aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/types/pkg.go
AgeCommit message (Collapse)Author
2021-05-18[dev.typeparams] cmd/compile: simplify type alias handling for exportMatthew Dempsky
Currently the exporter uses types.IsDotAlias(n.Sym()) to recognize that n is a type alias, but IsDotAlias is actually meant for recognizing aliases introduced by dot imports. Translated to go/types, the current logic amounts recognizing type aliases as if by: var n *types.TypeName typ, ok := n.Pkg().Scope().Lookup(n.Name()).Type().(*types.Named) isAlias := !ok || typ.Obj().Pkg() != n.Pkg() || typ.Obj().Name() != n.Name() But we can instead just check n.Alias() (eqv. n.IsAlias() in go/types). In addition to being much simpler, this is also actually correct for recognizing function-scoped type declarations (though we don't currently support those anyway, nor would they go through this exact code path). To avoid possible future misuse of IsDotAlias, this CL also inlines its trivial definition into its only call site. Passes toolstash -cmp, also w/ -gcflags=all=-G=3. Change-Id: I7c6283f4b58d5311aa683f8229bbf62f8bab2ff9 Reviewed-on: https://go-review.googlesource.com/c/go/+/320613 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Trust: Matthew Dempsky <mdempsky@google.com> Trust: Dan Scales <danscales@google.com> Reviewed-by: Dan Scales <danscales@google.com>
2021-01-12[dev.typeparams] cmd/compile: refactor import logicMatthew Dempsky
This CL refactors noder's package import logic so it's easier to reuse with types2 and gcimports. In particular, this allows the types2 integration to now support vendored packages. Change-Id: I1fd98ad612b4683d2e1ac640839e64de1fa7324b Reviewed-on: https://go-review.googlesource.com/c/go/+/282919 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org> Trust: Robert Griesemer <gri@golang.org> Trust: Matthew Dempsky <mdempsky@google.com>
2020-12-23[dev.regabi] cmd/compile: move helpers into package types [generated]Russ Cox
[git-generate] cd src/cmd/compile/internal/gc rf ' # Type hash (formatting). mv typehash TypeHash mv TypeHash fmt.go # Method sorting. mv methcmp MethodsByName mv MethodsByName MethodsByName.Len MethodsByName.Swap \ MethodsByName.Less sort.go # Move version check into types. # A little surprising, but its keyed off the types.Pkg. ex { import "cmd/compile/internal/types" var p *types.Pkg var major, minor int langSupported(major, minor, p) -> AllowsGoVersion(p, major, minor) } rm langSupported mv checkLang ParseLangFlag mv lang langWant AllowsGoVersion ParseLangFlag \ parseLang currentLang goVersionRE goversion.go mv testdclstack CheckDclstack mv CheckDclstack scope.go mv algtype1 AlgType mv isComplex IsComplex mv isFloat IsFloat mv isInt IsInt mv issimple IsSimple mv okforcmp IsOrdered mv floatForComplex FloatForComplex mv complexForFloat ComplexForFloat mv isdirectiface IsDirectIface mv isifacemethod IsInterfaceMethod mv isMethodApplicable IsMethodApplicable mv ispaddedfield IsPaddedField mv isRuntimePkg IsRuntimePkg mv isReflectPkg IsReflectPkg mv methtype ReceiverBaseType mv typesymname TypeSymName mv typesym TypeSym mv typeLookup TypeSymLookup mv IsAlias IsDotAlias mv isreflexive IsReflexive mv simtype SimType # The type1.go here is to avoid an undiagnosed bug in rf # that does not get the follow-up typechecking right if we # move directly to type.go during the mv into package types below. mv \ IsInt IsOrdered IsReflexive \ IsDirectIface IsInterfaceMethod IsMethodApplicable IsPaddedField \ IsRuntimePkg IsReflectPkg ReceiverBaseType \ FloatForComplex ComplexForFloat \ TypeSym TypeSymLookup TypeSymName \ typepkg SimType \ type1.go # The alg1.go here is because we are only moving part of alg.go. mv typeHasNoAlg TypeHasNoAlg mv AlgKind ANOEQ AlgType TypeHasNoAlg IsComparable IncomparableField IsPaddedField alg1.go mv IsDotAlias pkg.go mv alg1.go algkind_string.go fmt.go goversion.go pkg.go \ CheckDclstack \ # scope.go sort.go type1.go \ cmd/compile/internal/types ' cd ../types rf ' mv IsDclstackValid isDclstackValid mv alg1.go alg.go mv type1.go type.go ' Change-Id: I8bd53b21c7bdd1770e1b525de32f136833e84c9d Reviewed-on: https://go-review.googlesource.com/c/go/+/279307 Trust: Russ Cox <rsc@golang.org> Run-TryBot: Russ Cox <rsc@golang.org> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2020-12-01[dev.regabi] cmd/compile: remove types.InitSymsMatthew Dempsky
It's not types's responsibility to understand how package initialization is implemented. Instead, have gc keep track of the order that packages were imported, and then look for inittask declarations. Also, use resolve to force importing of the inittask's export data, so that we can get the appropriate linker symbol index. (This is also why this CL doesn't satisfy "toolstash -cmp".) Change-Id: I5b706497d4a8d1c4439178863b4a8dba4da0f5a9 Reviewed-on: https://go-review.googlesource.com/c/go/+/274006 Trust: Matthew Dempsky <mdempsky@google.com> Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Keith Randall <khr@golang.org>
2019-05-22runtime: revert init order changesKeith Randall
First, remove the randomization of initialization order. Then, revert to source code order instead of sorted package path order. This restores the behavior that was in 1.12. A larger change which will implement the suggestion in #31636 will wait for 1.14. It's too complicated for 1.13 at this point (it has tricky interactions with plugins). Fixes #31636 Change-Id: I35b48e8cc21cf9f93c0973edd9193d2eac197628 Reviewed-on: https://go-review.googlesource.com/c/go/+/178297 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Ian Lance Taylor <iant@golang.org>
2018-10-06all: fix a bunch of misspellingsIgor Zhilianin
Change-Id: If2954bdfc551515403706b2cd0dde94e45936e08 GitHub-Last-Rev: d4cfc41a5504cf10befefdb881d4c45986a1d1f8 GitHub-Pull-Request: golang/go#28049 Reviewed-on: https://go-review.googlesource.com/c/140299 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org> Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org>
2018-04-09cmd/compile: add package height to export dataMatthew Dempsky
A package's height is defined as the length of the longest import path between itself and a leaf package (i.e., package with no imports). We can't rely on knowing the path of the package being compiled, so package height is useful for defining a package ordering. Updates #24693. Change-Id: I965162c440b6c5397db91b621ea0be7fa63881f1 Reviewed-on: https://go-review.googlesource.com/105038 Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2017-04-27cmd/compile: add initial backend concurrency supportJosh Bleecher Snyder
This CL adds initial support for concurrent backend compilation. BACKGROUND The compiler currently consists (very roughly) of the following phases: 1. Initialization. 2. Lexing and parsing into the cmd/compile/internal/syntax AST. 3. Translation into the cmd/compile/internal/gc AST. 4. Some gc AST passes: typechecking, escape analysis, inlining, closure handling, expression evaluation ordering (order.go), and some lowering and optimization (walk.go). 5. Translation into the cmd/compile/internal/ssa SSA form. 6. Optimization and lowering of SSA form. 7. Translation from SSA form to assembler instructions. 8. Translation from assembler instructions to machine code. 9. Writing lots of output: machine code, DWARF symbols, type and reflection info, export data. Phase 2 was already concurrent as of Go 1.8. Phase 3 is planned for eventual removal; we hope to go straight from syntax AST to SSA. Phases 5–8 are per-function; this CL adds support for processing multiple functions concurrently. The slowest phases in the compiler are 5 and 6, so this offers the opportunity for some good speed-ups. Unfortunately, it's not quite that straightforward. In the current compiler, the latter parts of phase 4 (order, walk) are done function-at-a-time as needed. Making order and walk concurrency-safe proved hard, and they're not particularly slow, so there wasn't much reward. To enable phases 5–8 to be done concurrently, when concurrent backend compilation is requested, we complete phase 4 for all functions before starting later phases for any functions. Also, in reality, we automatically generate new functions in phase 9, such as method wrappers and equality and has routines. Those new functions then go through phases 4–8. This CL disables concurrent backend compilation after the first, big, user-provided batch of functions has been compiled. This is done to keep things simple, and because the autogenerated functions tend to be small, few, simple, and fast to compile. USAGE Concurrent backend compilation still defaults to off. To set the number of functions that may be backend-compiled concurrently, use the compiler flag -c. In future work, cmd/go will automatically set -c. Furthermore, this CL has been intentionally written so that the c=1 path has no backend concurrency whatsoever, not even spawning any goroutines. This helps ensure that, should problems arise late in the development cycle, we can simply have cmd/go set c=1 always, and revert to the original compiler behavior. MUTEXES Most of the work required to make concurrent backend compilation safe has occurred over the past month. This CL adds a handful of mutexes to get the rest of the way there; they are the mutexes that I didn't see a clean way to avoid. Some of them may still be eliminable in future work. In no particular order: * gc.funcsymsmu. The global funcsyms slice is populated lazily when we need function symbols for closures. This occurs during gc AST to SSA translation. The function funcsym also does a package lookup, which is a source of races on types.Pkg.Syms; funcsymsmu also covers that package lookup. This mutex is low priority: it adds a single global, it is in an infrequently used code path, and it is low contention. Since funcsyms may now be added in any order, we must sort them to preserve reproducible builds. * gc.largeStackFramesMu. We don't discover until after SSA compilation that a function's stack frame is gigantic. Recording that error happens basically never, but it does happen concurrently. Fix with a low priority mutex and sorting. * obj.Link.hashmu. ctxt.hash stores the mapping from types.Syms (compiler symbols) to obj.LSyms (linker symbols). It is accessed fairly heavily through all the phases. This is the only heavily contended mutex. * gc.signatlistmu. The global signatlist map is populated with types through several of the concurrent phases, including notably via ngotype during DWARF generation. It is low priority for removal. * gc.typepkgmu. Looking up symbols in the types package happens a fair amount during backend compilation and DWARF generation, particularly via ngotype. This mutex helps us to avoid a broader mutex on types.Pkg.Syms. It has low-to-moderate contention. * types.internedStringsmu. gc AST to SSA conversion and some SSA work introduce new autotmps. Those autotmps have their names interned to reduce allocations. That interning requires protecting types.internedStrings. The autotmp names are heavily re-used, and the mutex overhead and contention here are low, so it is probably a worthwhile performance optimization to keep this mutex. TESTING I have been testing this code locally by running 'go install -race cmd/compile' and then doing 'go build -a -gcflags=-c=128 std cmd' for all architectures and a variety of compiler flags. This obviously needs to be made part of the builders, but it is too expensive to make part of all.bash. I have filed #19962 for this. REPRODUCIBLE BUILDS This version of the compiler generates reproducible builds. Testing reproducible builds also needs automation, however, and is also too expensive for all.bash. This is #19961. Also of note is that some of the compiler flags used by 'toolstash -cmp' are currently incompatible with concurrent backend compilation. They still work fine with c=1. Time will tell whether this is a problem. NEXT STEPS * Continue to find and fix races and bugs, using a combination of code inspection, fuzzing, and hopefully some community experimentation. I do not know of any outstanding races, but there probably are some. * Improve testing. * Improve performance, for many values of c. * Integrate with cmd/go and fine tune. * Support concurrent compilation with the -race flag. It is a sad irony that it does not yet work. * Minor code cleanup that has been deferred during the last month due to uncertainty about the ultimate shape of this CL. PERFORMANCE Here's the buried lede, at last. :) All benchmarks are from my 8 core 2.9 GHz Intel Core i7 darwin/amd64 laptop. First, going from tip to this CL with c=1 has almost no impact. name old time/op new time/op delta Template 195ms ± 3% 194ms ± 5% ~ (p=0.370 n=30+29) Unicode 86.6ms ± 3% 87.0ms ± 7% ~ (p=0.958 n=29+30) GoTypes 548ms ± 3% 555ms ± 4% +1.35% (p=0.001 n=30+28) Compiler 2.51s ± 2% 2.54s ± 2% +1.17% (p=0.000 n=28+30) SSA 5.16s ± 3% 5.16s ± 2% ~ (p=0.910 n=30+29) Flate 124ms ± 5% 124ms ± 4% ~ (p=0.947 n=30+30) GoParser 146ms ± 3% 146ms ± 3% ~ (p=0.150 n=29+28) Reflect 354ms ± 3% 352ms ± 4% ~ (p=0.096 n=29+29) Tar 107ms ± 5% 106ms ± 3% ~ (p=0.370 n=30+29) XML 200ms ± 4% 201ms ± 4% ~ (p=0.313 n=29+28) [Geo mean] 332ms 333ms +0.10% name old user-time/op new user-time/op delta Template 227ms ± 5% 225ms ± 5% ~ (p=0.457 n=28+27) Unicode 109ms ± 4% 109ms ± 5% ~ (p=0.758 n=29+29) GoTypes 713ms ± 4% 721ms ± 5% ~ (p=0.051 n=30+29) Compiler 3.36s ± 2% 3.38s ± 3% ~ (p=0.146 n=30+30) SSA 7.46s ± 3% 7.47s ± 3% ~ (p=0.804 n=30+29) Flate 146ms ± 7% 147ms ± 3% ~ (p=0.833 n=29+27) GoParser 179ms ± 5% 179ms ± 5% ~ (p=0.866 n=30+30) Reflect 431ms ± 4% 429ms ± 4% ~ (p=0.593 n=29+30) Tar 124ms ± 5% 123ms ± 5% ~ (p=0.140 n=29+29) XML 243ms ± 4% 242ms ± 7% ~ (p=0.404 n=29+29) [Geo mean] 415ms 415ms +0.02% name old obj-bytes new obj-bytes delta Template 382k ± 0% 382k ± 0% ~ (all equal) Unicode 203k ± 0% 203k ± 0% ~ (all equal) GoTypes 1.18M ± 0% 1.18M ± 0% ~ (all equal) Compiler 3.98M ± 0% 3.98M ± 0% ~ (all equal) SSA 8.28M ± 0% 8.28M ± 0% ~ (all equal) Flate 230k ± 0% 230k ± 0% ~ (all equal) GoParser 287k ± 0% 287k ± 0% ~ (all equal) Reflect 1.00M ± 0% 1.00M ± 0% ~ (all equal) Tar 190k ± 0% 190k ± 0% ~ (all equal) XML 416k ± 0% 416k ± 0% ~ (all equal) [Geo mean] 660k 660k +0.00% Comparing this CL to itself, from c=1 to c=2 improves real times 20-30%, costs 5-10% more CPU time, and adds about 2% alloc. The allocation increase comes from allocating more ssa.Caches. name old time/op new time/op delta Template 202ms ± 3% 149ms ± 3% -26.15% (p=0.000 n=49+49) Unicode 87.4ms ± 4% 84.2ms ± 3% -3.68% (p=0.000 n=48+48) GoTypes 560ms ± 2% 398ms ± 2% -28.96% (p=0.000 n=49+49) Compiler 2.46s ± 3% 1.76s ± 2% -28.61% (p=0.000 n=48+46) SSA 6.17s ± 2% 4.04s ± 1% -34.52% (p=0.000 n=49+49) Flate 126ms ± 3% 92ms ± 2% -26.81% (p=0.000 n=49+48) GoParser 148ms ± 4% 107ms ± 2% -27.78% (p=0.000 n=49+48) Reflect 361ms ± 3% 281ms ± 3% -22.10% (p=0.000 n=49+49) Tar 109ms ± 4% 86ms ± 3% -20.81% (p=0.000 n=49+47) XML 204ms ± 3% 144ms ± 2% -29.53% (p=0.000 n=48+45) name old user-time/op new user-time/op delta Template 246ms ± 9% 246ms ± 4% ~ (p=0.401 n=50+48) Unicode 109ms ± 4% 111ms ± 4% +1.47% (p=0.000 n=44+50) GoTypes 728ms ± 3% 765ms ± 3% +5.04% (p=0.000 n=46+50) Compiler 3.33s ± 3% 3.41s ± 2% +2.31% (p=0.000 n=49+48) SSA 8.52s ± 2% 9.11s ± 2% +6.93% (p=0.000 n=49+47) Flate 149ms ± 4% 161ms ± 3% +8.13% (p=0.000 n=50+47) GoParser 181ms ± 5% 192ms ± 2% +6.40% (p=0.000 n=49+46) Reflect 452ms ± 9% 474ms ± 2% +4.99% (p=0.000 n=50+48) Tar 126ms ± 6% 136ms ± 4% +7.95% (p=0.000 n=50+49) XML 247ms ± 5% 264ms ± 3% +6.94% (p=0.000 n=48+50) name old alloc/op new alloc/op delta Template 38.8MB ± 0% 39.3MB ± 0% +1.48% (p=0.008 n=5+5) Unicode 29.8MB ± 0% 30.2MB ± 0% +1.19% (p=0.008 n=5+5) GoTypes 113MB ± 0% 114MB ± 0% +0.69% (p=0.008 n=5+5) Compiler 443MB ± 0% 447MB ± 0% +0.95% (p=0.008 n=5+5) SSA 1.25GB ± 0% 1.26GB ± 0% +0.89% (p=0.008 n=5+5) Flate 25.3MB ± 0% 25.9MB ± 1% +2.35% (p=0.008 n=5+5) GoParser 31.7MB ± 0% 32.2MB ± 0% +1.59% (p=0.008 n=5+5) Reflect 78.2MB ± 0% 78.9MB ± 0% +0.91% (p=0.008 n=5+5) Tar 26.6MB ± 0% 27.0MB ± 0% +1.80% (p=0.008 n=5+5) XML 42.4MB ± 0% 43.4MB ± 0% +2.35% (p=0.008 n=5+5) name old allocs/op new allocs/op delta Template 379k ± 0% 378k ± 0% ~ (p=0.421 n=5+5) Unicode 322k ± 0% 321k ± 0% ~ (p=0.222 n=5+5) GoTypes 1.14M ± 0% 1.14M ± 0% ~ (p=0.548 n=5+5) Compiler 4.12M ± 0% 4.11M ± 0% -0.14% (p=0.032 n=5+5) SSA 9.72M ± 0% 9.72M ± 0% ~ (p=0.421 n=5+5) Flate 234k ± 1% 234k ± 0% ~ (p=0.421 n=5+5) GoParser 316k ± 1% 315k ± 0% ~ (p=0.222 n=5+5) Reflect 980k ± 0% 979k ± 0% ~ (p=0.095 n=5+5) Tar 249k ± 1% 249k ± 1% ~ (p=0.841 n=5+5) XML 392k ± 0% 391k ± 0% ~ (p=0.095 n=5+5) From c=1 to c=4, real time is down ~40%, CPU usage up 10-20%, alloc up ~5%: name old time/op new time/op delta Template 203ms ± 3% 131ms ± 5% -35.45% (p=0.000 n=50+50) Unicode 87.2ms ± 4% 84.1ms ± 2% -3.61% (p=0.000 n=48+47) GoTypes 560ms ± 4% 310ms ± 2% -44.65% (p=0.000 n=50+49) Compiler 2.47s ± 3% 1.41s ± 2% -43.10% (p=0.000 n=50+46) SSA 6.17s ± 2% 3.20s ± 2% -48.06% (p=0.000 n=49+49) Flate 126ms ± 4% 74ms ± 2% -41.06% (p=0.000 n=49+48) GoParser 148ms ± 4% 89ms ± 3% -39.97% (p=0.000 n=49+50) Reflect 360ms ± 3% 242ms ± 3% -32.81% (p=0.000 n=49+49) Tar 108ms ± 4% 73ms ± 4% -32.48% (p=0.000 n=50+49) XML 203ms ± 3% 119ms ± 3% -41.56% (p=0.000 n=49+48) name old user-time/op new user-time/op delta Template 246ms ± 9% 287ms ± 9% +16.98% (p=0.000 n=50+50) Unicode 109ms ± 4% 118ms ± 5% +7.56% (p=0.000 n=46+50) GoTypes 735ms ± 4% 806ms ± 2% +9.62% (p=0.000 n=50+50) Compiler 3.34s ± 4% 3.56s ± 2% +6.78% (p=0.000 n=49+49) SSA 8.54s ± 3% 10.04s ± 3% +17.55% (p=0.000 n=50+50) Flate 149ms ± 6% 176ms ± 3% +17.82% (p=0.000 n=50+48) GoParser 181ms ± 5% 213ms ± 3% +17.47% (p=0.000 n=50+50) Reflect 453ms ± 6% 499ms ± 2% +10.11% (p=0.000 n=50+48) Tar 126ms ± 5% 149ms ±11% +18.76% (p=0.000 n=50+50) XML 246ms ± 5% 287ms ± 4% +16.53% (p=0.000 n=49+50) name old alloc/op new alloc/op delta Template 38.8MB ± 0% 40.4MB ± 0% +4.21% (p=0.008 n=5+5) Unicode 29.8MB ± 0% 30.9MB ± 0% +3.68% (p=0.008 n=5+5) GoTypes 113MB ± 0% 116MB ± 0% +2.71% (p=0.008 n=5+5) Compiler 443MB ± 0% 455MB ± 0% +2.75% (p=0.008 n=5+5) SSA 1.25GB ± 0% 1.27GB ± 0% +1.84% (p=0.008 n=5+5) Flate 25.3MB ± 0% 26.9MB ± 1% +6.31% (p=0.008 n=5+5) GoParser 31.7MB ± 0% 33.2MB ± 0% +4.61% (p=0.008 n=5+5) Reflect 78.2MB ± 0% 80.2MB ± 0% +2.53% (p=0.008 n=5+5) Tar 26.6MB ± 0% 27.9MB ± 0% +5.19% (p=0.008 n=5+5) XML 42.4MB ± 0% 44.6MB ± 0% +5.20% (p=0.008 n=5+5) name old allocs/op new allocs/op delta Template 380k ± 0% 379k ± 0% -0.39% (p=0.032 n=5+5) Unicode 321k ± 0% 321k ± 0% ~ (p=0.841 n=5+5) GoTypes 1.14M ± 0% 1.14M ± 0% ~ (p=0.421 n=5+5) Compiler 4.12M ± 0% 4.14M ± 0% +0.52% (p=0.008 n=5+5) SSA 9.72M ± 0% 9.76M ± 0% +0.37% (p=0.008 n=5+5) Flate 234k ± 1% 234k ± 1% ~ (p=0.690 n=5+5) GoParser 316k ± 0% 317k ± 1% ~ (p=0.841 n=5+5) Reflect 981k ± 0% 981k ± 0% ~ (p=1.000 n=5+5) Tar 250k ± 0% 249k ± 1% ~ (p=0.151 n=5+5) XML 393k ± 0% 392k ± 0% ~ (p=0.056 n=5+5) Going beyond c=4 on my machine tends to increase CPU time and allocs without impacting real time. The CPU time numbers matter, because when there are many concurrent compilation processes, that will impact the overall throughput. The numbers above are in many ways the best case scenario; we can take full advantage of all cores. Fortunately, the most common compilation scenario is incremental re-compilation of a single package during a build/test cycle. Updates #15756 Change-Id: I6725558ca2069edec0ac5b0d1683105a9fff6bea Reviewed-on: https://go-review.googlesource.com/40693 Reviewed-by: Matthew Dempsky <mdempsky@google.com> Reviewed-by: Robert Griesemer <gri@golang.org> Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org>
2017-04-24cmd/compile: move typepkg back to gc package (cleanup)Robert Griesemer
Change-Id: I4d5c54d2dceabf4630e5e642835b20c8c6890524 Reviewed-on: https://go-review.googlesource.com/41616 Run-TryBot: Robert Griesemer <gri@golang.org> Reviewed-by: Josh Bleecher Snyder <josharian@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org>
2017-04-21cmd/compile: move typepkg to package typesJosh Bleecher Snyder
Response to code review feedback on CL 40693. It is now only accessible by types.TypePkgLookup. Passes toolstash-check. Change-Id: I0c422c1a271f97467ae38de53af9dc33f4b31bdb Reviewed-on: https://go-review.googlesource.com/41304 Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Robert Griesemer <gri@golang.org>
2017-04-19cmd/compile/internal/types: unexport PkgMap, remove PkgListRobert Griesemer
- PkgMap was only needed to test import/export in a "cleanroom" environment, with debugFormat set. Provided helper function instead. - PkgList was only used to identify directly imported packages. Instead, compute that list explicitly from the package map. It happens only once, the list is small, and it's more robust than keeping two data structures in sync. Change-Id: I82dce3c0b5cb816faae58708e877799359c20fcb Reviewed-on: https://go-review.googlesource.com/41078 Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2017-04-19cmd/compile/internal/types: don't export Nopkg anymoreRobert Griesemer
There's already special code to access it. Change-Id: I28ca4f44a04262407ee9f1c826ada4e7eba44775 Reviewed-on: https://go-review.googlesource.com/41073 Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2017-04-19cmd/compile: pass package name to types.NewPkgRobert Griesemer
Change-Id: I08b43b08a8d2e9851f41401feee4b72287ced774 Reviewed-on: https://go-review.googlesource.com/41072 Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2017-04-19cmd/compile: move and rename mkpkg to types.NewPkgRobert Griesemer
That's where it belongs. Also, moved pkgMap and pkgs globals. Change-Id: I531727fe5ce162c403efefec82f4cc90afa326d7 Reviewed-on: https://go-review.googlesource.com/41071 Reviewed-by: Matthew Dempsky <mdempsky@google.com>
2017-04-07cmd/compile: factor out Pkg, Sym, and Type into package typesRobert Griesemer
- created new package cmd/compile/internal/types - moved Pkg, Sym, Type to new package - to break cycles, for now we need the (ugly) types/utils.go file which contains a handful of functions that must be installed early by the gc frontend - to break cycles, for now we need two functions to convert between *gc.Node and *types.Node (the latter is a dummy type) - adjusted the gc's code to use the new package and the conversion functions as needed - made several Pkg, Sym, and Type methods functions as needed - renamed constructors typ, typPtr, typArray, etc. to types.New, types.NewPtr, types.NewArray, etc. Passes toolstash-check -all. Change-Id: I8adfa5e85c731645d0a7fd2030375ed6ebf54b72 Reviewed-on: https://go-review.googlesource.com/39855 Reviewed-by: Matthew Dempsky <mdempsky@google.com>