aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/gc/esc.go
blob: 6f328ab5ea9362da3eb44b0c8670459657c6c5d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package gc

import (
	"cmd/compile/internal/types"
	"fmt"
)

func escapes(all []*Node) {
	visitBottomUp(all, escapeFuncs)
}

const (
	EscFuncUnknown = 0 + iota
	EscFuncPlanned
	EscFuncStarted
	EscFuncTagged
)

func min8(a, b int8) int8 {
	if a < b {
		return a
	}
	return b
}

func max8(a, b int8) int8 {
	if a > b {
		return a
	}
	return b
}

const (
	EscUnknown = iota
	EscNone    // Does not escape to heap, result, or parameters.
	EscHeap    // Reachable from the heap
	EscNever   // By construction will not escape.
)

// funcSym returns fn.Func.Nname.Sym if no nils are encountered along the way.
func funcSym(fn *Node) *types.Sym {
	if fn == nil || fn.Func.Nname == nil {
		return nil
	}
	return fn.Func.Nname.Sym
}

// Mark labels that have no backjumps to them as not increasing e.loopdepth.
// Walk hasn't generated (goto|label).Left.Sym.Label yet, so we'll cheat
// and set it to one of the following two. Then in esc we'll clear it again.
var (
	looping    Node
	nonlooping Node
)

func isSliceSelfAssign(dst, src *Node) bool {
	// Detect the following special case.
	//
	//	func (b *Buffer) Foo() {
	//		n, m := ...
	//		b.buf = b.buf[n:m]
	//	}
	//
	// This assignment is a no-op for escape analysis,
	// it does not store any new pointers into b that were not already there.
	// However, without this special case b will escape, because we assign to OIND/ODOTPTR.
	// Here we assume that the statement will not contain calls,
	// that is, that order will move any calls to init.
	// Otherwise base ONAME value could change between the moments
	// when we evaluate it for dst and for src.

	// dst is ONAME dereference.
	if dst.Op != ODEREF && dst.Op != ODOTPTR || dst.Left.Op != ONAME {
		return false
	}
	// src is a slice operation.
	switch src.Op {
	case OSLICE, OSLICE3, OSLICESTR:
		// OK.
	case OSLICEARR, OSLICE3ARR:
		// Since arrays are embedded into containing object,
		// slice of non-pointer array will introduce a new pointer into b that was not already there
		// (pointer to b itself). After such assignment, if b contents escape,
		// b escapes as well. If we ignore such OSLICEARR, we will conclude
		// that b does not escape when b contents do.
		//
		// Pointer to an array is OK since it's not stored inside b directly.
		// For slicing an array (not pointer to array), there is an implicit OADDR.
		// We check that to determine non-pointer array slicing.
		if src.Left.Op == OADDR {
			return false
		}
	default:
		return false
	}
	// slice is applied to ONAME dereference.
	if src.Left.Op != ODEREF && src.Left.Op != ODOTPTR || src.Left.Left.Op != ONAME {
		return false
	}
	// dst and src reference the same base ONAME.
	return dst.Left == src.Left.Left
}

// isSelfAssign reports whether assignment from src to dst can
// be ignored by the escape analysis as it's effectively a self-assignment.
func isSelfAssign(dst, src *Node) bool {
	if isSliceSelfAssign(dst, src) {
		return true
	}

	// Detect trivial assignments that assign back to the same object.
	//
	// It covers these cases:
	//	val.x = val.y
	//	val.x[i] = val.y[j]
	//	val.x1.x2 = val.x1.y2
	//	... etc
	//
	// These assignments do not change assigned object lifetime.

	if dst == nil || src == nil || dst.Op != src.Op {
		return false
	}

	switch dst.Op {
	case ODOT, ODOTPTR:
		// Safe trailing accessors that are permitted to differ.
	case OINDEX:
		if mayAffectMemory(dst.Right) || mayAffectMemory(src.Right) {
			return false
		}
	default:
		return false
	}

	// The expression prefix must be both "safe" and identical.
	return samesafeexpr(dst.Left, src.Left)
}

// mayAffectMemory reports whether evaluation of n may affect the program's
// memory state. If the expression can't affect memory state, then it can be
// safely ignored by the escape analysis.
func mayAffectMemory(n *Node) bool {
	// We may want to use a list of "memory safe" ops instead of generally
	// "side-effect free", which would include all calls and other ops that can
	// allocate or change global state. For now, it's safer to start with the latter.
	//
	// We're ignoring things like division by zero, index out of range,
	// and nil pointer dereference here.
	switch n.Op {
	case ONAME, OCLOSUREVAR, OLITERAL:
		return false

	// Left+Right group.
	case OINDEX, OADD, OSUB, OOR, OXOR, OMUL, OLSH, ORSH, OAND, OANDNOT, ODIV, OMOD:
		return mayAffectMemory(n.Left) || mayAffectMemory(n.Right)

	// Left group.
	case ODOT, ODOTPTR, ODEREF, OCONVNOP, OCONV, OLEN, OCAP,
		ONOT, OBITNOT, OPLUS, ONEG, OALIGNOF, OOFFSETOF, OSIZEOF:
		return mayAffectMemory(n.Left)

	default:
		return true
	}
}

// heapAllocReason returns the reason the given Node must be heap
// allocated, or the empty string if it doesn't.
func heapAllocReason(n *Node) string {
	if n.Type == nil {
		return ""
	}

	// Parameters are always passed via the stack.
	if n.Op == ONAME && (n.Class() == PPARAM || n.Class() == PPARAMOUT) {
		return ""
	}

	if n.Type.Width > maxStackVarSize {
		return "too large for stack"
	}

	if (n.Op == ONEW || n.Op == OPTRLIT) && n.Type.Elem().Width >= maxImplicitStackVarSize {
		return "too large for stack"
	}

	if n.Op == OCLOSURE && closureType(n).Size() >= maxImplicitStackVarSize {
		return "too large for stack"
	}
	if n.Op == OCALLPART && partialCallType(n).Size() >= maxImplicitStackVarSize {
		return "too large for stack"
	}

	if n.Op == OMAKESLICE {
		r := n.Right
		if r == nil {
			r = n.Left
		}
		if !smallintconst(r) {
			return "non-constant size"
		}
		if t := n.Type; t.Elem().Width != 0 && r.Int64Val() >= maxImplicitStackVarSize/t.Elem().Width {
			return "too large for stack"
		}
	}

	return ""
}

// addrescapes tags node n as having had its address taken
// by "increasing" the "value" of n.Esc to EscHeap.
// Storage is allocated as necessary to allow the address
// to be taken.
func addrescapes(n *Node) {
	switch n.Op {
	default:
		// Unexpected Op, probably due to a previous type error. Ignore.

	case ODEREF, ODOTPTR:
		// Nothing to do.

	case ONAME:
		if n == nodfp {
			break
		}

		// if this is a tmpname (PAUTO), it was tagged by tmpname as not escaping.
		// on PPARAM it means something different.
		if n.Class() == PAUTO && n.Esc == EscNever {
			break
		}

		// If a closure reference escapes, mark the outer variable as escaping.
		if n.Name.IsClosureVar() {
			addrescapes(n.Name.Defn)
			break
		}

		if n.Class() != PPARAM && n.Class() != PPARAMOUT && n.Class() != PAUTO {
			break
		}

		// This is a plain parameter or local variable that needs to move to the heap,
		// but possibly for the function outside the one we're compiling.
		// That is, if we have:
		//
		//	func f(x int) {
		//		func() {
		//			global = &x
		//		}
		//	}
		//
		// then we're analyzing the inner closure but we need to move x to the
		// heap in f, not in the inner closure. Flip over to f before calling moveToHeap.
		oldfn := Curfn
		Curfn = n.Name.Curfn
		if Curfn.Func.Closure != nil && Curfn.Op == OCLOSURE {
			Curfn = Curfn.Func.Closure
		}
		ln := lineno
		lineno = Curfn.Pos
		moveToHeap(n)
		Curfn = oldfn
		lineno = ln

	// ODOTPTR has already been introduced,
	// so these are the non-pointer ODOT and OINDEX.
	// In &x[0], if x is a slice, then x does not
	// escape--the pointer inside x does, but that
	// is always a heap pointer anyway.
	case ODOT, OINDEX, OPAREN, OCONVNOP:
		if !n.Left.Type.IsSlice() {
			addrescapes(n.Left)
		}
	}
}

// moveToHeap records the parameter or local variable n as moved to the heap.
func moveToHeap(n *Node) {
	if Debug.r != 0 {
		Dump("MOVE", n)
	}
	if compiling_runtime {
		yyerror("%v escapes to heap, not allowed in runtime", n)
	}
	if n.Class() == PAUTOHEAP {
		Dump("n", n)
		Fatalf("double move to heap")
	}

	// Allocate a local stack variable to hold the pointer to the heap copy.
	// temp will add it to the function declaration list automatically.
	heapaddr := temp(types.NewPtr(n.Type))
	heapaddr.Sym = lookup("&" + n.Sym.Name)
	heapaddr.Orig.Sym = heapaddr.Sym
	heapaddr.Pos = n.Pos

	// Unset AutoTemp to persist the &foo variable name through SSA to
	// liveness analysis.
	// TODO(mdempsky/drchase): Cleaner solution?
	heapaddr.Name.SetAutoTemp(false)

	// Parameters have a local stack copy used at function start/end
	// in addition to the copy in the heap that may live longer than
	// the function.
	if n.Class() == PPARAM || n.Class() == PPARAMOUT {
		if n.Xoffset == BADWIDTH {
			Fatalf("addrescapes before param assignment")
		}

		// We rewrite n below to be a heap variable (indirection of heapaddr).
		// Preserve a copy so we can still write code referring to the original,
		// and substitute that copy into the function declaration list
		// so that analyses of the local (on-stack) variables use it.
		stackcopy := newname(n.Sym)
		stackcopy.Type = n.Type
		stackcopy.Xoffset = n.Xoffset
		stackcopy.SetClass(n.Class())
		stackcopy.Name.Param.Heapaddr = heapaddr
		if n.Class() == PPARAMOUT {
			// Make sure the pointer to the heap copy is kept live throughout the function.
			// The function could panic at any point, and then a defer could recover.
			// Thus, we need the pointer to the heap copy always available so the
			// post-deferreturn code can copy the return value back to the stack.
			// See issue 16095.
			heapaddr.Name.SetIsOutputParamHeapAddr(true)
		}
		n.Name.Param.Stackcopy = stackcopy

		// Substitute the stackcopy into the function variable list so that
		// liveness and other analyses use the underlying stack slot
		// and not the now-pseudo-variable n.
		found := false
		for i, d := range Curfn.Func.Dcl {
			if d == n {
				Curfn.Func.Dcl[i] = stackcopy
				found = true
				break
			}
			// Parameters are before locals, so can stop early.
			// This limits the search even in functions with many local variables.
			if d.Class() == PAUTO {
				break
			}
		}
		if !found {
			Fatalf("cannot find %v in local variable list", n)
		}
		Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
	}

	// Modify n in place so that uses of n now mean indirection of the heapaddr.
	n.SetClass(PAUTOHEAP)
	n.Xoffset = 0
	n.Name.Param.Heapaddr = heapaddr
	n.Esc = EscHeap
	if Debug.m != 0 {
		Warnl(n.Pos, "moved to heap: %v", n)
	}
}

// This special tag is applied to uintptr variables
// that we believe may hold unsafe.Pointers for
// calls into assembly functions.
const unsafeUintptrTag = "unsafe-uintptr"

// This special tag is applied to uintptr parameters of functions
// marked go:uintptrescapes.
const uintptrEscapesTag = "uintptr-escapes"

func (e *Escape) paramTag(fn *Node, narg int, f *types.Field) string {
	name := func() string {
		if f.Sym != nil {
			return f.Sym.Name
		}
		return fmt.Sprintf("arg#%d", narg)
	}

	if fn.Nbody.Len() == 0 {
		// Assume that uintptr arguments must be held live across the call.
		// This is most important for syscall.Syscall.
		// See golang.org/issue/13372.
		// This really doesn't have much to do with escape analysis per se,
		// but we are reusing the ability to annotate an individual function
		// argument and pass those annotations along to importing code.
		if f.Type.IsUintptr() {
			if Debug.m != 0 {
				Warnl(f.Pos, "assuming %v is unsafe uintptr", name())
			}
			return unsafeUintptrTag
		}

		if !f.Type.HasPointers() { // don't bother tagging for scalars
			return ""
		}

		var esc EscLeaks

		// External functions are assumed unsafe, unless
		// //go:noescape is given before the declaration.
		if fn.Func.Pragma&Noescape != 0 {
			if Debug.m != 0 && f.Sym != nil {
				Warnl(f.Pos, "%v does not escape", name())
			}
		} else {
			if Debug.m != 0 && f.Sym != nil {
				Warnl(f.Pos, "leaking param: %v", name())
			}
			esc.AddHeap(0)
		}

		return esc.Encode()
	}

	if fn.Func.Pragma&UintptrEscapes != 0 {
		if f.Type.IsUintptr() {
			if Debug.m != 0 {
				Warnl(f.Pos, "marking %v as escaping uintptr", name())
			}
			return uintptrEscapesTag
		}
		if f.IsDDD() && f.Type.Elem().IsUintptr() {
			// final argument is ...uintptr.
			if Debug.m != 0 {
				Warnl(f.Pos, "marking %v as escaping ...uintptr", name())
			}
			return uintptrEscapesTag
		}
	}

	if !f.Type.HasPointers() { // don't bother tagging for scalars
		return ""
	}

	// Unnamed parameters are unused and therefore do not escape.
	if f.Sym == nil || f.Sym.IsBlank() {
		var esc EscLeaks
		return esc.Encode()
	}

	n := asNode(f.Nname)
	loc := e.oldLoc(n)
	esc := loc.paramEsc
	esc.Optimize()

	if Debug.m != 0 && !loc.escapes {
		if esc.Empty() {
			Warnl(f.Pos, "%v does not escape", name())
		}
		if x := esc.Heap(); x >= 0 {
			if x == 0 {
				Warnl(f.Pos, "leaking param: %v", name())
			} else {
				// TODO(mdempsky): Mention level=x like below?
				Warnl(f.Pos, "leaking param content: %v", name())
			}
		}
		for i := 0; i < numEscResults; i++ {
			if x := esc.Result(i); x >= 0 {
				res := fn.Type.Results().Field(i).Sym
				Warnl(f.Pos, "leaking param: %v to result %v level=%d", name(), res, x)
			}
		}
	}

	return esc.Encode()
}