aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/elliptic/p384.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/elliptic/p384.go')
-rw-r--r--src/crypto/elliptic/p384.go144
1 files changed, 0 insertions, 144 deletions
diff --git a/src/crypto/elliptic/p384.go b/src/crypto/elliptic/p384.go
deleted file mode 100644
index 33a441d090..0000000000
--- a/src/crypto/elliptic/p384.go
+++ /dev/null
@@ -1,144 +0,0 @@
-// Copyright 2013 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package elliptic
-
-import (
- "crypto/elliptic/internal/nistec"
- "crypto/rand"
- "math/big"
-)
-
-// p384Curve is a Curve implementation based on nistec.P384Point.
-//
-// It's a wrapper that exposes the big.Int-based Curve interface and encodes the
-// legacy idiosyncrasies it requires, such as invalid and infinity point
-// handling.
-//
-// To interact with the nistec package, points are encoded into and decoded from
-// properly formatted byte slices. All big.Int use is limited to this package.
-// Encoding and decoding is 1/1000th of the runtime of a scalar multiplication,
-// so the overhead is acceptable.
-type p384Curve struct {
- params *CurveParams
-}
-
-var p384 p384Curve
-var _ Curve = p384
-
-func initP384() {
- p384.params = &CurveParams{
- Name: "P-384",
- BitSize: 384,
- // FIPS 186-4, section D.1.2.4
- P: bigFromDecimal("394020061963944792122790401001436138050797392704654" +
- "46667948293404245721771496870329047266088258938001861606973112319"),
- N: bigFromDecimal("394020061963944792122790401001436138050797392704654" +
- "46667946905279627659399113263569398956308152294913554433653942643"),
- B: bigFromHex("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088" +
- "f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"),
- Gx: bigFromHex("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741" +
- "e082542a385502f25dbf55296c3a545e3872760ab7"),
- Gy: bigFromHex("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da31" +
- "13b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f"),
- }
-}
-
-func (curve p384Curve) Params() *CurveParams {
- return curve.params
-}
-
-func (curve p384Curve) IsOnCurve(x, y *big.Int) bool {
- // IsOnCurve is documented to reject (0, 0), the conventional point at
- // infinity, which however is accepted by p384PointFromAffine.
- if x.Sign() == 0 && y.Sign() == 0 {
- return false
- }
- _, ok := p384PointFromAffine(x, y)
- return ok
-}
-
-func p384PointFromAffine(x, y *big.Int) (p *nistec.P384Point, ok bool) {
- // (0, 0) is by convention the point at infinity, which can't be represented
- // in affine coordinates. Marshal incorrectly encodes it as an uncompressed
- // point, which SetBytes would correctly reject. See Issue 37294.
- if x.Sign() == 0 && y.Sign() == 0 {
- return nistec.NewP384Point(), true
- }
- if x.Sign() < 0 || y.Sign() < 0 {
- return nil, false
- }
- if x.BitLen() > 384 || y.BitLen() > 384 {
- return nil, false
- }
- p, err := nistec.NewP384Point().SetBytes(Marshal(P384(), x, y))
- if err != nil {
- return nil, false
- }
- return p, true
-}
-
-func p384PointToAffine(p *nistec.P384Point) (x, y *big.Int) {
- out := p.Bytes()
- if len(out) == 1 && out[0] == 0 {
- // This is the correct encoding of the point at infinity, which
- // Unmarshal does not support. See Issue 37294.
- return new(big.Int), new(big.Int)
- }
- x, y = Unmarshal(P384(), out)
- if x == nil {
- panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding")
- }
- return x, y
-}
-
-// p384RandomPoint returns a random point on the curve. It's used when Add,
-// Double, or ScalarMult are fed a point not on the curve, which is undefined
-// behavior. Originally, we used to do the math on it anyway (which allows
-// invalid curve attacks) and relied on the caller and Unmarshal to avoid this
-// happening in the first place. Now, we just can't construct a nistec.P384Point
-// for an invalid pair of coordinates, because that API is safer. If we panic,
-// we risk introducing a DoS. If we return nil, we risk a panic. If we return
-// the input, ecdsa.Verify might fail open. The safest course seems to be to
-// return a valid, random point, which hopefully won't help the attacker.
-func p384RandomPoint() (x, y *big.Int) {
- _, x, y, err := GenerateKey(P384(), rand.Reader)
- if err != nil {
- panic("crypto/elliptic: failed to generate random point")
- }
- return x, y
-}
-
-func (p384Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
- p1, ok := p384PointFromAffine(x1, y1)
- if !ok {
- return p384RandomPoint()
- }
- p2, ok := p384PointFromAffine(x2, y2)
- if !ok {
- return p384RandomPoint()
- }
- return p384PointToAffine(p1.Add(p1, p2))
-}
-
-func (p384Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
- p, ok := p384PointFromAffine(x1, y1)
- if !ok {
- return p384RandomPoint()
- }
- return p384PointToAffine(p.Double(p))
-}
-
-func (p384Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
- p, ok := p384PointFromAffine(Bx, By)
- if !ok {
- return p384RandomPoint()
- }
- return p384PointToAffine(p.ScalarMult(p, scalar))
-}
-
-func (p384Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) {
- p := nistec.NewP384Generator()
- return p384PointToAffine(p.ScalarMult(p, scalar))
-}