aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/compare/compare.go
blob: c0017b1b729347e3f293424113660f5194724ac7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package compare contains code for generating comparison
// routines for structs, strings and interfaces.
package compare

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"fmt"
	"math/bits"
	"sort"
)

// IsRegularMemory reports whether t can be compared/hashed as regular memory.
func IsRegularMemory(t *types.Type) bool {
	a, _ := types.AlgType(t)
	return a == types.AMEM
}

// Memrun finds runs of struct fields for which memory-only algs are appropriate.
// t is the parent struct type, and start is the field index at which to start the run.
// size is the length in bytes of the memory included in the run.
// next is the index just after the end of the memory run.
func Memrun(t *types.Type, start int) (size int64, next int) {
	next = start
	for {
		next++
		if next == t.NumFields() {
			break
		}
		// Stop run after a padded field.
		if types.IsPaddedField(t, next-1) {
			break
		}
		// Also, stop before a blank or non-memory field.
		if f := t.Field(next); f.Sym.IsBlank() || !IsRegularMemory(f.Type) {
			break
		}
		// For issue 46283, don't combine fields if the resulting load would
		// require a larger alignment than the component fields.
		if base.Ctxt.Arch.Alignment > 1 {
			align := t.Alignment()
			if off := t.Field(start).Offset; off&(align-1) != 0 {
				// Offset is less aligned than the containing type.
				// Use offset to determine alignment.
				align = 1 << uint(bits.TrailingZeros64(uint64(off)))
			}
			size := t.Field(next).End() - t.Field(start).Offset
			if size > align {
				break
			}
		}
	}
	return t.Field(next-1).End() - t.Field(start).Offset, next
}

// EqCanPanic reports whether == on type t could panic (has an interface somewhere).
// t must be comparable.
func EqCanPanic(t *types.Type) bool {
	switch t.Kind() {
	default:
		return false
	case types.TINTER:
		return true
	case types.TARRAY:
		return EqCanPanic(t.Elem())
	case types.TSTRUCT:
		for _, f := range t.FieldSlice() {
			if !f.Sym.IsBlank() && EqCanPanic(f.Type) {
				return true
			}
		}
		return false
	}
}

// EqStruct compares two structs np and nq for equality.
// It works by building a list of boolean conditions to satisfy.
// Conditions must be evaluated in the returned order and
// properly short circuited by the caller.
func EqStruct(t *types.Type, np, nq ir.Node) []ir.Node {
	// The conditions are a list-of-lists. Conditions are reorderable
	// within each inner list. The outer lists must be evaluated in order.
	var conds [][]ir.Node
	conds = append(conds, []ir.Node{})
	and := func(n ir.Node) {
		i := len(conds) - 1
		conds[i] = append(conds[i], n)
	}

	// Walk the struct using memequal for runs of AMEM
	// and calling specific equality tests for the others.
	for i, fields := 0, t.FieldSlice(); i < len(fields); {
		f := fields[i]

		// Skip blank-named fields.
		if f.Sym.IsBlank() {
			i++
			continue
		}

		// Compare non-memory fields with field equality.
		if !IsRegularMemory(f.Type) {
			if EqCanPanic(f.Type) {
				// Enforce ordering by starting a new set of reorderable conditions.
				conds = append(conds, []ir.Node{})
			}
			p := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym)
			q := ir.NewSelectorExpr(base.Pos, ir.OXDOT, nq, f.Sym)
			switch {
			case f.Type.IsString():
				eqlen, eqmem := EqString(p, q)
				and(eqlen)
				and(eqmem)
			default:
				and(ir.NewBinaryExpr(base.Pos, ir.OEQ, p, q))
			}
			if EqCanPanic(f.Type) {
				// Also enforce ordering after something that can panic.
				conds = append(conds, []ir.Node{})
			}
			i++
			continue
		}

		// Find maximal length run of memory-only fields.
		size, next := Memrun(t, i)

		// TODO(rsc): All the calls to newname are wrong for
		// cross-package unexported fields.
		if s := fields[i:next]; len(s) <= 2 {
			// Two or fewer fields: use plain field equality.
			for _, f := range s {
				and(eqfield(np, nq, ir.OEQ, f.Sym))
			}
		} else {
			// More than two fields: use memequal.
			cc := eqmem(np, nq, f.Sym, size)
			and(cc)
		}
		i = next
	}

	// Sort conditions to put runtime calls last.
	// Preserve the rest of the ordering.
	var flatConds []ir.Node
	for _, c := range conds {
		isCall := func(n ir.Node) bool {
			return n.Op() == ir.OCALL || n.Op() == ir.OCALLFUNC
		}
		sort.SliceStable(c, func(i, j int) bool {
			return !isCall(c[i]) && isCall(c[j])
		})
		flatConds = append(flatConds, c...)
	}
	return flatConds
}

// EqString returns the nodes
//
//	len(s) == len(t)
//
// and
//
//	memequal(s.ptr, t.ptr, len(s))
//
// which can be used to construct string equality comparison.
// eqlen must be evaluated before eqmem, and shortcircuiting is required.
func EqString(s, t ir.Node) (eqlen *ir.BinaryExpr, eqmem *ir.CallExpr) {
	s = typecheck.Conv(s, types.Types[types.TSTRING])
	t = typecheck.Conv(t, types.Types[types.TSTRING])
	sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, s)
	tptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, t)
	slen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, s), types.Types[types.TUINTPTR])
	tlen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, t), types.Types[types.TUINTPTR])

	fn := typecheck.LookupRuntime("memequal")
	fn = typecheck.SubstArgTypes(fn, types.Types[types.TUINT8], types.Types[types.TUINT8])
	call := typecheck.Call(base.Pos, fn, []ir.Node{sptr, tptr, ir.Copy(slen)}, false).(*ir.CallExpr)

	cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, slen, tlen)
	cmp = typecheck.Expr(cmp).(*ir.BinaryExpr)
	cmp.SetType(types.Types[types.TBOOL])
	return cmp, call
}

// EqInterface returns the nodes
//
//	s.tab == t.tab (or s.typ == t.typ, as appropriate)
//
// and
//
//	ifaceeq(s.tab, s.data, t.data) (or efaceeq(s.typ, s.data, t.data), as appropriate)
//
// which can be used to construct interface equality comparison.
// eqtab must be evaluated before eqdata, and shortcircuiting is required.
func EqInterface(s, t ir.Node) (eqtab *ir.BinaryExpr, eqdata *ir.CallExpr) {
	if !types.Identical(s.Type(), t.Type()) {
		base.Fatalf("EqInterface %v %v", s.Type(), t.Type())
	}
	// func ifaceeq(tab *uintptr, x, y unsafe.Pointer) (ret bool)
	// func efaceeq(typ *uintptr, x, y unsafe.Pointer) (ret bool)
	var fn ir.Node
	if s.Type().IsEmptyInterface() {
		fn = typecheck.LookupRuntime("efaceeq")
	} else {
		fn = typecheck.LookupRuntime("ifaceeq")
	}

	stab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s)
	ttab := ir.NewUnaryExpr(base.Pos, ir.OITAB, t)
	sdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, s)
	tdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, t)
	sdata.SetType(types.Types[types.TUNSAFEPTR])
	tdata.SetType(types.Types[types.TUNSAFEPTR])
	sdata.SetTypecheck(1)
	tdata.SetTypecheck(1)

	call := typecheck.Call(base.Pos, fn, []ir.Node{stab, sdata, tdata}, false).(*ir.CallExpr)

	cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, stab, ttab)
	cmp = typecheck.Expr(cmp).(*ir.BinaryExpr)
	cmp.SetType(types.Types[types.TBOOL])
	return cmp, call
}

// eqfield returns the node
//
//	p.field == q.field
func eqfield(p ir.Node, q ir.Node, op ir.Op, field *types.Sym) ir.Node {
	nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field)
	ny := ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field)
	ne := ir.NewBinaryExpr(base.Pos, op, nx, ny)
	return ne
}

// eqmem returns the node
//
//	memequal(&p.field, &q.field, size])
func eqmem(p ir.Node, q ir.Node, field *types.Sym, size int64) ir.Node {
	nx := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field)))
	ny := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field)))

	fn, needsize := eqmemfunc(size, nx.Type().Elem())
	call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
	call.Args.Append(nx)
	call.Args.Append(ny)
	if needsize {
		call.Args.Append(ir.NewInt(size))
	}

	return call
}

func eqmemfunc(size int64, t *types.Type) (fn *ir.Name, needsize bool) {
	switch size {
	default:
		fn = typecheck.LookupRuntime("memequal")
		needsize = true
	case 1, 2, 4, 8, 16:
		buf := fmt.Sprintf("memequal%d", int(size)*8)
		fn = typecheck.LookupRuntime(buf)
	}

	fn = typecheck.SubstArgTypes(fn, t, t)
	return fn, needsize
}