aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/esc.go
blob: 0baf7e7441f5f5430156126ec004d713ae88a221 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gc

import (
	"cmd/compile/internal/types"
	"fmt"
	"strconv"
	"strings"
)

// Run analysis on minimal sets of mutually recursive functions
// or single non-recursive functions, bottom up.
//
// Finding these sets is finding strongly connected components
// by reverse topological order in the static call graph.
// The algorithm (known as Tarjan's algorithm) for doing that is taken from
// Sedgewick, Algorithms, Second Edition, p. 482, with two adaptations.
//
// First, a hidden closure function (n.Func.IsHiddenClosure()) cannot be the
// root of a connected component. Refusing to use it as a root
// forces it into the component of the function in which it appears.
// This is more convenient for escape analysis.
//
// Second, each function becomes two virtual nodes in the graph,
// with numbers n and n+1. We record the function's node number as n
// but search from node n+1. If the search tells us that the component
// number (min) is n+1, we know that this is a trivial component: one function
// plus its closures. If the search tells us that the component number is
// n, then there was a path from node n+1 back to node n, meaning that
// the function set is mutually recursive. The escape analysis can be
// more precise when analyzing a single non-recursive function than
// when analyzing a set of mutually recursive functions.

type bottomUpVisitor struct {
	analyze  func([]*Node, bool)
	visitgen uint32
	nodeID   map[*Node]uint32
	stack    []*Node
}

// visitBottomUp invokes analyze on the ODCLFUNC nodes listed in list.
// It calls analyze with successive groups of functions, working from
// the bottom of the call graph upward. Each time analyze is called with
// a list of functions, every function on that list only calls other functions
// on the list or functions that have been passed in previous invocations of
// analyze. Closures appear in the same list as their outer functions.
// The lists are as short as possible while preserving those requirements.
// (In a typical program, many invocations of analyze will be passed just
// a single function.) The boolean argument 'recursive' passed to analyze
// specifies whether the functions on the list are mutually recursive.
// If recursive is false, the list consists of only a single function and its closures.
// If recursive is true, the list may still contain only a single function,
// if that function is itself recursive.
func visitBottomUp(list []*Node, analyze func(list []*Node, recursive bool)) {
	var v bottomUpVisitor
	v.analyze = analyze
	v.nodeID = make(map[*Node]uint32)
	for _, n := range list {
		if n.Op == ODCLFUNC && !n.Func.IsHiddenClosure() {
			v.visit(n)
		}
	}
}

func (v *bottomUpVisitor) visit(n *Node) uint32 {
	if id := v.nodeID[n]; id > 0 {
		// already visited
		return id
	}

	v.visitgen++
	id := v.visitgen
	v.nodeID[n] = id
	v.visitgen++
	min := v.visitgen

	v.stack = append(v.stack, n)
	min = v.visitcodelist(n.Nbody, min)
	if (min == id || min == id+1) && !n.Func.IsHiddenClosure() {
		// This node is the root of a strongly connected component.

		// The original min passed to visitcodelist was v.nodeID[n]+1.
		// If visitcodelist found its way back to v.nodeID[n], then this
		// block is a set of mutually recursive functions.
		// Otherwise it's just a lone function that does not recurse.
		recursive := min == id

		// Remove connected component from stack.
		// Mark walkgen so that future visits return a large number
		// so as not to affect the caller's min.

		var i int
		for i = len(v.stack) - 1; i >= 0; i-- {
			x := v.stack[i]
			if x == n {
				break
			}
			v.nodeID[x] = ^uint32(0)
		}
		v.nodeID[n] = ^uint32(0)
		block := v.stack[i:]
		// Run escape analysis on this set of functions.
		v.stack = v.stack[:i]
		v.analyze(block, recursive)
	}

	return min
}

func (v *bottomUpVisitor) visitcodelist(l Nodes, min uint32) uint32 {
	for _, n := range l.Slice() {
		min = v.visitcode(n, min)
	}
	return min
}

func (v *bottomUpVisitor) visitcode(n *Node, min uint32) uint32 {
	if n == nil {
		return min
	}

	min = v.visitcodelist(n.Ninit, min)
	min = v.visitcode(n.Left, min)
	min = v.visitcode(n.Right, min)
	min = v.visitcodelist(n.List, min)
	min = v.visitcodelist(n.Nbody, min)
	min = v.visitcodelist(n.Rlist, min)

	switch n.Op {
	case OCALLFUNC, OCALLMETH:
		fn := asNode(n.Left.Type.Nname())
		if fn != nil && fn.Op == ONAME && fn.Class() == PFUNC && fn.Name.Defn != nil {
			m := v.visit(fn.Name.Defn)
			if m < min {
				min = m
			}
		}

	case OCLOSURE:
		m := v.visit(n.Func.Closure)
		if m < min {
			min = m
		}
	}

	return min
}

// Escape analysis.

// An escape analysis pass for a set of functions. The
// analysis assumes that closures and the functions in which
// they appear are analyzed together, so that the aliasing
// between their variables can be modeled more precisely.
//
// First escfunc, esc and escassign recurse over the ast of
// each function to dig out flow(dst,src) edges between any
// pointer-containing  nodes and store those edges in
// e.nodeEscState(dst).Flowsrc. For values assigned to a
// variable in an outer scope or used as a return value,
// they store a flow(theSink, src) edge to a fake node 'the
// Sink'.  For variables referenced in closures, an edge
// flow(closure, &var) is recorded and the flow of a closure
// itself to an outer scope is tracked the same way as other
// variables.
//
// Then escflood walks the graph in destination-to-source
// order, starting at theSink, propagating a computed
// "escape level", and tags as escaping values it can
// reach that are either & (address-taken) nodes or new(T),
// and tags pointer-typed or pointer-containing function
// parameters it can reach as leaking.
//
// If a value's address is taken but the address does not escape,
// then the value can stay on the stack. If the value new(T) does
// not escape, then new(T) can be rewritten into a stack allocation.
// The same is true of slice literals.

func escapes(all []*Node) {
	visitBottomUp(all, escAnalyze)
}

const (
	EscFuncUnknown = 0 + iota
	EscFuncPlanned
	EscFuncStarted
	EscFuncTagged
)

// A Level encodes the reference state and context applied to
// (stack, heap) allocated memory.
//
// value is the overall sum of *(1) and &(-1) operations encountered
// along a path from a destination (sink, return value) to a source
// (allocation, parameter).
//
// suffixValue is the maximum-copy-started-suffix-level on
// a flow path from a sink/destination.  That is, a value
// with suffixValue N is guaranteed to be dereferenced at least
// N deep (chained applications of DOTPTR or IND or INDEX)
// before the result is assigned to a sink.
//
// For example, suppose x is a pointer to T, declared type T struct { left, right *T }
//   sink = x.left.left --> level(x)=2, x is reached via two dereferences (DOTPTR) and does not escape to sink.
//   sink = &T{right:x} --> level(x)=-1, x is accessible from sink via one "address of"
//   sink = &T{right:&T{right:x}} --> level(x)=-2, x is accessible from sink via two "address of"
//
// However, in the next example x's level value and suffixValue differ:
//   sink = &T{right:&T{right:x.left}} --> level(x).value=-1, level(x).suffixValue=1
// The positive suffixValue indicates that x is NOT accessible
// from sink. Without a separate suffixValue to capture this, x would
// appear to escape because its "value" would be -1.  (The copy
// operations are sometimes implicit in the source code; in this case,
// the value of x.left was copied into a field of an newly allocated T).
//
// Each node's level (value and suffixValue) is the maximum for
// all flow paths from (any) sink to that node.

// There's one of these for each Node, and the integer values
// rarely exceed even what can be stored in 4 bits, never mind 8.
type Level struct {
	value, suffixValue int8
}

// There are loops in the escape graph,
// causing arbitrary recursion into deeper and deeper
// levels. Cut this off safely by making minLevel sticky:
// once you get that deep, you cannot go down any further
// but you also cannot go up any further. This is a
// conservative fix. Making minLevel smaller (more negative)
// would handle more complex chains of indirections followed
// by address-of operations, at the cost of repeating the
// traversal once for each additional allowed level when a
// loop is encountered. Using -2 suffices to pass all the
// tests we have written so far, which we assume matches the
// level of complexity we want the escape analysis code to
// handle.
const MinLevel = -2

func (l Level) int() int {
	return int(l.value)
}

func levelFrom(i int) Level {
	if i <= MinLevel {
		return Level{value: MinLevel}
	}
	return Level{value: int8(i)}
}

func satInc8(x int8) int8 {
	if x == 127 {
		return 127
	}
	return x + 1
}

func min8(a, b int8) int8 {
	if a < b {
		return a
	}
	return b
}

func max8(a, b int8) int8 {
	if a > b {
		return a
	}
	return b
}

// inc returns the level l + 1, representing the effect of an indirect (*) operation.
func (l Level) inc() Level {
	if l.value <= MinLevel {
		return Level{value: MinLevel}
	}
	return Level{value: satInc8(l.value), suffixValue: satInc8(l.suffixValue)}
}

// dec returns the level l - 1, representing the effect of an address-of (&) operation.
func (l Level) dec() Level {
	if l.value <= MinLevel {
		return Level{value: MinLevel}
	}
	return Level{value: l.value - 1, suffixValue: l.suffixValue - 1}
}

// copy returns the level for a copy of a value with level l.
// The resulting suffixValue is at least zero, or larger if it was already larger.
func (l Level) copy() Level {
	return Level{value: l.value, suffixValue: max8(l.suffixValue, 0)}
}

func (l1 Level) min(l2 Level) Level {
	return Level{
		value:       min8(l1.value, l2.value),
		suffixValue: min8(l1.suffixValue, l2.suffixValue)}
}

// guaranteedDereference returns the number of dereferences
// applied to a pointer before addresses are taken/generated.
// This is the maximum level computed from path suffixes starting
// with copies where paths flow from destination to source.
func (l Level) guaranteedDereference() int {
	return int(l.suffixValue)
}

// An EscStep documents one step in the path from memory
// that is heap allocated to the (alleged) reason for the
// heap allocation.
type EscStep struct {
	src, dst *Node    // the endpoints of this edge in the escape-to-heap chain.
	where    *Node    // sometimes the endpoints don't match source locations; set 'where' to make that right
	parent   *EscStep // used in flood to record path
	why      string   // explanation for this step in the escape-to-heap chain
	busy     bool     // used in prevent to snip cycles.
}

type NodeEscState struct {
	Curfn             *Node
	Flowsrc           []EscStep // flow(this, src)
	Retval            Nodes     // on OCALLxxx, list of dummy return values
	Loopdepth         int32     // -1: global, 0: return variables, 1:function top level, increased inside function for every loop or label to mark scopes
	Level             Level
	Walkgen           uint32
	Maxextraloopdepth int32
}

func (e *EscState) nodeEscState(n *Node) *NodeEscState {
	if nE, ok := n.Opt().(*NodeEscState); ok {
		return nE
	}
	if n.Opt() != nil {
		Fatalf("nodeEscState: opt in use (%T)", n.Opt())
	}
	nE := &NodeEscState{
		Curfn: Curfn,
	}
	n.SetOpt(nE)
	e.opts = append(e.opts, n)
	return nE
}

func (e *EscState) track(n *Node) {
	if Curfn == nil {
		Fatalf("EscState.track: Curfn nil")
	}
	n.Esc = EscNone // until proven otherwise
	nE := e.nodeEscState(n)
	nE.Loopdepth = e.loopdepth
	e.noesc = append(e.noesc, n)
}

// Escape constants are numbered in order of increasing "escapiness"
// to help make inferences be monotonic. With the exception of
// EscNever which is sticky, eX < eY means that eY is more exposed
// than eX, and hence replaces it in a conservative analysis.
const (
	EscUnknown        = iota
	EscNone           // Does not escape to heap, result, or parameters.
	EscReturn         // Is returned or reachable from returned.
	EscHeap           // Reachable from the heap
	EscNever          // By construction will not escape.
	EscBits           = 3
	EscMask           = (1 << EscBits) - 1
	EscContentEscapes = 1 << EscBits // value obtained by indirect of parameter escapes to heap
	EscReturnBits     = EscBits + 1
	// Node.esc encoding = | escapeReturnEncoding:(width-4) | contentEscapes:1 | escEnum:3
)

// escMax returns the maximum of an existing escape value
// (and its additional parameter flow flags) and a new escape type.
func escMax(e, etype uint16) uint16 {
	if e&EscMask >= EscHeap {
		// normalize
		if e&^EscMask != 0 {
			Fatalf("Escape information had unexpected return encoding bits (w/ EscHeap, EscNever), e&EscMask=%v", e&EscMask)
		}
	}
	if e&EscMask > etype {
		return e
	}
	if etype == EscNone || etype == EscReturn {
		return (e &^ EscMask) | etype
	}
	return etype
}

// For each input parameter to a function, the escapeReturnEncoding describes
// how the parameter may leak to the function's outputs. This is currently the
// "level" of the leak where level is 0 or larger (negative level means stored into
// something whose address is returned -- but that implies stored into the heap,
// hence EscHeap, which means that the details are not currently relevant. )
const (
	bitsPerOutputInTag = 3                                 // For each output, the number of bits for a tag
	bitsMaskForTag     = uint16(1<<bitsPerOutputInTag) - 1 // The bit mask to extract a single tag.
	maxEncodedLevel    = int(bitsMaskForTag - 1)           // The largest level that can be stored in a tag.
)

type EscState struct {
	// Fake node that all
	//   - return values and output variables
	//   - parameters on imported functions not marked 'safe'
	//   - assignments to global variables
	// flow to.
	theSink Node

	dsts      []*Node // all dst nodes
	loopdepth int32   // for detecting nested loop scopes
	pdepth    int     // for debug printing in recursions.
	dstcount  int     // diagnostic
	edgecount int     // diagnostic
	noesc     []*Node // list of possible non-escaping nodes, for printing
	recursive bool    // recursive function or group of mutually recursive functions.
	opts      []*Node // nodes with .Opt initialized
	walkgen   uint32
}

func newEscState(recursive bool) *EscState {
	e := new(EscState)
	e.theSink.Op = ONAME
	e.theSink.Orig = &e.theSink
	e.theSink.SetClass(PEXTERN)
	e.theSink.Sym = lookup(".sink")
	e.nodeEscState(&e.theSink).Loopdepth = -1
	e.recursive = recursive
	return e
}

func (e *EscState) stepWalk(dst, src *Node, why string, parent *EscStep) *EscStep {
	// TODO: keep a cache of these, mark entry/exit in escwalk to avoid allocation
	// Or perhaps never mind, since it is disabled unless printing is on.
	// We may want to revisit this, since the EscStep nodes would make
	// an excellent replacement for the poorly-separated graph-build/graph-flood
	// stages.
	if Debug['m'] == 0 {
		return nil
	}
	return &EscStep{src: src, dst: dst, why: why, parent: parent}
}

func (e *EscState) stepAssign(step *EscStep, dst, src *Node, why string) *EscStep {
	if Debug['m'] == 0 {
		return nil
	}
	if step != nil { // Caller may have known better.
		if step.why == "" {
			step.why = why
		}
		if step.dst == nil {
			step.dst = dst
		}
		if step.src == nil {
			step.src = src
		}
		return step
	}
	return &EscStep{src: src, dst: dst, why: why}
}

func (e *EscState) stepAssignWhere(dst, src *Node, why string, where *Node) *EscStep {
	if Debug['m'] == 0 {
		return nil
	}
	return &EscStep{src: src, dst: dst, why: why, where: where}
}

// funcSym returns fn.Func.Nname.Sym if no nils are encountered along the way.
func funcSym(fn *Node) *types.Sym {
	if fn == nil || fn.Func.Nname == nil {
		return nil
	}
	return fn.Func.Nname.Sym
}

// curfnSym returns n.Curfn.Nname.Sym if no nils are encountered along the way.
func (e *EscState) curfnSym(n *Node) *types.Sym {
	nE := e.nodeEscState(n)
	return funcSym(nE.Curfn)
}

func escAnalyze(all []*Node, recursive bool) {
	e := newEscState(recursive)

	for _, n := range all {
		if n.Op == ODCLFUNC {
			n.Esc = EscFuncPlanned
			if Debug['m'] > 3 {
				Dump("escAnalyze", n)
			}

		}
	}

	// flow-analyze functions
	for _, n := range all {
		if n.Op == ODCLFUNC {
			e.escfunc(n)
		}
	}

	// print("escapes: %d e.dsts, %d edges\n", e.dstcount, e.edgecount);

	// visit the upstream of each dst, mark address nodes with
	// addrescapes, mark parameters unsafe
	escapes := make([]uint16, len(e.dsts))
	for i, n := range e.dsts {
		escapes[i] = n.Esc
	}
	for _, n := range e.dsts {
		e.escflood(n)
	}
	for {
		done := true
		for i, n := range e.dsts {
			if n.Esc != escapes[i] {
				done = false
				if Debug['m'] > 2 {
					Warnl(n.Pos, "Reflooding %v %S", e.curfnSym(n), n)
				}
				escapes[i] = n.Esc
				e.escflood(n)
			}
		}
		if done {
			break
		}
	}

	// for all top level functions, tag the typenodes corresponding to the param nodes
	for _, n := range all {
		if n.Op == ODCLFUNC {
			e.esctag(n)
		}
	}

	if Debug['m'] != 0 {
		for _, n := range e.noesc {
			if n.Esc == EscNone {
				Warnl(n.Pos, "%v %S does not escape", e.curfnSym(n), n)
			}
		}
	}

	for _, x := range e.opts {
		x.SetOpt(nil)
	}
}

func (e *EscState) escfunc(fn *Node) {
	//	print("escfunc %N %s\n", fn.Func.Nname, e.recursive?"(recursive)":"");
	if fn.Esc != EscFuncPlanned {
		Fatalf("repeat escfunc %v", fn.Func.Nname)
	}
	fn.Esc = EscFuncStarted

	saveld := e.loopdepth
	e.loopdepth = 1
	savefn := Curfn
	Curfn = fn

	for _, ln := range Curfn.Func.Dcl {
		if ln.Op != ONAME {
			continue
		}
		lnE := e.nodeEscState(ln)
		switch ln.Class() {
		// out params are in a loopdepth between the sink and all local variables
		case PPARAMOUT:
			lnE.Loopdepth = 0

		case PPARAM:
			lnE.Loopdepth = 1
			if ln.Type != nil && !types.Haspointers(ln.Type) {
				break
			}
			if Curfn.Nbody.Len() == 0 && !Curfn.Noescape() {
				ln.Esc = EscHeap
			} else {
				ln.Esc = EscNone // prime for escflood later
			}
			e.noesc = append(e.noesc, ln)
		}
	}

	// in a mutually recursive group we lose track of the return values
	if e.recursive {
		for _, ln := range Curfn.Func.Dcl {
			if ln.Op == ONAME && ln.Class() == PPARAMOUT {
				e.escflows(&e.theSink, ln, e.stepAssign(nil, ln, ln, "returned from recursive function"))
			}
		}
	}

	e.escloopdepthlist(Curfn.Nbody)
	e.esclist(Curfn.Nbody, Curfn)
	Curfn = savefn
	e.loopdepth = saveld
}

// Mark labels that have no backjumps to them as not increasing e.loopdepth.
// Walk hasn't generated (goto|label).Left.Sym.Label yet, so we'll cheat
// and set it to one of the following two. Then in esc we'll clear it again.
var (
	looping    Node
	nonlooping Node
)

func (e *EscState) escloopdepthlist(l Nodes) {
	for _, n := range l.Slice() {
		e.escloopdepth(n)
	}
}

func (e *EscState) escloopdepth(n *Node) {
	if n == nil {
		return
	}

	e.escloopdepthlist(n.Ninit)

	switch n.Op {
	case OLABEL:
		if n.Left == nil || n.Left.Sym == nil {
			Fatalf("esc:label without label: %+v", n)
		}

		// Walk will complain about this label being already defined, but that's not until
		// after escape analysis. in the future, maybe pull label & goto analysis out of walk and put before esc
		// if(n.Left.Sym.Label != nil)
		//	fatal("escape analysis messed up analyzing label: %+N", n);
		n.Left.Sym.Label = asTypesNode(&nonlooping)

	case OGOTO:
		if n.Left == nil || n.Left.Sym == nil {
			Fatalf("esc:goto without label: %+v", n)
		}

		// If we come past one that's uninitialized, this must be a (harmless) forward jump
		// but if it's set to nonlooping the label must have preceded this goto.
		if asNode(n.Left.Sym.Label) == &nonlooping {
			n.Left.Sym.Label = asTypesNode(&looping)
		}
	}

	e.escloopdepth(n.Left)
	e.escloopdepth(n.Right)
	e.escloopdepthlist(n.List)
	e.escloopdepthlist(n.Nbody)
	e.escloopdepthlist(n.Rlist)
}

func (e *EscState) esclist(l Nodes, parent *Node) {
	for _, n := range l.Slice() {
		e.esc(n, parent)
	}
}

func (e *EscState) esc(n *Node, parent *Node) {
	if n == nil {
		return
	}

	lno := setlineno(n)

	// ninit logically runs at a different loopdepth than the rest of the for loop.
	e.esclist(n.Ninit, n)

	if n.Op == OFOR || n.Op == OFORUNTIL || n.Op == ORANGE {
		e.loopdepth++
	}

	// type switch variables have no ODCL.
	// process type switch as declaration.
	// must happen before processing of switch body,
	// so before recursion.
	if n.Op == OSWITCH && n.Left != nil && n.Left.Op == OTYPESW {
		for _, cas := range n.List.Slice() { // cases
			// it.N().Rlist is the variable per case
			if cas.Rlist.Len() != 0 {
				e.nodeEscState(cas.Rlist.First()).Loopdepth = e.loopdepth
			}
		}
	}

	// Big stuff and non-constant-sized stuff escapes unconditionally.
	// "Big" conditions that were scattered around in walk have been
	// gathered here.
	if n.Esc != EscHeap && n.Type != nil &&
		(n.Type.Width > maxStackVarSize ||
			(n.Op == ONEW || n.Op == OPTRLIT) && n.Type.Elem().Width >= 1<<16 ||
			n.Op == OMAKESLICE && !isSmallMakeSlice(n)) {

		// isSmallMakeSlice returns false for non-constant len/cap.
		// If that's the case, print a more accurate escape reason.
		var msgVerb, escapeMsg string
		if n.Op == OMAKESLICE && (!Isconst(n.Left, CTINT) || !Isconst(n.Right, CTINT)) {
			msgVerb, escapeMsg = "has ", "non-constant size"
		} else {
			msgVerb, escapeMsg = "is ", "too large for stack"
		}

		if Debug['m'] > 2 {
			Warnl(n.Pos, "%v "+msgVerb+escapeMsg, n)
		}
		n.Esc = EscHeap
		addrescapes(n)
		e.escassignSinkWhy(n, n, escapeMsg) // TODO category: tooLarge
	}

	e.esc(n.Left, n)

	if n.Op == ORANGE {
		// ORANGE node's Right is evaluated before the loop
		e.loopdepth--
	}

	e.esc(n.Right, n)

	if n.Op == ORANGE {
		e.loopdepth++
	}

	e.esclist(n.Nbody, n)
	e.esclist(n.List, n)
	e.esclist(n.Rlist, n)

	if n.Op == OFOR || n.Op == OFORUNTIL || n.Op == ORANGE {
		e.loopdepth--
	}

	if Debug['m'] > 2 {
		fmt.Printf("%v:[%d] %v esc: %v\n", linestr(lineno), e.loopdepth, funcSym(Curfn), n)
	}

opSwitch:
	switch n.Op {
	// Record loop depth at declaration.
	case ODCL:
		if n.Left != nil {
			e.nodeEscState(n.Left).Loopdepth = e.loopdepth
		}

	case OLABEL:
		if asNode(n.Left.Sym.Label) == &nonlooping {
			if Debug['m'] > 2 {
				fmt.Printf("%v:%v non-looping label\n", linestr(lineno), n)
			}
		} else if asNode(n.Left.Sym.Label) == &looping {
			if Debug['m'] > 2 {
				fmt.Printf("%v: %v looping label\n", linestr(lineno), n)
			}
			e.loopdepth++
		}

		// See case OLABEL in escloopdepth above
		// else if(n.Left.Sym.Label == nil)
		//	fatal("escape analysis missed or messed up a label: %+N", n);

		n.Left.Sym.Label = nil

	case ORANGE:
		if n.List.Len() >= 2 {
			// Everything but fixed array is a dereference.

			// If fixed array is really the address of fixed array,
			// it is also a dereference, because it is implicitly
			// dereferenced (see #12588)
			if n.Type.IsArray() &&
				!(n.Right.Type.IsPtr() && eqtype(n.Right.Type.Elem(), n.Type)) {
				e.escassignWhyWhere(n.List.Second(), n.Right, "range", n)
			} else {
				e.escassignDereference(n.List.Second(), n.Right, e.stepAssignWhere(n.List.Second(), n.Right, "range-deref", n))
			}
		}

	case OSWITCH:
		if n.Left != nil && n.Left.Op == OTYPESW {
			for _, cas := range n.List.Slice() {
				// cases
				// n.Left.Right is the argument of the .(type),
				// it.N().Rlist is the variable per case
				if cas.Rlist.Len() != 0 {
					e.escassignWhyWhere(cas.Rlist.First(), n.Left.Right, "switch case", n)
				}
			}
		}

	// Filter out the following special case.
	//
	//	func (b *Buffer) Foo() {
	//		n, m := ...
	//		b.buf = b.buf[n:m]
	//	}
	//
	// This assignment is a no-op for escape analysis,
	// it does not store any new pointers into b that were not already there.
	// However, without this special case b will escape, because we assign to OIND/ODOTPTR.
	case OAS, OASOP:
		if (n.Left.Op == OIND || n.Left.Op == ODOTPTR) && n.Left.Left.Op == ONAME && // dst is ONAME dereference
			(n.Right.Op == OSLICE || n.Right.Op == OSLICE3 || n.Right.Op == OSLICESTR) && // src is slice operation
			(n.Right.Left.Op == OIND || n.Right.Left.Op == ODOTPTR) && n.Right.Left.Left.Op == ONAME && // slice is applied to ONAME dereference
			n.Left.Left == n.Right.Left.Left { // dst and src reference the same base ONAME

			// Here we also assume that the statement will not contain calls,
			// that is, that order will move any calls to init.
			// Otherwise base ONAME value could change between the moments
			// when we evaluate it for dst and for src.
			//
			// Note, this optimization does not apply to OSLICEARR,
			// because it does introduce a new pointer into b that was not already there
			// (pointer to b itself). After such assignment, if b contents escape,
			// b escapes as well. If we ignore such OSLICEARR, we will conclude
			// that b does not escape when b contents do.
			if Debug['m'] != 0 {
				Warnl(n.Pos, "%v ignoring self-assignment to %S", e.curfnSym(n), n.Left)
			}

			break
		}

		e.escassign(n.Left, n.Right, e.stepAssignWhere(nil, nil, "", n))

	case OAS2: // x,y = a,b
		if n.List.Len() == n.Rlist.Len() {
			rs := n.Rlist.Slice()
			for i, n := range n.List.Slice() {
				e.escassignWhyWhere(n, rs[i], "assign-pair", n)
			}
		}

	case OAS2RECV: // v, ok = <-ch
		e.escassignWhyWhere(n.List.First(), n.Rlist.First(), "assign-pair-receive", n)
	case OAS2MAPR: // v, ok = m[k]
		e.escassignWhyWhere(n.List.First(), n.Rlist.First(), "assign-pair-mapr", n)
	case OAS2DOTTYPE: // v, ok = x.(type)
		e.escassignWhyWhere(n.List.First(), n.Rlist.First(), "assign-pair-dot-type", n)

	case OSEND: // ch <- x
		e.escassignSinkWhy(n, n.Right, "send")

	case ODEFER:
		if e.loopdepth == 1 { // top level
			break
		}
		// arguments leak out of scope
		// TODO: leak to a dummy node instead
		// defer f(x) - f and x escape
		e.escassignSinkWhy(n, n.Left.Left, "defer func")
		e.escassignSinkWhy(n, n.Left.Right, "defer func ...") // ODDDARG for call
		for _, arg := range n.Left.List.Slice() {
			e.escassignSinkWhy(n, arg, "defer func arg")
		}

	case OPROC:
		// go f(x) - f and x escape
		e.escassignSinkWhy(n, n.Left.Left, "go func")
		e.escassignSinkWhy(n, n.Left.Right, "go func ...") // ODDDARG for call
		for _, arg := range n.Left.List.Slice() {
			e.escassignSinkWhy(n, arg, "go func arg")
		}

	case OCALLMETH, OCALLFUNC, OCALLINTER:
		e.esccall(n, parent)

		// esccall already done on n.Rlist.First(). tie it's Retval to n.List
	case OAS2FUNC: // x,y = f()
		rs := e.nodeEscState(n.Rlist.First()).Retval.Slice()
		for i, n := range n.List.Slice() {
			if i >= len(rs) {
				break
			}
			e.escassignWhyWhere(n, rs[i], "assign-pair-func-call", n)
		}
		if n.List.Len() != len(rs) {
			Fatalf("esc oas2func")
		}

	case ORETURN:
		retList := n.List
		if retList.Len() == 1 && Curfn.Type.NumResults() > 1 {
			// OAS2FUNC in disguise
			// esccall already done on n.List.First()
			// tie e.nodeEscState(n.List.First()).Retval to Curfn.Func.Dcl PPARAMOUT's
			retList = e.nodeEscState(n.List.First()).Retval
		}

		i := 0
		for _, lrn := range Curfn.Func.Dcl {
			if i >= retList.Len() {
				break
			}
			if lrn.Op != ONAME || lrn.Class() != PPARAMOUT {
				continue
			}
			e.escassignWhyWhere(lrn, retList.Index(i), "return", n)
			i++
		}

		if i < retList.Len() {
			Fatalf("esc return list")
		}

		// Argument could leak through recover.
	case OPANIC:
		e.escassignSinkWhy(n, n.Left, "panic")

	case OAPPEND:
		if !n.Isddd() {
			for _, nn := range n.List.Slice()[1:] {
				e.escassignSinkWhy(n, nn, "appended to slice") // lose track of assign to dereference
			}
		} else {
			// append(slice1, slice2...) -- slice2 itself does not escape, but contents do.
			slice2 := n.List.Second()
			e.escassignDereference(&e.theSink, slice2, e.stepAssignWhere(n, slice2, "appended slice...", n)) // lose track of assign of dereference
			if Debug['m'] > 3 {
				Warnl(n.Pos, "%v special treatment of append(slice1, slice2...) %S", e.curfnSym(n), n)
			}
		}
		e.escassignDereference(&e.theSink, n.List.First(), e.stepAssignWhere(n, n.List.First(), "appendee slice", n)) // The original elements are now leaked, too

	case OCOPY:
		e.escassignDereference(&e.theSink, n.Right, e.stepAssignWhere(n, n.Right, "copied slice", n)) // lose track of assign of dereference

	case OCONV, OCONVNOP:
		e.escassignWhyWhere(n, n.Left, "converted", n)

	case OCONVIFACE:
		e.track(n)
		e.escassignWhyWhere(n, n.Left, "interface-converted", n)

	case OARRAYLIT:
		// Link values to array
		for _, elt := range n.List.Slice() {
			if elt.Op == OKEY {
				elt = elt.Right
			}
			e.escassign(n, elt, e.stepAssignWhere(n, elt, "array literal element", n))
		}

	case OSLICELIT:
		// Slice is not leaked until proven otherwise
		e.track(n)
		// Link values to slice
		for _, elt := range n.List.Slice() {
			if elt.Op == OKEY {
				elt = elt.Right
			}
			e.escassign(n, elt, e.stepAssignWhere(n, elt, "slice literal element", n))
		}

		// Link values to struct.
	case OSTRUCTLIT:
		for _, elt := range n.List.Slice() {
			e.escassignWhyWhere(n, elt.Left, "struct literal element", n)
		}

	case OPTRLIT:
		e.track(n)

		// Link OSTRUCTLIT to OPTRLIT; if OPTRLIT escapes, OSTRUCTLIT elements do too.
		e.escassignWhyWhere(n, n.Left, "pointer literal [assign]", n)

	case OCALLPART:
		e.track(n)

		// Contents make it to memory, lose track.
		e.escassignSinkWhy(n, n.Left, "call part")

	case OMAPLIT:
		e.track(n)
		// Keys and values make it to memory, lose track.
		for _, elt := range n.List.Slice() {
			e.escassignSinkWhy(n, elt.Left, "map literal key")
			e.escassignSinkWhy(n, elt.Right, "map literal value")
		}

	case OCLOSURE:
		// Link addresses of captured variables to closure.
		for _, v := range n.Func.Closure.Func.Cvars.Slice() {
			if v.Op == OXXX { // unnamed out argument; see dcl.go:/^funcargs
				continue
			}
			a := v.Name.Defn
			if !v.Name.Byval() {
				a = nod(OADDR, a, nil)
				a.Pos = v.Pos
				e.nodeEscState(a).Loopdepth = e.loopdepth
				a = typecheck(a, Erv)
			}

			e.escassignWhyWhere(n, a, "captured by a closure", n)
		}
		fallthrough

	case OMAKECHAN,
		OMAKEMAP,
		OMAKESLICE,
		ONEW,
		OARRAYRUNESTR,
		OARRAYBYTESTR,
		OSTRARRAYRUNE,
		OSTRARRAYBYTE,
		ORUNESTR:
		e.track(n)

	case OADDSTR:
		e.track(n)
		// Arguments of OADDSTR do not escape.

	case OADDR:
		// current loop depth is an upper bound on actual loop depth
		// of addressed value.
		e.track(n)

		// for &x, use loop depth of x if known.
		// it should always be known, but if not, be conservative
		// and keep the current loop depth.
		if n.Left.Op == ONAME {
			switch n.Left.Class() {
			// PPARAM is loop depth 1 always.
			// PPARAMOUT is loop depth 0 for writes
			// but considered loop depth 1 for address-of,
			// so that writing the address of one result
			// to another (or the same) result makes the
			// first result move to the heap.
			case PPARAM, PPARAMOUT:
				nE := e.nodeEscState(n)
				nE.Loopdepth = 1
				break opSwitch
			}
		}
		nE := e.nodeEscState(n)
		leftE := e.nodeEscState(n.Left)
		if leftE.Loopdepth != 0 {
			nE.Loopdepth = leftE.Loopdepth
		}

	case ODOT,
		ODOTPTR,
		OINDEX:
		// Propagate the loopdepth of t to t.field.
		if n.Left.Op != OLITERAL { // OLITERAL node doesn't have esc state
			e.nodeEscState(n).Loopdepth = e.nodeEscState(n.Left).Loopdepth
		}
	}

	lineno = lno
}

// escassignWhyWhere bundles a common case of
// escassign(e, dst, src, e.stepAssignWhere(dst, src, reason, where))
func (e *EscState) escassignWhyWhere(dst, src *Node, reason string, where *Node) {
	var step *EscStep
	if Debug['m'] != 0 {
		step = e.stepAssignWhere(dst, src, reason, where)
	}
	e.escassign(dst, src, step)
}

// escassignSinkWhy bundles a common case of
// escassign(e, &e.theSink, src, e.stepAssign(nil, dst, src, reason))
func (e *EscState) escassignSinkWhy(dst, src *Node, reason string) {
	var step *EscStep
	if Debug['m'] != 0 {
		step = e.stepAssign(nil, dst, src, reason)
	}
	e.escassign(&e.theSink, src, step)
}

// escassignSinkWhyWhere is escassignSinkWhy but includes a call site
// for accurate location reporting.
func (e *EscState) escassignSinkWhyWhere(dst, src *Node, reason string, call *Node) {
	var step *EscStep
	if Debug['m'] != 0 {
		step = e.stepAssignWhere(dst, src, reason, call)
	}
	e.escassign(&e.theSink, src, step)
}

// Assert that expr somehow gets assigned to dst, if non nil.  for
// dst==nil, any name node expr still must be marked as being
// evaluated in curfn.	For expr==nil, dst must still be examined for
// evaluations inside it (e.g *f(x) = y)
func (e *EscState) escassign(dst, src *Node, step *EscStep) {
	if dst.isBlank() || dst == nil || src == nil || src.Op == ONONAME || src.Op == OXXX {
		return
	}

	if Debug['m'] > 2 {
		fmt.Printf("%v:[%d] %v escassign: %S(%0j)[%v] = %S(%0j)[%v]\n",
			linestr(lineno), e.loopdepth, funcSym(Curfn),
			dst, dst, dst.Op,
			src, src, src.Op)
	}

	setlineno(dst)

	originalDst := dst
	dstwhy := "assigned"

	// Analyze lhs of assignment.
	// Replace dst with &e.theSink if we can't track it.
	switch dst.Op {
	default:
		Dump("dst", dst)
		Fatalf("escassign: unexpected dst")

	case OARRAYLIT,
		OSLICELIT,
		OCLOSURE,
		OCONV,
		OCONVIFACE,
		OCONVNOP,
		OMAPLIT,
		OSTRUCTLIT,
		OPTRLIT,
		ODDDARG,
		OCALLPART:

	case ONAME:
		if dst.Class() == PEXTERN {
			dstwhy = "assigned to top level variable"
			dst = &e.theSink
		}

	case ODOT: // treat "dst.x = src" as "dst = src"
		e.escassign(dst.Left, src, e.stepAssign(step, originalDst, src, "dot-equals"))
		return

	case OINDEX:
		if dst.Left.Type.IsArray() {
			e.escassign(dst.Left, src, e.stepAssign(step, originalDst, src, "array-element-equals"))
			return
		}

		dstwhy = "slice-element-equals"
		dst = &e.theSink // lose track of dereference

	case OIND:
		dstwhy = "star-equals"
		dst = &e.theSink // lose track of dereference

	case ODOTPTR:
		dstwhy = "star-dot-equals"
		dst = &e.theSink // lose track of dereference

		// lose track of key and value
	case OINDEXMAP:
		e.escassign(&e.theSink, dst.Right, e.stepAssign(nil, originalDst, src, "key of map put"))
		dstwhy = "value of map put"
		dst = &e.theSink
	}

	lno := setlineno(src)
	e.pdepth++

	switch src.Op {
	case OADDR, // dst = &x
		OIND,    // dst = *x
		ODOTPTR, // dst = (*x).f
		ONAME,
		ODDDARG,
		OPTRLIT,
		OARRAYLIT,
		OSLICELIT,
		OMAPLIT,
		OSTRUCTLIT,
		OMAKECHAN,
		OMAKEMAP,
		OMAKESLICE,
		OARRAYRUNESTR,
		OARRAYBYTESTR,
		OSTRARRAYRUNE,
		OSTRARRAYBYTE,
		OADDSTR,
		ONEW,
		OCALLPART,
		ORUNESTR,
		OCONVIFACE:
		e.escflows(dst, src, e.stepAssign(step, originalDst, src, dstwhy))

	case OCLOSURE:
		// OCLOSURE is lowered to OPTRLIT,
		// insert OADDR to account for the additional indirection.
		a := nod(OADDR, src, nil)
		a.Pos = src.Pos
		e.nodeEscState(a).Loopdepth = e.nodeEscState(src).Loopdepth
		a.Type = types.NewPtr(src.Type)
		e.escflows(dst, a, e.stepAssign(nil, originalDst, src, dstwhy))

	// Flowing multiple returns to a single dst happens when
	// analyzing "go f(g())": here g() flows to sink (issue 4529).
	case OCALLMETH, OCALLFUNC, OCALLINTER:
		for _, n := range e.nodeEscState(src).Retval.Slice() {
			e.escflows(dst, n, e.stepAssign(nil, originalDst, n, dstwhy))
		}

		// A non-pointer escaping from a struct does not concern us.
	case ODOT:
		if src.Type != nil && !types.Haspointers(src.Type) {
			break
		}
		fallthrough

		// Conversions, field access, slice all preserve the input value.
	case OCONV,
		OCONVNOP,
		ODOTMETH,
		// treat recv.meth as a value with recv in it, only happens in ODEFER and OPROC
		// iface.method already leaks iface in esccall, no need to put in extra ODOTINTER edge here
		OSLICE,
		OSLICE3,
		OSLICEARR,
		OSLICE3ARR,
		OSLICESTR:
		// Conversions, field access, slice all preserve the input value.
		e.escassign(dst, src.Left, e.stepAssign(step, originalDst, src, dstwhy))

	case ODOTTYPE,
		ODOTTYPE2:
		if src.Type != nil && !types.Haspointers(src.Type) {
			break
		}
		e.escassign(dst, src.Left, e.stepAssign(step, originalDst, src, dstwhy))

	case OAPPEND:
		// Append returns first argument.
		// Subsequent arguments are already leaked because they are operands to append.
		e.escassign(dst, src.List.First(), e.stepAssign(step, dst, src.List.First(), dstwhy))

	case OINDEX:
		// Index of array preserves input value.
		if src.Left.Type.IsArray() {
			e.escassign(dst, src.Left, e.stepAssign(step, originalDst, src, dstwhy))
		} else {
			e.escflows(dst, src, e.stepAssign(step, originalDst, src, dstwhy))
		}

	// Might be pointer arithmetic, in which case
	// the operands flow into the result.
	// TODO(rsc): Decide what the story is here. This is unsettling.
	case OADD,
		OSUB,
		OOR,
		OXOR,
		OMUL,
		ODIV,
		OMOD,
		OLSH,
		ORSH,
		OAND,
		OANDNOT,
		OPLUS,
		OMINUS,
		OCOM:
		e.escassign(dst, src.Left, e.stepAssign(step, originalDst, src, dstwhy))

		e.escassign(dst, src.Right, e.stepAssign(step, originalDst, src, dstwhy))
	}

	e.pdepth--
	lineno = lno
}

// Common case for escapes is 16 bits 000000000xxxEEEE
// where commonest cases for xxx encoding in-to-out pointer
//  flow are 000, 001, 010, 011  and EEEE is computed Esc bits.
// Note width of xxx depends on value of constant
// bitsPerOutputInTag -- expect 2 or 3, so in practice the
// tag cache array is 64 or 128 long. Some entries will
// never be populated.
var tags [1 << (bitsPerOutputInTag + EscReturnBits)]string

// mktag returns the string representation for an escape analysis tag.
func mktag(mask int) string {
	switch mask & EscMask {
	case EscNone, EscReturn:
	default:
		Fatalf("escape mktag")
	}

	if mask < len(tags) && tags[mask] != "" {
		return tags[mask]
	}

	s := fmt.Sprintf("esc:0x%x", mask)
	if mask < len(tags) {
		tags[mask] = s
	}
	return s
}

// parsetag decodes an escape analysis tag and returns the esc value.
func parsetag(note string) uint16 {
	if !strings.HasPrefix(note, "esc:") {
		return EscUnknown
	}
	n, _ := strconv.ParseInt(note[4:], 0, 0)
	em := uint16(n)
	if em == 0 {
		return EscNone
	}
	return em
}

// describeEscape returns a string describing the escape tag.
// The result is either one of {EscUnknown, EscNone, EscHeap} which all have no further annotation
// or a description of parameter flow, which takes the form of an optional "contentToHeap"
// indicating that the content of this parameter is leaked to the heap, followed by a sequence
// of level encodings separated by spaces, one for each parameter, where _ means no flow,
// = means direct flow, and N asterisks (*) encodes content (obtained by indirection) flow.
// e.g., "contentToHeap _ =" means that a parameter's content (one or more dereferences)
// escapes to the heap, the parameter does not leak to the first output, but does leak directly
// to the second output (and if there are more than two outputs, there is no flow to those.)
func describeEscape(em uint16) string {
	var s string
	switch em & EscMask {
	case EscUnknown:
		s = "EscUnknown"
	case EscNone:
		s = "EscNone"
	case EscHeap:
		s = "EscHeap"
	case EscReturn:
		s = "EscReturn"
	}
	if em&EscContentEscapes != 0 {
		if s != "" {
			s += " "
		}
		s += "contentToHeap"
	}
	for em >>= EscReturnBits; em != 0; em = em >> bitsPerOutputInTag {
		// See encoding description above
		if s != "" {
			s += " "
		}
		switch embits := em & bitsMaskForTag; embits {
		case 0:
			s += "_"
		case 1:
			s += "="
		default:
			for i := uint16(0); i < embits-1; i++ {
				s += "*"
			}
		}

	}
	return s
}

// escassignfromtag models the input-to-output assignment flow of one of a function
// calls arguments, where the flow is encoded in "note".
func (e *EscState) escassignfromtag(note string, dsts Nodes, src, call *Node) uint16 {
	em := parsetag(note)
	if src.Op == OLITERAL {
		return em
	}

	if Debug['m'] > 3 {
		fmt.Printf("%v::assignfromtag:: src=%S, em=%s\n",
			linestr(lineno), src, describeEscape(em))
	}

	if em == EscUnknown {
		e.escassignSinkWhyWhere(src, src, "passed to call[argument escapes]", call)
		return em
	}

	if em == EscNone {
		return em
	}

	// If content inside parameter (reached via indirection)
	// escapes to heap, mark as such.
	if em&EscContentEscapes != 0 {
		e.escassign(&e.theSink, e.addDereference(src), e.stepAssignWhere(src, src, "passed to call[argument content escapes]", call))
	}

	em0 := em
	dstsi := 0
	for em >>= EscReturnBits; em != 0 && dstsi < dsts.Len(); em = em >> bitsPerOutputInTag {
		// Prefer the lowest-level path to the reference (for escape purposes).
		// Two-bit encoding (for example. 1, 3, and 4 bits are other options)
		//  01 = 0-level
		//  10 = 1-level, (content escapes),
		//  11 = 2-level, (content of content escapes),
		embits := em & bitsMaskForTag
		if embits > 0 {
			n := src
			for i := uint16(0); i < embits-1; i++ {
				n = e.addDereference(n) // encode level>0 as indirections
			}
			e.escassign(dsts.Index(dstsi), n, e.stepAssignWhere(dsts.Index(dstsi), src, "passed-to-and-returned-from-call", call))
		}
		dstsi++
	}
	// If there are too many outputs to fit in the tag,
	// that is handled at the encoding end as EscHeap,
	// so there is no need to check here.

	if em != 0 && dstsi >= dsts.Len() {
		Fatalf("corrupt esc tag %q or messed up escretval list\n", note)
	}
	return em0
}

func (e *EscState) escassignDereference(dst *Node, src *Node, step *EscStep) {
	if src.Op == OLITERAL {
		return
	}
	e.escassign(dst, e.addDereference(src), step)
}

// addDereference constructs a suitable OIND note applied to src.
// Because this is for purposes of escape accounting, not execution,
// some semantically dubious node combinations are (currently) possible.
func (e *EscState) addDereference(n *Node) *Node {
	ind := nod(OIND, n, nil)
	e.nodeEscState(ind).Loopdepth = e.nodeEscState(n).Loopdepth
	ind.Pos = n.Pos
	t := n.Type
	if t.IsKind(types.Tptr) || t.IsSlice() {
		// This should model our own sloppy use of OIND to encode
		// decreasing levels of indirection; i.e., "indirecting" a slice
		// yields the type of an element.
		t = t.Elem()
	} else if t.IsString() {
		t = types.Types[TUINT8]
	}
	ind.Type = t
	return ind
}

// escNoteOutputParamFlow encodes maxEncodedLevel/.../1/0-level flow to the vargen'th parameter.
// Levels greater than maxEncodedLevel are replaced with maxEncodedLevel.
// If the encoding cannot describe the modified input level and output number, then EscHeap is returned.
func escNoteOutputParamFlow(e uint16, vargen int32, level Level) uint16 {
	// Flow+level is encoded in two bits.
	// 00 = not flow, xx = level+1 for 0 <= level <= maxEncodedLevel
	// 16 bits for Esc allows 6x2bits or 4x3bits or 3x4bits if additional information would be useful.
	if level.int() <= 0 && level.guaranteedDereference() > 0 {
		return escMax(e|EscContentEscapes, EscNone) // At least one deref, thus only content.
	}
	if level.int() < 0 {
		return EscHeap
	}
	if level.int() > maxEncodedLevel {
		// Cannot encode larger values than maxEncodedLevel.
		level = levelFrom(maxEncodedLevel)
	}
	encoded := uint16(level.int() + 1)

	shift := uint(bitsPerOutputInTag*(vargen-1) + EscReturnBits)
	old := (e >> shift) & bitsMaskForTag
	if old == 0 || encoded != 0 && encoded < old {
		old = encoded
	}

	encodedFlow := old << shift
	if (encodedFlow>>shift)&bitsMaskForTag != old {
		// Encoding failure defaults to heap.
		return EscHeap
	}

	return (e &^ (bitsMaskForTag << shift)) | encodedFlow
}

func (e *EscState) initEscRetval(call *Node, fntype *types.Type) {
	cE := e.nodeEscState(call)
	cE.Retval.Set(nil) // Suspect this is not nil for indirect calls.
	for i, f := range fntype.Results().Fields().Slice() {
		buf := fmt.Sprintf(".out%d", i)
		ret := newname(lookup(buf))
		ret.SetAddable(false) // TODO(mdempsky): Seems suspicious.
		ret.Type = f.Type
		ret.SetClass(PAUTO)
		ret.Name.Curfn = Curfn
		e.nodeEscState(ret).Loopdepth = e.loopdepth
		ret.Name.SetUsed(true)
		ret.Pos = call.Pos
		cE.Retval.Append(ret)
	}
}

// This is a bit messier than fortunate, pulled out of esc's big
// switch for clarity. We either have the paramnodes, which may be
// connected to other things through flows or we have the parameter type
// nodes, which may be marked "noescape". Navigating the ast is slightly
// different for methods vs plain functions and for imported vs
// this-package
func (e *EscState) esccall(call *Node, parent *Node) {
	var fntype *types.Type
	var indirect bool
	var fn *Node
	switch call.Op {
	default:
		Fatalf("esccall")

	case OCALLFUNC:
		fn = call.Left
		fntype = fn.Type
		indirect = fn.Op != ONAME || fn.Class() != PFUNC

	case OCALLMETH:
		fn = asNode(call.Left.Sym.Def)
		if fn != nil {
			fntype = fn.Type
		} else {
			fntype = call.Left.Type
		}

	case OCALLINTER:
		fntype = call.Left.Type
		indirect = true
	}

	argList := call.List
	if argList.Len() == 1 {
		arg := argList.First()
		if arg.Type.IsFuncArgStruct() { // f(g())
			argList = e.nodeEscState(arg).Retval
		}
	}

	args := argList.Slice()

	if indirect {
		// We know nothing!
		// Leak all the parameters
		for _, arg := range args {
			e.escassignSinkWhy(call, arg, "parameter to indirect call")
			if Debug['m'] > 3 {
				fmt.Printf("%v::esccall:: indirect call <- %S, untracked\n", linestr(lineno), arg)
			}
		}
		// Set up bogus outputs
		e.initEscRetval(call, fntype)
		// If there is a receiver, it also leaks to heap.
		if call.Op != OCALLFUNC {
			rf := fntype.Recv()
			r := call.Left.Left
			if types.Haspointers(rf.Type) {
				e.escassignSinkWhy(call, r, "receiver in indirect call")
			}
		} else { // indirect and OCALLFUNC = could be captured variables, too. (#14409)
			rets := e.nodeEscState(call).Retval.Slice()
			for _, ret := range rets {
				e.escassignDereference(ret, fn, e.stepAssignWhere(ret, fn, "captured by called closure", call))
			}
		}
		return
	}

	cE := e.nodeEscState(call)
	if fn != nil && fn.Op == ONAME && fn.Class() == PFUNC &&
		fn.Name.Defn != nil && fn.Name.Defn.Nbody.Len() != 0 && fn.Name.Param.Ntype != nil && fn.Name.Defn.Esc < EscFuncTagged {
		if Debug['m'] > 3 {
			fmt.Printf("%v::esccall:: %S in recursive group\n", linestr(lineno), call)
		}

		// function in same mutually recursive group. Incorporate into flow graph.
		//		print("esc local fn: %N\n", fn.Func.Ntype);
		if fn.Name.Defn.Esc == EscFuncUnknown || cE.Retval.Len() != 0 {
			Fatalf("graph inconsistency")
		}

		sawRcvr := false
		for _, n := range fn.Name.Defn.Func.Dcl {
			switch n.Class() {
			case PPARAM:
				if call.Op != OCALLFUNC && !sawRcvr {
					e.escassignWhyWhere(n, call.Left.Left, "call receiver", call)
					sawRcvr = true
					continue
				}
				if len(args) == 0 {
					continue
				}
				arg := args[0]
				if n.Isddd() && !call.Isddd() {
					// Introduce ODDDARG node to represent ... allocation.
					arg = nod(ODDDARG, nil, nil)
					arr := types.NewArray(n.Type.Elem(), int64(len(args)))
					arg.Type = types.NewPtr(arr) // make pointer so it will be tracked
					arg.Pos = call.Pos
					e.track(arg)
					call.Right = arg
				}
				e.escassignWhyWhere(n, arg, "arg to recursive call", call) // TODO this message needs help.
				if arg == args[0] {
					args = args[1:]
					continue
				}
				// "..." arguments are untracked
				for _, a := range args {
					if Debug['m'] > 3 {
						fmt.Printf("%v::esccall:: ... <- %S, untracked\n", linestr(lineno), a)
					}
					e.escassignSinkWhyWhere(arg, a, "... arg to recursive call", call)
				}
				// No more PPARAM processing, but keep
				// going for PPARAMOUT.
				args = nil

			case PPARAMOUT:
				cE.Retval.Append(n)
			}
		}

		return
	}

	// Imported or completely analyzed function. Use the escape tags.
	if cE.Retval.Len() != 0 {
		Fatalf("esc already decorated call %+v\n", call)
	}

	if Debug['m'] > 3 {
		fmt.Printf("%v::esccall:: %S not recursive\n", linestr(lineno), call)
	}

	// set up out list on this call node with dummy auto ONAMES in the current (calling) function.
	e.initEscRetval(call, fntype)

	//	print("esc analyzed fn: %#N (%+T) returning (%+H)\n", fn, fntype, e.nodeEscState(call).Retval);

	// Receiver.
	if call.Op != OCALLFUNC {
		rf := fntype.Recv()
		r := call.Left.Left
		if types.Haspointers(rf.Type) {
			e.escassignfromtag(rf.Note, cE.Retval, r, call)
		}
	}

	for i, param := range fntype.Params().FieldSlice() {
		note := param.Note
		var arg *Node
		if param.Isddd() && !call.Isddd() {
			rest := args[i:]
			if len(rest) == 0 {
				break
			}

			// Introduce ODDDARG node to represent ... allocation.
			arg = nod(ODDDARG, nil, nil)
			arg.Pos = call.Pos
			arr := types.NewArray(param.Type.Elem(), int64(len(rest)))
			arg.Type = types.NewPtr(arr) // make pointer so it will be tracked
			e.track(arg)
			call.Right = arg

			// Store arguments into slice for ... arg.
			for _, a := range rest {
				if Debug['m'] > 3 {
					fmt.Printf("%v::esccall:: ... <- %S\n", linestr(lineno), a)
				}
				if note == uintptrEscapesTag {
					e.escassignSinkWhyWhere(arg, a, "arg to uintptrescapes ...", call)
				} else {
					e.escassignWhyWhere(arg, a, "arg to ...", call)
				}
			}
		} else {
			arg = args[i]
			if note == uintptrEscapesTag {
				e.escassignSinkWhy(arg, arg, "escaping uintptr")
			}
		}

		if types.Haspointers(param.Type) && e.escassignfromtag(note, cE.Retval, arg, call)&EscMask == EscNone && parent.Op != ODEFER && parent.Op != OPROC {
			a := arg
			for a.Op == OCONVNOP {
				a = a.Left
			}
			switch a.Op {
			// The callee has already been analyzed, so its arguments have esc tags.
			// The argument is marked as not escaping at all.
			// Record that fact so that any temporary used for
			// synthesizing this expression can be reclaimed when
			// the function returns.
			// This 'noescape' is even stronger than the usual esc == EscNone.
			// arg.Esc == EscNone means that arg does not escape the current function.
			// arg.SetNoescape(true) here means that arg does not escape this statement
			// in the current function.
			case OCALLPART, OCLOSURE, ODDDARG, OARRAYLIT, OSLICELIT, OPTRLIT, OSTRUCTLIT:
				a.SetNoescape(true)
			}
		}
	}
}

// escflows records the link src->dst in dst, throwing out some quick wins,
// and also ensuring that dst is noted as a flow destination.
func (e *EscState) escflows(dst, src *Node, why *EscStep) {
	if dst == nil || src == nil || dst == src {
		return
	}

	// Don't bother building a graph for scalars.
	if src.Type != nil && !types.Haspointers(src.Type) && !isReflectHeaderDataField(src) {
		if Debug['m'] > 3 {
			fmt.Printf("%v::NOT flows:: %S <- %S\n", linestr(lineno), dst, src)
		}
		return
	}

	if Debug['m'] > 3 {
		fmt.Printf("%v::flows:: %S <- %S\n", linestr(lineno), dst, src)
	}

	dstE := e.nodeEscState(dst)
	if len(dstE.Flowsrc) == 0 {
		e.dsts = append(e.dsts, dst)
		e.dstcount++
	}

	e.edgecount++

	if why == nil {
		dstE.Flowsrc = append(dstE.Flowsrc, EscStep{src: src})
	} else {
		starwhy := *why
		starwhy.src = src // TODO: need to reconcile this w/ needs of explanations.
		dstE.Flowsrc = append(dstE.Flowsrc, starwhy)
	}
}

// Whenever we hit a reference node, the level goes up by one, and whenever
// we hit an OADDR, the level goes down by one. as long as we're on a level > 0
// finding an OADDR just means we're following the upstream of a dereference,
// so this address doesn't leak (yet).
// If level == 0, it means the /value/ of this node can reach the root of this flood.
// so if this node is an OADDR, its argument should be marked as escaping iff
// its currfn/e.loopdepth are different from the flood's root.
// Once an object has been moved to the heap, all of its upstream should be considered
// escaping to the global scope.
func (e *EscState) escflood(dst *Node) {
	switch dst.Op {
	case ONAME, OCLOSURE:
	default:
		return
	}

	dstE := e.nodeEscState(dst)
	if Debug['m'] > 2 {
		fmt.Printf("\nescflood:%d: dst %S scope:%v[%d]\n", e.walkgen, dst, e.curfnSym(dst), dstE.Loopdepth)
	}

	for i := range dstE.Flowsrc {
		e.walkgen++
		s := &dstE.Flowsrc[i]
		s.parent = nil
		e.escwalk(levelFrom(0), dst, s.src, s)
	}
}

// funcOutputAndInput reports whether dst and src correspond to output and input parameters of the same function.
func funcOutputAndInput(dst, src *Node) bool {
	// Note if dst is marked as escaping, then "returned" is too weak.
	return dst.Op == ONAME && dst.Class() == PPARAMOUT &&
		src.Op == ONAME && src.Class() == PPARAM && src.Name.Curfn == dst.Name.Curfn
}

func (es *EscStep) describe(src *Node) {
	if Debug['m'] < 2 {
		return
	}
	step0 := es
	for step := step0; step != nil && !step.busy; step = step.parent {
		// TODO: We get cycles. Trigger is i = &i (where var i interface{})
		step.busy = true
		// The trail is a little odd because of how the
		// graph is constructed.  The link to the current
		// Node is parent.src unless parent is nil in which
		// case it is step.dst.
		nextDest := step.parent
		dst := step.dst
		where := step.where
		if nextDest != nil {
			dst = nextDest.src
		}
		if where == nil {
			where = dst
		}
		Warnl(src.Pos, "\tfrom %v (%s) at %s", dst, step.why, where.Line())
	}
	for step := step0; step != nil && step.busy; step = step.parent {
		step.busy = false
	}
}

const NOTALOOPDEPTH = -1

func (e *EscState) escwalk(level Level, dst *Node, src *Node, step *EscStep) {
	e.escwalkBody(level, dst, src, step, NOTALOOPDEPTH)
}

func (e *EscState) escwalkBody(level Level, dst *Node, src *Node, step *EscStep, extraloopdepth int32) {
	if src.Op == OLITERAL {
		return
	}
	srcE := e.nodeEscState(src)
	if srcE.Walkgen == e.walkgen {
		// Esclevels are vectors, do not compare as integers,
		// and must use "min" of old and new to guarantee
		// convergence.
		level = level.min(srcE.Level)
		if level == srcE.Level {
			// Have we been here already with an extraloopdepth,
			// or is the extraloopdepth provided no improvement on
			// what's already been seen?
			if srcE.Maxextraloopdepth >= extraloopdepth || srcE.Loopdepth >= extraloopdepth {
				return
			}
			srcE.Maxextraloopdepth = extraloopdepth
		}
	} else { // srcE.Walkgen < e.walkgen -- first time, reset this.
		srcE.Maxextraloopdepth = NOTALOOPDEPTH
	}

	srcE.Walkgen = e.walkgen
	srcE.Level = level
	modSrcLoopdepth := srcE.Loopdepth

	if extraloopdepth > modSrcLoopdepth {
		modSrcLoopdepth = extraloopdepth
	}

	if Debug['m'] > 2 {
		fmt.Printf("escwalk: level:%d depth:%d %.*s op=%v %S(%0j) scope:%v[%d] extraloopdepth=%v\n",
			level, e.pdepth, e.pdepth, "\t\t\t\t\t\t\t\t\t\t", src.Op, src, src, e.curfnSym(src), srcE.Loopdepth, extraloopdepth)
	}

	e.pdepth++

	// Input parameter flowing to output parameter?
	var leaks bool
	var osrcesc uint16 // used to prevent duplicate error messages

	dstE := e.nodeEscState(dst)
	if funcOutputAndInput(dst, src) && src.Esc&EscMask < EscHeap && dst.Esc != EscHeap {
		// This case handles:
		// 1. return in
		// 2. return &in
		// 3. tmp := in; return &tmp
		// 4. return *in
		if Debug['m'] != 0 {
			if Debug['m'] <= 2 {
				Warnl(src.Pos, "leaking param: %S to result %v level=%v", src, dst.Sym, level.int())
				step.describe(src)
			} else {
				Warnl(src.Pos, "leaking param: %S to result %v level=%v", src, dst.Sym, level)
			}
		}
		if src.Esc&EscMask != EscReturn {
			src.Esc = EscReturn | src.Esc&EscContentEscapes
		}
		src.Esc = escNoteOutputParamFlow(src.Esc, dst.Name.Vargen, level)
		goto recurse
	}

	// If parameter content escapes to heap, set EscContentEscapes
	// Note minor confusion around escape from pointer-to-struct vs escape from struct
	if dst.Esc == EscHeap &&
		src.Op == ONAME && src.Class() == PPARAM && src.Esc&EscMask < EscHeap &&
		level.int() > 0 {
		src.Esc = escMax(EscContentEscapes|src.Esc, EscNone)
		if Debug['m'] != 0 {
			Warnl(src.Pos, "mark escaped content: %S", src)
			step.describe(src)
		}
	}

	leaks = level.int() <= 0 && level.guaranteedDereference() <= 0 && dstE.Loopdepth < modSrcLoopdepth
	leaks = leaks || level.int() <= 0 && dst.Esc&EscMask == EscHeap

	osrcesc = src.Esc
	switch src.Op {
	case ONAME:
		if src.Class() == PPARAM && (leaks || dstE.Loopdepth < 0) && src.Esc&EscMask < EscHeap {
			if level.guaranteedDereference() > 0 {
				src.Esc = escMax(EscContentEscapes|src.Esc, EscNone)
				if Debug['m'] != 0 {
					if Debug['m'] <= 2 {
						if osrcesc != src.Esc {
							Warnl(src.Pos, "leaking param content: %S", src)
							step.describe(src)
						}
					} else {
						Warnl(src.Pos, "leaking param content: %S level=%v dst.eld=%v src.eld=%v dst=%S",
							src, level, dstE.Loopdepth, modSrcLoopdepth, dst)
					}
				}
			} else {
				src.Esc = EscHeap
				if Debug['m'] != 0 {
					if Debug['m'] <= 2 {
						Warnl(src.Pos, "leaking param: %S", src)
						step.describe(src)
					} else {
						Warnl(src.Pos, "leaking param: %S level=%v dst.eld=%v src.eld=%v dst=%S",
							src, level, dstE.Loopdepth, modSrcLoopdepth, dst)
					}
				}
			}
		}

		// Treat a captured closure variable as equivalent to the
		// original variable.
		if src.IsClosureVar() {
			if leaks && Debug['m'] != 0 {
				Warnl(src.Pos, "leaking closure reference %S", src)
				step.describe(src)
			}
			e.escwalk(level, dst, src.Name.Defn, e.stepWalk(dst, src.Name.Defn, "closure-var", step))
		}

	case OPTRLIT, OADDR:
		why := "pointer literal"
		if src.Op == OADDR {
			why = "address-of"
		}
		if leaks {
			src.Esc = EscHeap
			if Debug['m'] != 0 && osrcesc != src.Esc {
				p := src
				if p.Left.Op == OCLOSURE {
					p = p.Left // merely to satisfy error messages in tests
				}
				if Debug['m'] > 2 {
					Warnl(src.Pos, "%S escapes to heap, level=%v, dst=%v dst.eld=%v, src.eld=%v",
						p, level, dst, dstE.Loopdepth, modSrcLoopdepth)
				} else {
					Warnl(src.Pos, "%S escapes to heap", p)
					step.describe(src)
				}
			}
			addrescapes(src.Left)
			e.escwalkBody(level.dec(), dst, src.Left, e.stepWalk(dst, src.Left, why, step), modSrcLoopdepth)
			extraloopdepth = modSrcLoopdepth // passes to recursive case, seems likely a no-op
		} else {
			e.escwalk(level.dec(), dst, src.Left, e.stepWalk(dst, src.Left, why, step))
		}

	case OAPPEND:
		e.escwalk(level, dst, src.List.First(), e.stepWalk(dst, src.List.First(), "append-first-arg", step))

	case ODDDARG:
		if leaks {
			src.Esc = EscHeap
			if Debug['m'] != 0 && osrcesc != src.Esc {
				Warnl(src.Pos, "%S escapes to heap", src)
				step.describe(src)
			}
			extraloopdepth = modSrcLoopdepth
		}
		// similar to a slice arraylit and its args.
		level = level.dec()

	case OSLICELIT:
		for _, elt := range src.List.Slice() {
			if elt.Op == OKEY {
				elt = elt.Right
			}
			e.escwalk(level.dec(), dst, elt, e.stepWalk(dst, elt, "slice-literal-element", step))
		}

		fallthrough

	case OMAKECHAN,
		OMAKEMAP,
		OMAKESLICE,
		OARRAYRUNESTR,
		OARRAYBYTESTR,
		OSTRARRAYRUNE,
		OSTRARRAYBYTE,
		OADDSTR,
		OMAPLIT,
		ONEW,
		OCLOSURE,
		OCALLPART,
		ORUNESTR,
		OCONVIFACE:
		if leaks {
			src.Esc = EscHeap
			if Debug['m'] != 0 && osrcesc != src.Esc {
				Warnl(src.Pos, "%S escapes to heap", src)
				step.describe(src)
			}
			extraloopdepth = modSrcLoopdepth
		}

	case ODOT,
		ODOTTYPE:
		e.escwalk(level, dst, src.Left, e.stepWalk(dst, src.Left, "dot", step))

	case
		OSLICE,
		OSLICEARR,
		OSLICE3,
		OSLICE3ARR,
		OSLICESTR:
		e.escwalk(level, dst, src.Left, e.stepWalk(dst, src.Left, "slice", step))

	case OINDEX:
		if src.Left.Type.IsArray() {
			e.escwalk(level, dst, src.Left, e.stepWalk(dst, src.Left, "fixed-array-index-of", step))
			break
		}
		fallthrough

	case ODOTPTR:
		e.escwalk(level.inc(), dst, src.Left, e.stepWalk(dst, src.Left, "dot of pointer", step))
	case OINDEXMAP:
		e.escwalk(level.inc(), dst, src.Left, e.stepWalk(dst, src.Left, "map index", step))
	case OIND:
		e.escwalk(level.inc(), dst, src.Left, e.stepWalk(dst, src.Left, "indirection", step))

	// In this case a link went directly to a call, but should really go
	// to the dummy .outN outputs that were created for the call that
	// themselves link to the inputs with levels adjusted.
	// See e.g. #10466
	// This can only happen with functions returning a single result.
	case OCALLMETH, OCALLFUNC, OCALLINTER:
		if srcE.Retval.Len() != 0 {
			if Debug['m'] > 2 {
				fmt.Printf("%v:[%d] dst %S escwalk replace src: %S with %S\n",
					linestr(lineno), e.loopdepth,
					dst, src, srcE.Retval.First())
			}
			src = srcE.Retval.First()
			srcE = e.nodeEscState(src)
		}
	}

recurse:
	level = level.copy()

	for i := range srcE.Flowsrc {
		s := &srcE.Flowsrc[i]
		s.parent = step
		e.escwalkBody(level, dst, s.src, s, extraloopdepth)
		s.parent = nil
	}

	e.pdepth--
}

// addrescapes tags node n as having had its address taken
// by "increasing" the "value" of n.Esc to EscHeap.
// Storage is allocated as necessary to allow the address
// to be taken.
func addrescapes(n *Node) {
	switch n.Op {
	default:
		// Unexpected Op, probably due to a previous type error. Ignore.

	case OIND, ODOTPTR:
		// Nothing to do.

	case ONAME:
		if n == nodfp {
			break
		}

		// if this is a tmpname (PAUTO), it was tagged by tmpname as not escaping.
		// on PPARAM it means something different.
		if n.Class() == PAUTO && n.Esc == EscNever {
			break
		}

		// If a closure reference escapes, mark the outer variable as escaping.
		if n.IsClosureVar() {
			addrescapes(n.Name.Defn)
			break
		}

		if n.Class() != PPARAM && n.Class() != PPARAMOUT && n.Class() != PAUTO {
			break
		}

		// This is a plain parameter or local variable that needs to move to the heap,
		// but possibly for the function outside the one we're compiling.
		// That is, if we have:
		//
		//	func f(x int) {
		//		func() {
		//			global = &x
		//		}
		//	}
		//
		// then we're analyzing the inner closure but we need to move x to the
		// heap in f, not in the inner closure. Flip over to f before calling moveToHeap.
		oldfn := Curfn
		Curfn = n.Name.Curfn
		if Curfn.Func.Closure != nil && Curfn.Op == OCLOSURE {
			Curfn = Curfn.Func.Closure
		}
		ln := lineno
		lineno = Curfn.Pos
		moveToHeap(n)
		Curfn = oldfn
		lineno = ln

	// ODOTPTR has already been introduced,
	// so these are the non-pointer ODOT and OINDEX.
	// In &x[0], if x is a slice, then x does not
	// escape--the pointer inside x does, but that
	// is always a heap pointer anyway.
	case ODOT, OINDEX, OPAREN, OCONVNOP:
		if !n.Left.Type.IsSlice() {
			addrescapes(n.Left)
		}
	}
}

// moveToHeap records the parameter or local variable n as moved to the heap.
func moveToHeap(n *Node) {
	if Debug['r'] != 0 {
		Dump("MOVE", n)
	}
	if compiling_runtime {
		yyerror("%v escapes to heap, not allowed in runtime.", n)
	}
	if n.Class() == PAUTOHEAP {
		Dump("n", n)
		Fatalf("double move to heap")
	}

	// Allocate a local stack variable to hold the pointer to the heap copy.
	// temp will add it to the function declaration list automatically.
	heapaddr := temp(types.NewPtr(n.Type))
	heapaddr.Sym = lookup("&" + n.Sym.Name)
	heapaddr.Orig.Sym = heapaddr.Sym
	heapaddr.Pos = n.Pos

	// Unset AutoTemp to persist the &foo variable name through SSA to
	// liveness analysis.
	// TODO(mdempsky/drchase): Cleaner solution?
	heapaddr.Name.SetAutoTemp(false)

	// Parameters have a local stack copy used at function start/end
	// in addition to the copy in the heap that may live longer than
	// the function.
	if n.Class() == PPARAM || n.Class() == PPARAMOUT {
		if n.Xoffset == BADWIDTH {
			Fatalf("addrescapes before param assignment")
		}

		// We rewrite n below to be a heap variable (indirection of heapaddr).
		// Preserve a copy so we can still write code referring to the original,
		// and substitute that copy into the function declaration list
		// so that analyses of the local (on-stack) variables use it.
		stackcopy := newname(n.Sym)
		stackcopy.SetAddable(false)
		stackcopy.Type = n.Type
		stackcopy.Xoffset = n.Xoffset
		stackcopy.SetClass(n.Class())
		stackcopy.Name.Param.Heapaddr = heapaddr
		if n.Class() == PPARAMOUT {
			// Make sure the pointer to the heap copy is kept live throughout the function.
			// The function could panic at any point, and then a defer could recover.
			// Thus, we need the pointer to the heap copy always available so the
			// post-deferreturn code can copy the return value back to the stack.
			// See issue 16095.
			heapaddr.SetIsOutputParamHeapAddr(true)
		}
		n.Name.Param.Stackcopy = stackcopy

		// Substitute the stackcopy into the function variable list so that
		// liveness and other analyses use the underlying stack slot
		// and not the now-pseudo-variable n.
		found := false
		for i, d := range Curfn.Func.Dcl {
			if d == n {
				Curfn.Func.Dcl[i] = stackcopy
				found = true
				break
			}
			// Parameters are before locals, so can stop early.
			// This limits the search even in functions with many local variables.
			if d.Class() == PAUTO {
				break
			}
		}
		if !found {
			Fatalf("cannot find %v in local variable list", n)
		}
		Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
	}

	// Modify n in place so that uses of n now mean indirection of the heapaddr.
	n.SetClass(PAUTOHEAP)
	n.Xoffset = 0
	n.Name.Param.Heapaddr = heapaddr
	n.Esc = EscHeap
	if Debug['m'] != 0 {
		fmt.Printf("%v: moved to heap: %v\n", n.Line(), n)
	}
}

// This special tag is applied to uintptr variables
// that we believe may hold unsafe.Pointers for
// calls into assembly functions.
const unsafeUintptrTag = "unsafe-uintptr"

// This special tag is applied to uintptr parameters of functions
// marked go:uintptrescapes.
const uintptrEscapesTag = "uintptr-escapes"

func (e *EscState) esctag(fn *Node) {
	fn.Esc = EscFuncTagged

	name := func(s *types.Sym, narg int) string {
		if s != nil {
			return s.Name
		}
		return fmt.Sprintf("arg#%d", narg)
	}

	// External functions are assumed unsafe,
	// unless //go:noescape is given before the declaration.
	if fn.Nbody.Len() == 0 {
		if fn.Noescape() {
			for _, f := range fn.Type.Params().Fields().Slice() {
				if types.Haspointers(f.Type) {
					f.Note = mktag(EscNone)
				}
			}
		}

		// Assume that uintptr arguments must be held live across the call.
		// This is most important for syscall.Syscall.
		// See golang.org/issue/13372.
		// This really doesn't have much to do with escape analysis per se,
		// but we are reusing the ability to annotate an individual function
		// argument and pass those annotations along to importing code.
		narg := 0
		for _, f := range fn.Type.Params().Fields().Slice() {
			narg++
			if f.Type.Etype == TUINTPTR {
				if Debug['m'] != 0 {
					Warnl(fn.Pos, "%v assuming %v is unsafe uintptr", funcSym(fn), name(f.Sym, narg))
				}
				f.Note = unsafeUintptrTag
			}
		}

		return
	}

	if fn.Func.Pragma&UintptrEscapes != 0 {
		narg := 0
		for _, f := range fn.Type.Params().Fields().Slice() {
			narg++
			if f.Type.Etype == TUINTPTR {
				if Debug['m'] != 0 {
					Warnl(fn.Pos, "%v marking %v as escaping uintptr", funcSym(fn), name(f.Sym, narg))
				}
				f.Note = uintptrEscapesTag
			}

			if f.Isddd() && f.Type.Elem().Etype == TUINTPTR {
				// final argument is ...uintptr.
				if Debug['m'] != 0 {
					Warnl(fn.Pos, "%v marking %v as escaping ...uintptr", funcSym(fn), name(f.Sym, narg))
				}
				f.Note = uintptrEscapesTag
			}
		}
	}

	for _, fs := range types.RecvsParams {
		for _, f := range fs(fn.Type).Fields().Slice() {
			if !types.Haspointers(f.Type) { // don't bother tagging for scalars
				continue
			}
			if f.Note == uintptrEscapesTag {
				// Note is already set in the loop above.
				continue
			}

			// Unnamed parameters are unused and therefore do not escape.
			if f.Sym == nil || f.Sym.IsBlank() {
				f.Note = mktag(EscNone)
				continue
			}

			switch esc := asNode(f.Nname).Esc; esc & EscMask {
			case EscNone, // not touched by escflood
				EscReturn:
				f.Note = mktag(int(esc))

			case EscHeap: // touched by escflood, moved to heap
			}
		}
	}
}