flag_locationlists && Ctxt.Flag_optimize {
		decls, dwarfVars = createComplexVars(fn, debugInfo)
	} else {
		decls, dwarfVars = createSimpleVars(automDecls)
	}

	var varScopes []ScopeID
	for _, decl := range decls {
		var scope ScopeID
		if !decl.Name.Captured() && !decl.Name.Byval() {
			// n.Pos of captured variables is their first
			// use in the closure but they should always
			// be assigned to scope 0 instead.
			// TODO(mdempsky): Verify this.
			scope = findScope(fn.Func.Marks, decl.Pos)
		}
		varScopes = append(varScopes, scope)
	}
	return assembleScopes(fnsym, fn, dwarfVars, varScopes)
}

// createSimpleVars creates a DWARF entry for every variable declared in the
// function, claiming that they are permanently on the stack.
func createSimpleVars(automDecls []*Node) ([]*Node, []*dwarf.Var) {
	var vars []*dwarf.Var
	var decls []*Node
	for _, n := range automDecls {
		if n.IsAutoTmp() {
			continue
		}
		var abbrev int
		offs := n.Xoffset

		switch n.Class() {
		case PAUTO:
			abbrev = dwarf.DW_ABRV_AUTO
			if Ctxt.FixedFrameSize() == 0 {
				offs -= int64(Widthptr)
			}
			if objabi.Framepointer_enabled(objabi.GOOS, objabi.GOARCH) {
				offs -= int64(Widthptr)
			}

		case PPARAM, PPARAMOUT:
			abbrev = dwarf.DW_ABRV_PARAM
			offs += Ctxt.FixedFrameSize()
		default:
			Fatalf("createSimpleVars unexpected type %v for node %v", n.Class(), n)
		}

		typename := dwarf.InfoPrefix + typesymname(n.Type)
		decls = append(decls, n)
		vars = append(vars, &dwarf.Var{
			Name:        n.Sym.Name,
			Abbrev:      abbrev,
			StackOffset: int32(offs),
			Type:        Ctxt.Lookup(typename),
		})
	}
	return decls, vars
}

type varPart struct {
	varOffset int64
	slot      ssa.SlotID
	locs      ssa.VarLocList
}

func createComplexVars(fn *Node, debugInfo *ssa.FuncDebug) ([]*Node, []*dwarf.Var) {
	for _, locList := range debugInfo.Variables {
		for _, loc := range locList.Locations {
			if loc.StartProg != nil {
				loc.StartPC = loc.StartProg.Pc
			}
			if loc.EndProg != nil {
				loc.EndPC = loc.EndProg.Pc
			}
			if Debug_locationlist == 0 {
				loc.EndProg = nil
				loc.StartProg = nil
			}
		}
	}

	// Group SSA variables by the user variable they were decomposed from.
	varParts := map[*Node][]varPart{}
	for slotID, locList := range debugInfo.Variables {
		if len(locList.Locations) == 0 {
			continue
		}
		slot := debugInfo.Slots[slotID]
		for slot.SplitOf != nil {
			slot = slot.SplitOf
		}
		n := slot.N.(*Node)
		varParts[n] = append(varParts[n], varPart{varOffset(slot), ssa.SlotID(slotID), locList})
	}

	// Produce a DWARF variable entry for each user variable.
	// Don't iterate over the map -- that's nondeterministic, and
	// createComplexVar has side effects. Instead, go by slot.
	var decls []*Node
	var vars []*dwarf.Var
	for _, slot := range debugInfo.Slots {
		for slot.SplitOf != nil {
			slot = slot.SplitOf
		}
		n := slot.N.(*Node)
		parts := varParts[n]
		if parts == nil {
			continue
		}

		// Get the order the parts need to be in to represent the memory
		// of the decomposed user variable.
		sort.Sort(partsByVarOffset(parts))

		if dvar := createComplexVar(debugInfo, n, parts); dvar != nil {
			decls = append(decls, n)
			vars = append(vars, dvar)
		}
	}
	return decls, vars
}

// varOffset returns the offset of slot within the user variable it was
// decomposed from. This has nothing to do with its stack offset.
func varOffset(slot *ssa.LocalSlot) int64 {
	offset := slot.Off
	for ; slot.SplitOf != nil; slot = slot.SplitOf {
		offset += slot.SplitOffset
	}
	return offset
}

type partsByVarOffset []varPart

func (a partsByVarOffset) Len() int           { return len(a) }
func (a partsByVarOffset) Less(i, j int) bool { return a[i].varOffset < a[j].varOffset }
func (a partsByVarOffset) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }

// createComplexVar builds a DWARF variable entry and location list representing n.
func createComplexVar(debugInfo *ssa.FuncDebug, n *Node, parts []varPart) *dwarf.Var {
	slots := debugInfo.Slots
	var offs int64 // base stack offset for this kind of variable
	var abbrev int
	switch n.Class() {
	case PAUTO:
		abbrev = dwarf.DW_ABRV_AUTO_LOCLIST
		if Ctxt.FixedFrameSize() == 0 {
			offs -= int64(Widthptr)
		}
		if objabi.Framepointer_enabled(objabi.GOOS, objabi.GOARCH) {
			offs -= int64(Widthptr)
		}

	case PPARAM, PPARAMOUT:
		abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
		offs += Ctxt.FixedFrameSize()
	default:
		return nil
	}

	gotype := ngotype(n).Linksym()
	typename := dwarf.InfoPrefix + gotype.Name[len("type."):]
	// The stack offset is used as a sorting key, so for decomposed
	// variables just give it the lowest one. It's not used otherwise.
	stackOffset := debugInfo.Slots[parts[0].slot].N.(*Node).Xoffset + offs
	dvar := &dwarf.Var{
		Name:        n.Sym.Name,
		Abbrev:      abbrev,
		Type:        Ctxt.Lookup(typename),
		StackOffset: int32(stackOffset),
	}

	if Debug_locationlist != 0 {
		Ctxt.Logf("Building location list for %+v. Parts:\n", n)
		for _, part := range parts {
			Ctxt.Logf("\t%v => %v\n", debugInfo.Slots[part.slot], part.locs)
		}
	}

	// Given a variable that's been decomposed into multiple parts,
	// its location list may need a new entry after the beginning or
	// end of every location entry for each of its parts. For example:
	//
	// [variable]    [pc range]
	// string.ptr    |----|-----|    |----|
	// string.len    |------------|  |--|
	// ... needs a location list like:
	// string        |----|-----|-|  |--|-|
	//
	// Note that location entries may or may not line up with each other,
	// and some of the result will only have one or the other part.
	//
	// To build the resulting list:
	// - keep a "current" pointer for each part
	// - find the next transition point
	// - advance the current pointer for each part up to that transition point
	// - build the piece for the range between that transition point and the next
	// - repeat

	curLoc := make([]int, len(slots))

	// findBoundaryAfter finds the next beginning or end of a piece after currentPC.
	findBoundaryAfter := func(currentPC int64) int64 {
		min := int64(math.MaxInt64)
		for slot, part := range parts {
			// For each part, find the first PC greater than current. Doesn't
			// matter if it's a start or an end, since we're looking for any boundary.
			// If it's the new winner, save it.
		onePart:
			for i := curLoc[slot]; i < len(part.locs.Locations); i++ {
				for _, pc := range [2]int64{part.locs.Locations[i].StartPC, part.locs.Locations[i].EndPC} {
					if pc > currentPC {
						if pc < min {
							min = pc
						}
						break onePart
					}
				}
			}
		}
		return min
	}
	var start int64
	end := findBoundaryAfter(0)
	for {
		// Advance to the next chunk.
		start = end
		end = findBoundaryAfter(start)
		if end == math.MaxInt64 {
			break
		}

		dloc := dwarf.Location{StartPC: start, EndPC: end}
		if Debug_locationlist != 0 {
			Ctxt.Logf("Processing range %x -> %x\n", start, end)
		}

		// Advance curLoc to the last location that starts before/at start.
		// After this loop, if there's a location that covers [start, end), it will be current.
		// Otherwise the current piece will be too early.
		for _, part := range parts {
			choice := -1
			for i := curLoc[part.slot]; i < len(part.locs.Locations); i++ {
				if part.locs.Locations[i].StartPC > start {
					break //overshot
				}
				choice = i // best yet
			}
			if choice != -1 {
				curLoc[part.slot] = choice
			}
			if Debug_locationlist != 0 {
				Ctxt.Logf("\t %v => %v", slots[part.slot], curLoc[part.slot])
			}
		}
		if Debug_locationlist != 0 {
			Ctxt.Logf("\n")
		}
		// Assemble the location list entry for this chunk.
		present := 0
		for _, part := range parts {
			dpiece := dwarf.Piece{
				Length: slots[part.slot].Type.Size(),
			}
			locIdx := curLoc[part.slot]
			if locIdx >= len(part.locs.Locations) ||
				start >= part.locs.Locations[locIdx].EndPC ||
				end <= part.locs.Locations[locIdx].StartPC {
				if Debug_locationlist != 0 {
					Ctxt.Logf("\t%v: missing", slots[part.slot])
				}
				dpiece.Missing = true
				dloc.Pieces = append(dloc.Pieces, dpiece)
				continue
			}
			present++
			loc := part.locs.Locations[locIdx]
			if Debug_locationlist != 0 {
				Ctxt.Logf("\t%v: %v", slots[part.slot], loc)
			}
			if loc.OnStack {
				dpiece.OnStack = true
				dpiece.StackOffset = int32(offs + slots[part.slot].Off + slots[part.slot].N.(*Node).Xoffset)
			} else {
				for reg := 0; reg < len(debugInfo.Registers); reg++ {
					if loc.Registers&(1<<uint8(reg)) != 0 {
						dpiece.RegNum = Ctxt.Arch.DWARFRegisters[debugInfo.Registers[reg].ObjNum()]
					}
				}
			}
			dloc.Pieces = append(dloc.Pieces, dpiece)
		}
		if present == 0 {
			if Debug_locationlist != 0 {
				Ctxt.Logf(" -> totally missing\n")
			}
			continue
		}
		// Extend the previous entry if possible.
		if len(dvar.LocationList) > 0 {
			prev := &dvar.LocationList[len(dvar.LocationList)-1]
			if prev.EndPC == dloc.StartPC && len(prev.Pieces) == len(dloc.Pieces) {
				equal := true
				for i := range prev.Pieces {
					if prev.Pieces[i] != dloc.Pieces[i] {
						equal = false
					}
				}
				if equal {
					prev.EndPC = end
					if Debug_locationlist != 0 {
						Ctxt.Logf("-> merged with previous, now %#v\n", prev)
					}
					continue
				}
			}
		}
		dvar.LocationList = append(dvar.LocationList, dloc)
		if Debug_locationlist != 0 {
			Ctxt.Logf("-> added: %#v\n", dloc)
		}
	}
	return dvar
}

// fieldtrack adds R_USEFIELD relocations to fnsym to record any
// struct fields that it used.
func fieldtrack(fnsym *obj.LSym, tracked map[*types.Sym]struct{}) {
	if fnsym == nil {
		return
	}
	if objabi.Fieldtrack_enabled == 0 || len(tracked) == 0 {
		return
	}

	trackSyms := make([]*types.Sym, 0, len(tracked))
	for sym := range tracked {
		trackSyms = append(trackSyms, sym)
	}
	sort.Sort(symByName(trackSyms))
	for _, sym := range trackSyms {
		r := obj.Addrel(fnsym)
		r.Sym = sym.Linksym()
		r.Type = objabi.R_USEFIELD
	}
}

type symByName []*types.Sym

func (a symByName) Len() int           { return len(a) }
func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name }
func (a symByName) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }