aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/inl.go
blob: a2fb00e1323c5b41ab7edf392dbe5633a9c0f491 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
// The inlining facility makes 2 passes: first caninl determines which
// functions are suitable for inlining, and for those that are it
// saves a copy of the body. Then inlcalls walks each function body to
// expand calls to inlinable functions.
//
// The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
// making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
// are not supported.
//      0: disabled
//      1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
//      2: (unassigned)
//      3: (unassigned)
//      4: allow non-leaf functions
//
// At some point this may get another default and become switch-offable with -N.
//
// The -d typcheckinl flag enables early typechecking of all imported bodies,
// which is useful to flush out bugs.
//
// The Debug.m flag enables diagnostic output.  a single -m is useful for verifying
// which calls get inlined or not, more is for debugging, and may go away at any point.

package gc

import (
	"cmd/compile/internal/logopt"
	"cmd/compile/internal/types"
	"cmd/internal/obj"
	"cmd/internal/src"
	"fmt"
	"strings"
)

// Inlining budget parameters, gathered in one place
const (
	inlineMaxBudget       = 80
	inlineExtraAppendCost = 0
	// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
	inlineExtraCallCost  = 57              // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
	inlineExtraPanicCost = 1               // do not penalize inlining panics.
	inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.

	inlineBigFunctionNodes   = 5000 // Functions with this many nodes are considered "big".
	inlineBigFunctionMaxCost = 20   // Max cost of inlinee when inlining into a "big" function.
)

// Get the function's package. For ordinary functions it's on the ->sym, but for imported methods
// the ->sym can be re-used in the local package, so peel it off the receiver's type.
func fnpkg(fn *Node) *types.Pkg {
	if fn.IsMethod() {
		// method
		rcvr := fn.Type.Recv().Type

		if rcvr.IsPtr() {
			rcvr = rcvr.Elem()
		}
		if rcvr.Sym == nil {
			Fatalf("receiver with no sym: [%v] %L  (%v)", fn.Sym, fn, rcvr)
		}
		return rcvr.Sym.Pkg
	}

	// non-method
	return fn.Sym.Pkg
}

// Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck
// because they're a copy of an already checked body.
func typecheckinl(fn *Node) {
	lno := setlineno(fn)

	expandInline(fn)

	// typecheckinl is only for imported functions;
	// their bodies may refer to unsafe as long as the package
	// was marked safe during import (which was checked then).
	// the ->inl of a local function has been typechecked before caninl copied it.
	pkg := fnpkg(fn)

	if pkg == localpkg || pkg == nil {
		return // typecheckinl on local function
	}

	if Debug.m > 2 || Debug_export != 0 {
		fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, asNodes(fn.Func.Inl.Body))
	}

	savefn := Curfn
	Curfn = fn
	typecheckslice(fn.Func.Inl.Body, ctxStmt)
	Curfn = savefn

	// During typechecking, declarations are added to
	// Curfn.Func.Dcl. Move them to Inl.Dcl for consistency with
	// how local functions behave. (Append because typecheckinl
	// may be called multiple times.)
	fn.Func.Inl.Dcl = append(fn.Func.Inl.Dcl, fn.Func.Dcl...)
	fn.Func.Dcl = nil

	lineno = lno
}

// Caninl determines whether fn is inlineable.
// If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy.
// fn and ->nbody will already have been typechecked.
func caninl(fn *Node) {
	if fn.Op != ODCLFUNC {
		Fatalf("caninl %v", fn)
	}
	if fn.Func.Nname == nil {
		Fatalf("caninl no nname %+v", fn)
	}

	var reason string // reason, if any, that the function was not inlined
	if Debug.m > 1 || logopt.Enabled() {
		defer func() {
			if reason != "" {
				if Debug.m > 1 {
					fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason)
				}
				if logopt.Enabled() {
					logopt.LogOpt(fn.Pos, "cannotInlineFunction", "inline", fn.funcname(), reason)
				}
			}
		}()
	}

	// If marked "go:noinline", don't inline
	if fn.Func.Pragma&Noinline != 0 {
		reason = "marked go:noinline"
		return
	}

	// If marked "go:norace" and -race compilation, don't inline.
	if flag_race && fn.Func.Pragma&Norace != 0 {
		reason = "marked go:norace with -race compilation"
		return
	}

	// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
	if Debug_checkptr != 0 && fn.Func.Pragma&NoCheckPtr != 0 {
		reason = "marked go:nocheckptr"
		return
	}

	// If marked "go:cgo_unsafe_args", don't inline, since the
	// function makes assumptions about its argument frame layout.
	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
		reason = "marked go:cgo_unsafe_args"
		return
	}

	// If marked as "go:uintptrescapes", don't inline, since the
	// escape information is lost during inlining.
	if fn.Func.Pragma&UintptrEscapes != 0 {
		reason = "marked as having an escaping uintptr argument"
		return
	}

	// The nowritebarrierrec checker currently works at function
	// granularity, so inlining yeswritebarrierrec functions can
	// confuse it (#22342). As a workaround, disallow inlining
	// them for now.
	if fn.Func.Pragma&Yeswritebarrierrec != 0 {
		reason = "marked go:yeswritebarrierrec"
		return
	}

	// If fn has no body (is defined outside of Go), cannot inline it.
	if fn.Nbody.Len() == 0 {
		reason = "no function body"
		return
	}

	if fn.Typecheck() == 0 {
		Fatalf("caninl on non-typechecked function %v", fn)
	}

	n := fn.Func.Nname
	if n.Func.InlinabilityChecked() {
		return
	}
	defer n.Func.SetInlinabilityChecked(true)

	cc := int32(inlineExtraCallCost)
	if Debug.l == 4 {
		cc = 1 // this appears to yield better performance than 0.
	}

	// At this point in the game the function we're looking at may
	// have "stale" autos, vars that still appear in the Dcl list, but
	// which no longer have any uses in the function body (due to
	// elimination by deadcode). We'd like to exclude these dead vars
	// when creating the "Inline.Dcl" field below; to accomplish this,
	// the hairyVisitor below builds up a map of used/referenced
	// locals, and we use this map to produce a pruned Inline.Dcl
	// list. See issue 25249 for more context.

	visitor := hairyVisitor{
		budget:        inlineMaxBudget,
		extraCallCost: cc,
		usedLocals:    make(map[*Node]bool),
	}
	if visitor.visitList(fn.Nbody) {
		reason = visitor.reason
		return
	}
	if visitor.budget < 0 {
		reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", inlineMaxBudget-visitor.budget, inlineMaxBudget)
		return
	}

	n.Func.Inl = &Inline{
		Cost: inlineMaxBudget - visitor.budget,
		Dcl:  inlcopylist(pruneUnusedAutos(n.Name.Defn.Func.Dcl, &visitor)),
		Body: inlcopylist(fn.Nbody.Slice()),
	}

	// hack, TODO, check for better way to link method nodes back to the thing with the ->inl
	// this is so export can find the body of a method
	fn.Type.FuncType().Nname = asTypesNode(n)

	if Debug.m > 1 {
		fmt.Printf("%v: can inline %#v with cost %d as: %#v { %#v }\n", fn.Line(), n, inlineMaxBudget-visitor.budget, fn.Type, asNodes(n.Func.Inl.Body))
	} else if Debug.m != 0 {
		fmt.Printf("%v: can inline %v\n", fn.Line(), n)
	}
	if logopt.Enabled() {
		logopt.LogOpt(fn.Pos, "canInlineFunction", "inline", fn.funcname(), fmt.Sprintf("cost: %d", inlineMaxBudget-visitor.budget))
	}
}

// inlFlood marks n's inline body for export and recursively ensures
// all called functions are marked too.
func inlFlood(n *Node) {
	if n == nil {
		return
	}
	if n.Op != ONAME || n.Class() != PFUNC {
		Fatalf("inlFlood: unexpected %v, %v, %v", n, n.Op, n.Class())
	}
	if n.Func == nil {
		Fatalf("inlFlood: missing Func on %v", n)
	}
	if n.Func.Inl == nil {
		return
	}

	if n.Func.ExportInline() {
		return
	}
	n.Func.SetExportInline(true)

	typecheckinl(n)

	inspectList(asNodes(n.Func.Inl.Body), func(n *Node) bool {
		switch n.Op {
		case ONAME:
			// Mark any referenced global variables or
			// functions for reexport. Skip methods,
			// because they're reexported alongside their
			// receiver type.
			if n.Class() == PEXTERN || n.Class() == PFUNC && !n.isMethodExpression() {
				exportsym(n)
			}

		case OCALLFUNC, OCALLMETH:
			// Recursively flood any functions called by
			// this one.
			inlFlood(asNode(n.Left.Type.Nname()))
		}
		return true
	})
}

// hairyVisitor visits a function body to determine its inlining
// hairiness and whether or not it can be inlined.
type hairyVisitor struct {
	budget        int32
	reason        string
	extraCallCost int32
	usedLocals    map[*Node]bool
}

// Look for anything we want to punt on.
func (v *hairyVisitor) visitList(ll Nodes) bool {
	for _, n := range ll.Slice() {
		if v.visit(n) {
			return true
		}
	}
	return false
}

func (v *hairyVisitor) visit(n *Node) bool {
	if n == nil {
		return false
	}

	switch n.Op {
	// Call is okay if inlinable and we have the budget for the body.
	case OCALLFUNC:
		// Functions that call runtime.getcaller{pc,sp} can not be inlined
		// because getcaller{pc,sp} expect a pointer to the caller's first argument.
		//
		// runtime.throw is a "cheap call" like panic in normal code.
		if n.Left.Op == ONAME && n.Left.Class() == PFUNC && isRuntimePkg(n.Left.Sym.Pkg) {
			fn := n.Left.Sym.Name
			if fn == "getcallerpc" || fn == "getcallersp" {
				v.reason = "call to " + fn
				return true
			}
			if fn == "throw" {
				v.budget -= inlineExtraThrowCost
				break
			}
		}

		if isIntrinsicCall(n) {
			// Treat like any other node.
			break
		}

		if fn := inlCallee(n.Left); fn != nil && fn.Func.Inl != nil {
			v.budget -= fn.Func.Inl.Cost
			break
		}

		// Call cost for non-leaf inlining.
		v.budget -= v.extraCallCost

	// Call is okay if inlinable and we have the budget for the body.
	case OCALLMETH:
		t := n.Left.Type
		if t == nil {
			Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
		}
		if t.Nname() == nil {
			Fatalf("no function definition for [%p] %+v\n", t, t)
		}
		if isRuntimePkg(n.Left.Sym.Pkg) {
			fn := n.Left.Sym.Name
			if fn == "heapBits.nextArena" {
				// Special case: explicitly allow
				// mid-stack inlining of
				// runtime.heapBits.next even though
				// it calls slow-path
				// runtime.heapBits.nextArena.
				break
			}
		}
		if inlfn := asNode(t.FuncType().Nname).Func; inlfn.Inl != nil {
			v.budget -= inlfn.Inl.Cost
			break
		}
		// Call cost for non-leaf inlining.
		v.budget -= v.extraCallCost

	// Things that are too hairy, irrespective of the budget
	case OCALL, OCALLINTER:
		// Call cost for non-leaf inlining.
		v.budget -= v.extraCallCost

	case OPANIC:
		v.budget -= inlineExtraPanicCost

	case ORECOVER:
		// recover matches the argument frame pointer to find
		// the right panic value, so it needs an argument frame.
		v.reason = "call to recover"
		return true

	case OCALLPART:
		// OCALLPART is inlineable, but no extra cost to the budget

	case OCLOSURE,
		ORANGE,
		OSELECT,
		OTYPESW,
		OGO,
		ODEFER,
		ODCLTYPE, // can't print yet
		ORETJMP:
		v.reason = "unhandled op " + n.Op.String()
		return true

	case OAPPEND:
		v.budget -= inlineExtraAppendCost

	case ODCLCONST, OEMPTY, OFALL:
		// These nodes don't produce code; omit from inlining budget.
		return false

	case OLABEL:
		// TODO(mdempsky): Add support for inlining labeled control statements.
		if n.labeledControl() != nil {
			v.reason = "labeled control"
			return true
		}

	case OBREAK, OCONTINUE:
		if n.Sym != nil {
			// Should have short-circuited due to labeledControl above.
			Fatalf("unexpected labeled break/continue: %v", n)
		}

	case OIF:
		if Isconst(n.Left, CTBOOL) {
			// This if and the condition cost nothing.
			return v.visitList(n.Ninit) || v.visitList(n.Nbody) ||
				v.visitList(n.Rlist)
		}

	case ONAME:
		if n.Class() == PAUTO {
			v.usedLocals[n] = true
		}

	}

	v.budget--

	// When debugging, don't stop early, to get full cost of inlining this function
	if v.budget < 0 && Debug.m < 2 && !logopt.Enabled() {
		return true
	}

	return v.visit(n.Left) || v.visit(n.Right) ||
		v.visitList(n.List) || v.visitList(n.Rlist) ||
		v.visitList(n.Ninit) || v.visitList(n.Nbody)
}

// Inlcopy and inlcopylist recursively copy the body of a function.
// Any name-like node of non-local class is marked for re-export by adding it to
// the exportlist.
func inlcopylist(ll []*Node) []*Node {
	s := make([]*Node, 0, len(ll))
	for _, n := range ll {
		s = append(s, inlcopy(n))
	}
	return s
}

func inlcopy(n *Node) *Node {
	if n == nil {
		return nil
	}

	switch n.Op {
	case ONAME, OTYPE, OLITERAL:
		return n
	}

	m := n.copy()
	if n.Op != OCALLPART && m.Func != nil {
		Fatalf("unexpected Func: %v", m)
	}
	m.Left = inlcopy(n.Left)
	m.Right = inlcopy(n.Right)
	m.List.Set(inlcopylist(n.List.Slice()))
	m.Rlist.Set(inlcopylist(n.Rlist.Slice()))
	m.Ninit.Set(inlcopylist(n.Ninit.Slice()))
	m.Nbody.Set(inlcopylist(n.Nbody.Slice()))

	return m
}

func countNodes(n *Node) int {
	if n == nil {
		return 0
	}
	cnt := 1
	cnt += countNodes(n.Left)
	cnt += countNodes(n.Right)
	for _, n1 := range n.Ninit.Slice() {
		cnt += countNodes(n1)
	}
	for _, n1 := range n.Nbody.Slice() {
		cnt += countNodes(n1)
	}
	for _, n1 := range n.List.Slice() {
		cnt += countNodes(n1)
	}
	for _, n1 := range n.Rlist.Slice() {
		cnt += countNodes(n1)
	}
	return cnt
}

// Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any
// calls made to inlineable functions. This is the external entry point.
func inlcalls(fn *Node) {
	savefn := Curfn
	Curfn = fn
	maxCost := int32(inlineMaxBudget)
	if countNodes(fn) >= inlineBigFunctionNodes {
		maxCost = inlineBigFunctionMaxCost
	}
	// Map to keep track of functions that have been inlined at a particular
	// call site, in order to stop inlining when we reach the beginning of a
	// recursion cycle again. We don't inline immediately recursive functions,
	// but allow inlining if there is a recursion cycle of many functions.
	// Most likely, the inlining will stop before we even hit the beginning of
	// the cycle again, but the map catches the unusual case.
	inlMap := make(map[*Node]bool)
	fn = inlnode(fn, maxCost, inlMap)
	if fn != Curfn {
		Fatalf("inlnode replaced curfn")
	}
	Curfn = savefn
}

// Turn an OINLCALL into a statement.
func inlconv2stmt(n *Node) {
	n.Op = OBLOCK

	// n->ninit stays
	n.List.Set(n.Nbody.Slice())

	n.Nbody.Set(nil)
	n.Rlist.Set(nil)
}

// Turn an OINLCALL into a single valued expression.
// The result of inlconv2expr MUST be assigned back to n, e.g.
// 	n.Left = inlconv2expr(n.Left)
func inlconv2expr(n *Node) *Node {
	r := n.Rlist.First()
	return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...))
}

// Turn the rlist (with the return values) of the OINLCALL in
// n into an expression list lumping the ninit and body
// containing the inlined statements on the first list element so
// order will be preserved Used in return, oas2func and call
// statements.
func inlconv2list(n *Node) []*Node {
	if n.Op != OINLCALL || n.Rlist.Len() == 0 {
		Fatalf("inlconv2list %+v\n", n)
	}

	s := n.Rlist.Slice()
	s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...))
	return s
}

func inlnodelist(l Nodes, maxCost int32, inlMap map[*Node]bool) {
	s := l.Slice()
	for i := range s {
		s[i] = inlnode(s[i], maxCost, inlMap)
	}
}

// inlnode recurses over the tree to find inlineable calls, which will
// be turned into OINLCALLs by mkinlcall. When the recursion comes
// back up will examine left, right, list, rlist, ninit, ntest, nincr,
// nbody and nelse and use one of the 4 inlconv/glue functions above
// to turn the OINLCALL into an expression, a statement, or patch it
// in to this nodes list or rlist as appropriate.
// NOTE it makes no sense to pass the glue functions down the
// recursion to the level where the OINLCALL gets created because they
// have to edit /this/ n, so you'd have to push that one down as well,
// but then you may as well do it here.  so this is cleaner and
// shorter and less complicated.
// The result of inlnode MUST be assigned back to n, e.g.
// 	n.Left = inlnode(n.Left)
func inlnode(n *Node, maxCost int32, inlMap map[*Node]bool) *Node {
	if n == nil {
		return n
	}

	switch n.Op {
	// inhibit inlining of their argument
	case ODEFER, OGO:
		switch n.Left.Op {
		case OCALLFUNC, OCALLMETH:
			n.Left.SetNoInline(true)
		}
		return n

	// TODO do them here (or earlier),
	// so escape analysis can avoid more heapmoves.
	case OCLOSURE:
		return n
	case OCALLMETH:
		// Prevent inlining some reflect.Value methods when using checkptr,
		// even when package reflect was compiled without it (#35073).
		if s := n.Left.Sym; Debug_checkptr != 0 && isReflectPkg(s.Pkg) && (s.Name == "Value.UnsafeAddr" || s.Name == "Value.Pointer") {
			return n
		}
	}

	lno := setlineno(n)

	inlnodelist(n.Ninit, maxCost, inlMap)
	for _, n1 := range n.Ninit.Slice() {
		if n1.Op == OINLCALL {
			inlconv2stmt(n1)
		}
	}

	n.Left = inlnode(n.Left, maxCost, inlMap)
	if n.Left != nil && n.Left.Op == OINLCALL {
		n.Left = inlconv2expr(n.Left)
	}

	n.Right = inlnode(n.Right, maxCost, inlMap)
	if n.Right != nil && n.Right.Op == OINLCALL {
		if n.Op == OFOR || n.Op == OFORUNTIL {
			inlconv2stmt(n.Right)
		} else if n.Op == OAS2FUNC {
			n.Rlist.Set(inlconv2list(n.Right))
			n.Right = nil
			n.Op = OAS2
			n.SetTypecheck(0)
			n = typecheck(n, ctxStmt)
		} else {
			n.Right = inlconv2expr(n.Right)
		}
	}

	inlnodelist(n.List, maxCost, inlMap)
	if n.Op == OBLOCK {
		for _, n2 := range n.List.Slice() {
			if n2.Op == OINLCALL {
				inlconv2stmt(n2)
			}
		}
	} else {
		s := n.List.Slice()
		for i1, n1 := range s {
			if n1 != nil && n1.Op == OINLCALL {
				s[i1] = inlconv2expr(s[i1])
			}
		}
	}

	inlnodelist(n.Rlist, maxCost, inlMap)
	s := n.Rlist.Slice()
	for i1, n1 := range s {
		if n1.Op == OINLCALL {
			if n.Op == OIF {
				inlconv2stmt(n1)
			} else {
				s[i1] = inlconv2expr(s[i1])
			}
		}
	}

	inlnodelist(n.Nbody, maxCost, inlMap)
	for _, n := range n.Nbody.Slice() {
		if n.Op == OINLCALL {
			inlconv2stmt(n)
		}
	}

	// with all the branches out of the way, it is now time to
	// transmogrify this node itself unless inhibited by the
	// switch at the top of this function.
	switch n.Op {
	case OCALLFUNC, OCALLMETH:
		if n.NoInline() {
			return n
		}
	}

	switch n.Op {
	case OCALLFUNC:
		if Debug.m > 3 {
			fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left)
		}
		if isIntrinsicCall(n) {
			break
		}
		if fn := inlCallee(n.Left); fn != nil && fn.Func.Inl != nil {
			n = mkinlcall(n, fn, maxCost, inlMap)
		}

	case OCALLMETH:
		if Debug.m > 3 {
			fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right)
		}

		// typecheck should have resolved ODOTMETH->type, whose nname points to the actual function.
		if n.Left.Type == nil {
			Fatalf("no function type for [%p] %+v\n", n.Left, n.Left)
		}

		if n.Left.Type.Nname() == nil {
			Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type)
		}

		n = mkinlcall(n, asNode(n.Left.Type.FuncType().Nname), maxCost, inlMap)
	}

	lineno = lno
	return n
}

// inlCallee takes a function-typed expression and returns the underlying function ONAME
// that it refers to if statically known. Otherwise, it returns nil.
func inlCallee(fn *Node) *Node {
	fn = staticValue(fn)
	switch {
	case fn.Op == ONAME && fn.Class() == PFUNC:
		if fn.isMethodExpression() {
			return asNode(fn.Sym.Def)
		}
		return fn
	case fn.Op == OCLOSURE:
		c := fn.Func.Closure
		caninl(c)
		return c.Func.Nname
	}
	return nil
}

func staticValue(n *Node) *Node {
	for {
		n1 := staticValue1(n)
		if n1 == nil {
			return n
		}
		n = n1
	}
}

// staticValue1 implements a simple SSA-like optimization. If n is a local variable
// that is initialized and never reassigned, staticValue1 returns the initializer
// expression. Otherwise, it returns nil.
func staticValue1(n *Node) *Node {
	if n.Op != ONAME || n.Class() != PAUTO || n.Name.Addrtaken() {
		return nil
	}

	defn := n.Name.Defn
	if defn == nil {
		return nil
	}

	var rhs *Node
FindRHS:
	switch defn.Op {
	case OAS:
		rhs = defn.Right
	case OAS2:
		for i, lhs := range defn.List.Slice() {
			if lhs == n {
				rhs = defn.Rlist.Index(i)
				break FindRHS
			}
		}
		Fatalf("%v missing from LHS of %v", n, defn)
	default:
		return nil
	}
	if rhs == nil {
		Fatalf("RHS is nil: %v", defn)
	}

	unsafe, _ := reassigned(n)
	if unsafe {
		return nil
	}

	return rhs
}

// reassigned takes an ONAME node, walks the function in which it is defined, and returns a boolean
// indicating whether the name has any assignments other than its declaration.
// The second return value is the first such assignment encountered in the walk, if any. It is mostly
// useful for -m output documenting the reason for inhibited optimizations.
// NB: global variables are always considered to be re-assigned.
// TODO: handle initial declaration not including an assignment and followed by a single assignment?
func reassigned(n *Node) (bool, *Node) {
	if n.Op != ONAME {
		Fatalf("reassigned %v", n)
	}
	// no way to reliably check for no-reassignment of globals, assume it can be
	if n.Name.Curfn == nil {
		return true, nil
	}
	f := n.Name.Curfn
	// There just might be a good reason for this although this can be pretty surprising:
	// local variables inside a closure have Curfn pointing to the OCLOSURE node instead
	// of the corresponding ODCLFUNC.
	// We need to walk the function body to check for reassignments so we follow the
	// linkage to the ODCLFUNC node as that is where body is held.
	if f.Op == OCLOSURE {
		f = f.Func.Closure
	}
	v := reassignVisitor{name: n}
	a := v.visitList(f.Nbody)
	return a != nil, a
}

type reassignVisitor struct {
	name *Node
}

func (v *reassignVisitor) visit(n *Node) *Node {
	if n == nil {
		return nil
	}
	switch n.Op {
	case OAS:
		if n.Left == v.name && n != v.name.Name.Defn {
			return n
		}
		return nil
	case OAS2, OAS2FUNC, OAS2MAPR, OAS2DOTTYPE:
		for _, p := range n.List.Slice() {
			if p == v.name && n != v.name.Name.Defn {
				return n
			}
		}
		return nil
	}
	if a := v.visit(n.Left); a != nil {
		return a
	}
	if a := v.visit(n.Right); a != nil {
		return a
	}
	if a := v.visitList(n.List); a != nil {
		return a
	}
	if a := v.visitList(n.Rlist); a != nil {
		return a
	}
	if a := v.visitList(n.Ninit); a != nil {
		return a
	}
	if a := v.visitList(n.Nbody); a != nil {
		return a
	}
	return nil
}

func (v *reassignVisitor) visitList(l Nodes) *Node {
	for _, n := range l.Slice() {
		if a := v.visit(n); a != nil {
			return a
		}
	}
	return nil
}

func inlParam(t *types.Field, as *Node, inlvars map[*Node]*Node) *Node {
	n := asNode(t.Nname)
	if n == nil || n.isBlank() {
		return nblank
	}

	inlvar := inlvars[n]
	if inlvar == nil {
		Fatalf("missing inlvar for %v", n)
	}
	as.Ninit.Append(nod(ODCL, inlvar, nil))
	inlvar.Name.Defn = as
	return inlvar
}

var inlgen int

// If n is a call, and fn is a function with an inlinable body,
// return an OINLCALL.
// On return ninit has the parameter assignments, the nbody is the
// inlined function body and list, rlist contain the input, output
// parameters.
// The result of mkinlcall MUST be assigned back to n, e.g.
// 	n.Left = mkinlcall(n.Left, fn, isddd)
func mkinlcall(n, fn *Node, maxCost int32, inlMap map[*Node]bool) *Node {
	if fn.Func.Inl == nil {
		if logopt.Enabled() {
			logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(),
				fmt.Sprintf("%s cannot be inlined", fn.pkgFuncName()))
		}
		return n
	}
	if fn.Func.Inl.Cost > maxCost {
		// The inlined function body is too big. Typically we use this check to restrict
		// inlining into very big functions.  See issue 26546 and 17566.
		if logopt.Enabled() {
			logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", Curfn.funcname(),
				fmt.Sprintf("cost %d of %s exceeds max large caller cost %d", fn.Func.Inl.Cost, fn.pkgFuncName(), maxCost))
		}
		return n
	}

	if fn == Curfn || fn.Name.Defn == Curfn {
		// Can't recursively inline a function into itself.
		if logopt.Enabled() {
			logopt.LogOpt(n.Pos, "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", Curfn.funcname()))
		}
		return n
	}

	if instrumenting && isRuntimePkg(fn.Sym.Pkg) {
		// Runtime package must not be instrumented.
		// Instrument skips runtime package. However, some runtime code can be
		// inlined into other packages and instrumented there. To avoid this,
		// we disable inlining of runtime functions when instrumenting.
		// The example that we observed is inlining of LockOSThread,
		// which lead to false race reports on m contents.
		return n
	}

	if inlMap[fn] {
		if Debug.m > 1 {
			fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", n.Line(), fn, Curfn.funcname())
		}
		return n
	}
	inlMap[fn] = true
	defer func() {
		inlMap[fn] = false
	}()
	if Debug_typecheckinl == 0 {
		typecheckinl(fn)
	}

	// We have a function node, and it has an inlineable body.
	if Debug.m > 1 {
		fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, asNodes(fn.Func.Inl.Body))
	} else if Debug.m != 0 {
		fmt.Printf("%v: inlining call to %v\n", n.Line(), fn)
	}
	if Debug.m > 2 {
		fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n)
	}

	if ssaDump != "" && ssaDump == Curfn.funcname() {
		ssaDumpInlined = append(ssaDumpInlined, fn)
	}

	ninit := n.Ninit

	// Make temp names to use instead of the originals.
	inlvars := make(map[*Node]*Node)

	// record formals/locals for later post-processing
	var inlfvars []*Node

	// Handle captured variables when inlining closures.
	if fn.Name.Defn != nil {
		if c := fn.Name.Defn.Func.Closure; c != nil {
			for _, v := range c.Func.Closure.Func.Cvars.Slice() {
				if v.Op == OXXX {
					continue
				}

				o := v.Name.Param.Outer
				// make sure the outer param matches the inlining location
				// NB: if we enabled inlining of functions containing OCLOSURE or refined
				// the reassigned check via some sort of copy propagation this would most
				// likely need to be changed to a loop to walk up to the correct Param
				if o == nil || (o.Name.Curfn != Curfn && o.Name.Curfn.Func.Closure != Curfn) {
					Fatalf("%v: unresolvable capture %v %v\n", n.Line(), fn, v)
				}

				if v.Name.Byval() {
					iv := typecheck(inlvar(v), ctxExpr)
					ninit.Append(nod(ODCL, iv, nil))
					ninit.Append(typecheck(nod(OAS, iv, o), ctxStmt))
					inlvars[v] = iv
				} else {
					addr := newname(lookup("&" + v.Sym.Name))
					addr.Type = types.NewPtr(v.Type)
					ia := typecheck(inlvar(addr), ctxExpr)
					ninit.Append(nod(ODCL, ia, nil))
					ninit.Append(typecheck(nod(OAS, ia, nod(OADDR, o, nil)), ctxStmt))
					inlvars[addr] = ia

					// When capturing by reference, all occurrence of the captured var
					// must be substituted with dereference of the temporary address
					inlvars[v] = typecheck(nod(ODEREF, ia, nil), ctxExpr)
				}
			}
		}
	}

	for _, ln := range fn.Func.Inl.Dcl {
		if ln.Op != ONAME {
			continue
		}
		if ln.Class() == PPARAMOUT { // return values handled below.
			continue
		}
		if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap
			// TODO(mdempsky): Remove once I'm confident
			// this never actually happens. We currently
			// perform inlining before escape analysis, so
			// nothing should have moved to the heap yet.
			Fatalf("impossible: %v", ln)
		}
		inlf := typecheck(inlvar(ln), ctxExpr)
		inlvars[ln] = inlf
		if genDwarfInline > 0 {
			if ln.Class() == PPARAM {
				inlf.Name.SetInlFormal(true)
			} else {
				inlf.Name.SetInlLocal(true)
			}
			inlf.Pos = ln.Pos
			inlfvars = append(inlfvars, inlf)
		}
	}

	// temporaries for return values.
	var retvars []*Node
	for i, t := range fn.Type.Results().Fields().Slice() {
		var m *Node
		mpos := t.Pos
		if n := asNode(t.Nname); n != nil && !n.isBlank() {
			m = inlvar(n)
			m = typecheck(m, ctxExpr)
			inlvars[n] = m
		} else {
			// anonymous return values, synthesize names for use in assignment that replaces return
			m = retvar(t, i)
		}

		if genDwarfInline > 0 {
			// Don't update the src.Pos on a return variable if it
			// was manufactured by the inliner (e.g. "~R2"); such vars
			// were not part of the original callee.
			if !strings.HasPrefix(m.Sym.Name, "~R") {
				m.Name.SetInlFormal(true)
				m.Pos = mpos
				inlfvars = append(inlfvars, m)
			}
		}

		ninit.Append(nod(ODCL, m, nil))
		retvars = append(retvars, m)
	}

	// Assign arguments to the parameters' temp names.
	as := nod(OAS2, nil, nil)
	as.SetColas(true)
	if n.Op == OCALLMETH {
		if n.Left.Left == nil {
			Fatalf("method call without receiver: %+v", n)
		}
		as.Rlist.Append(n.Left.Left)
	}
	as.Rlist.Append(n.List.Slice()...)

	// For non-dotted calls to variadic functions, we assign the
	// variadic parameter's temp name separately.
	var vas *Node

	if recv := fn.Type.Recv(); recv != nil {
		as.List.Append(inlParam(recv, as, inlvars))
	}
	for _, param := range fn.Type.Params().Fields().Slice() {
		// For ordinary parameters or variadic parameters in
		// dotted calls, just add the variable to the
		// assignment list, and we're done.
		if !param.IsDDD() || n.IsDDD() {
			as.List.Append(inlParam(param, as, inlvars))
			continue
		}

		// Otherwise, we need to collect the remaining values
		// to pass as a slice.

		x := as.List.Len()
		for as.List.Len() < as.Rlist.Len() {
			as.List.Append(argvar(param.Type, as.List.Len()))
		}
		varargs := as.List.Slice()[x:]

		vas = nod(OAS, nil, nil)
		vas.Left = inlParam(param, vas, inlvars)
		if len(varargs) == 0 {
			vas.Right = nodnil()
			vas.Right.Type = param.Type
		} else {
			vas.Right = nod(OCOMPLIT, nil, typenod(param.Type))
			vas.Right.List.Set(varargs)
		}
	}

	if as.Rlist.Len() != 0 {
		as = typecheck(as, ctxStmt)
		ninit.Append(as)
	}

	if vas != nil {
		vas = typecheck(vas, ctxStmt)
		ninit.Append(vas)
	}

	// Zero the return parameters.
	for _, n := range retvars {
		ras := nod(OAS, n, nil)
		ras = typecheck(ras, ctxStmt)
		ninit.Append(ras)
	}

	retlabel := autolabel(".i")

	inlgen++

	parent := -1
	if b := Ctxt.PosTable.Pos(n.Pos).Base(); b != nil {
		parent = b.InliningIndex()
	}
	newIndex := Ctxt.InlTree.Add(parent, n.Pos, fn.Sym.Linksym())

	// Add an inline mark just before the inlined body.
	// This mark is inline in the code so that it's a reasonable spot
	// to put a breakpoint. Not sure if that's really necessary or not
	// (in which case it could go at the end of the function instead).
	// Note issue 28603.
	inlMark := nod(OINLMARK, nil, nil)
	inlMark.Pos = n.Pos.WithIsStmt()
	inlMark.Xoffset = int64(newIndex)
	ninit.Append(inlMark)

	if genDwarfInline > 0 {
		if !fn.Sym.Linksym().WasInlined() {
			Ctxt.DwFixups.SetPrecursorFunc(fn.Sym.Linksym(), fn)
			fn.Sym.Linksym().Set(obj.AttrWasInlined, true)
		}
	}

	subst := inlsubst{
		retlabel:    retlabel,
		retvars:     retvars,
		inlvars:     inlvars,
		bases:       make(map[*src.PosBase]*src.PosBase),
		newInlIndex: newIndex,
	}

	body := subst.list(asNodes(fn.Func.Inl.Body))

	lab := nodSym(OLABEL, nil, retlabel)
	body = append(body, lab)

	typecheckslice(body, ctxStmt)

	if genDwarfInline > 0 {
		for _, v := range inlfvars {
			v.Pos = subst.updatedPos(v.Pos)
		}
	}

	//dumplist("ninit post", ninit);

	call := nod(OINLCALL, nil, nil)
	call.Ninit.Set(ninit.Slice())
	call.Nbody.Set(body)
	call.Rlist.Set(retvars)
	call.Type = n.Type
	call.SetTypecheck(1)

	// transitive inlining
	// might be nice to do this before exporting the body,
	// but can't emit the body with inlining expanded.
	// instead we emit the things that the body needs
	// and each use must redo the inlining.
	// luckily these are small.
	inlnodelist(call.Nbody, maxCost, inlMap)
	for _, n := range call.Nbody.Slice() {
		if n.Op == OINLCALL {
			inlconv2stmt(n)
		}
	}

	if Debug.m > 2 {
		fmt.Printf("%v: After inlining %+v\n\n", call.Line(), call)
	}

	return call
}

// Every time we expand a function we generate a new set of tmpnames,
// PAUTO's in the calling functions, and link them off of the
// PPARAM's, PAUTOS and PPARAMOUTs of the called function.
func inlvar(var_ *Node) *Node {
	if Debug.m > 3 {
		fmt.Printf("inlvar %+v\n", var_)
	}

	n := newname(var_.Sym)
	n.Type = var_.Type
	n.SetClass(PAUTO)
	n.Name.SetUsed(true)
	n.Name.Curfn = Curfn // the calling function, not the called one
	n.Name.SetAddrtaken(var_.Name.Addrtaken())

	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
	return n
}

// Synthesize a variable to store the inlined function's results in.
func retvar(t *types.Field, i int) *Node {
	n := newname(lookupN("~R", i))
	n.Type = t.Type
	n.SetClass(PAUTO)
	n.Name.SetUsed(true)
	n.Name.Curfn = Curfn // the calling function, not the called one
	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
	return n
}

// Synthesize a variable to store the inlined function's arguments
// when they come from a multiple return call.
func argvar(t *types.Type, i int) *Node {
	n := newname(lookupN("~arg", i))
	n.Type = t.Elem()
	n.SetClass(PAUTO)
	n.Name.SetUsed(true)
	n.Name.Curfn = Curfn // the calling function, not the called one
	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
	return n
}

// The inlsubst type implements the actual inlining of a single
// function call.
type inlsubst struct {
	// Target of the goto substituted in place of a return.
	retlabel *types.Sym

	// Temporary result variables.
	retvars []*Node

	inlvars map[*Node]*Node

	// bases maps from original PosBase to PosBase with an extra
	// inlined call frame.
	bases map[*src.PosBase]*src.PosBase

	// newInlIndex is the index of the inlined call frame to
	// insert for inlined nodes.
	newInlIndex int
}

// list inlines a list of nodes.
func (subst *inlsubst) list(ll Nodes) []*Node {
	s := make([]*Node, 0, ll.Len())
	for _, n := range ll.Slice() {
		s = append(s, subst.node(n))
	}
	return s
}

// node recursively copies a node from the saved pristine body of the
// inlined function, substituting references to input/output
// parameters with ones to the tmpnames, and substituting returns with
// assignments to the output.
func (subst *inlsubst) node(n *Node) *Node {
	if n == nil {
		return nil
	}

	switch n.Op {
	case ONAME:
		if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode
			if Debug.m > 2 {
				fmt.Printf("substituting name %+v  ->  %+v\n", n, inlvar)
			}
			return inlvar
		}

		if Debug.m > 2 {
			fmt.Printf("not substituting name %+v\n", n)
		}
		return n

	case OLITERAL, OTYPE:
		// If n is a named constant or type, we can continue
		// using it in the inline copy. Otherwise, make a copy
		// so we can update the line number.
		if n.Sym != nil {
			return n
		}

		// Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function.

	//		dump("Return before substitution", n);
	case ORETURN:
		m := nodSym(OGOTO, nil, subst.retlabel)
		m.Ninit.Set(subst.list(n.Ninit))

		if len(subst.retvars) != 0 && n.List.Len() != 0 {
			as := nod(OAS2, nil, nil)

			// Make a shallow copy of retvars.
			// Otherwise OINLCALL.Rlist will be the same list,
			// and later walk and typecheck may clobber it.
			for _, n := range subst.retvars {
				as.List.Append(n)
			}
			as.Rlist.Set(subst.list(n.List))
			as = typecheck(as, ctxStmt)
			m.Ninit.Append(as)
		}

		typecheckslice(m.Ninit.Slice(), ctxStmt)
		m = typecheck(m, ctxStmt)

		//		dump("Return after substitution", m);
		return m

	case OGOTO, OLABEL:
		m := n.copy()
		m.Pos = subst.updatedPos(m.Pos)
		m.Ninit.Set(nil)
		p := fmt.Sprintf("%s·%d", n.Sym.Name, inlgen)
		m.Sym = lookup(p)

		return m
	}

	m := n.copy()
	m.Pos = subst.updatedPos(m.Pos)
	m.Ninit.Set(nil)

	if n.Op == OCLOSURE {
		Fatalf("cannot inline function containing closure: %+v", n)
	}

	m.Left = subst.node(n.Left)
	m.Right = subst.node(n.Right)
	m.List.Set(subst.list(n.List))
	m.Rlist.Set(subst.list(n.Rlist))
	m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...))
	m.Nbody.Set(subst.list(n.Nbody))

	return m
}

func (subst *inlsubst) updatedPos(xpos src.XPos) src.XPos {
	pos := Ctxt.PosTable.Pos(xpos)
	oldbase := pos.Base() // can be nil
	newbase := subst.bases[oldbase]
	if newbase == nil {
		newbase = src.NewInliningBase(oldbase, subst.newInlIndex)
		subst.bases[oldbase] = newbase
	}
	pos.SetBase(newbase)
	return Ctxt.PosTable.XPos(pos)
}

func pruneUnusedAutos(ll []*Node, vis *hairyVisitor) []*Node {
	s := make([]*Node, 0, len(ll))
	for _, n := range ll {
		if n.Class() == PAUTO {
			if _, found := vis.usedLocals[n]; !found {
				continue
			}
		}
		s = append(s, n)
	}
	return s
}