aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/elliptic/elliptic.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/elliptic/elliptic.go')
-rw-r--r--src/crypto/elliptic/elliptic.go289
1 files changed, 0 insertions, 289 deletions
diff --git a/src/crypto/elliptic/elliptic.go b/src/crypto/elliptic/elliptic.go
index 7ead09f8d3..522d7afbaf 100644
--- a/src/crypto/elliptic/elliptic.go
+++ b/src/crypto/elliptic/elliptic.go
@@ -36,295 +36,6 @@ type Curve interface {
ScalarBaseMult(k []byte) (x, y *big.Int)
}
-func matchesSpecificCurve(params *CurveParams, available ...Curve) (Curve, bool) {
- for _, c := range available {
- if params == c.Params() {
- return c, true
- }
- }
- return nil, false
-}
-
-// CurveParams contains the parameters of an elliptic curve and also provides
-// a generic, non-constant time implementation of Curve.
-type CurveParams struct {
- P *big.Int // the order of the underlying field
- N *big.Int // the order of the base point
- B *big.Int // the constant of the curve equation
- Gx, Gy *big.Int // (x,y) of the base point
- BitSize int // the size of the underlying field
- Name string // the canonical name of the curve
-}
-
-func (curve *CurveParams) Params() *CurveParams {
- return curve
-}
-
-// CurveParams operates, internally, on Jacobian coordinates. For a given
-// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
-// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
-// calculation can be performed within the transform (as in ScalarMult and
-// ScalarBaseMult). But even for Add and Double, it's faster to apply and
-// reverse the transform than to operate in affine coordinates.
-
-// polynomial returns x³ - 3x + b.
-func (curve *CurveParams) polynomial(x *big.Int) *big.Int {
- x3 := new(big.Int).Mul(x, x)
- x3.Mul(x3, x)
-
- threeX := new(big.Int).Lsh(x, 1)
- threeX.Add(threeX, x)
-
- x3.Sub(x3, threeX)
- x3.Add(x3, curve.B)
- x3.Mod(x3, curve.P)
-
- return x3
-}
-
-func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool {
- // If there is a dedicated constant-time implementation for this curve operation,
- // use that instead of the generic one.
- if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
- return specific.IsOnCurve(x, y)
- }
-
- if x.Sign() < 0 || x.Cmp(curve.P) >= 0 ||
- y.Sign() < 0 || y.Cmp(curve.P) >= 0 {
- return false
- }
-
- // y² = x³ - 3x + b
- y2 := new(big.Int).Mul(y, y)
- y2.Mod(y2, curve.P)
-
- return curve.polynomial(x).Cmp(y2) == 0
-}
-
-// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and
-// y are zero, it assumes that they represent the point at infinity because (0,
-// 0) is not on the any of the curves handled here.
-func zForAffine(x, y *big.Int) *big.Int {
- z := new(big.Int)
- if x.Sign() != 0 || y.Sign() != 0 {
- z.SetInt64(1)
- }
- return z
-}
-
-// affineFromJacobian reverses the Jacobian transform. See the comment at the
-// top of the file. If the point is ∞ it returns 0, 0.
-func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
- if z.Sign() == 0 {
- return new(big.Int), new(big.Int)
- }
-
- zinv := new(big.Int).ModInverse(z, curve.P)
- zinvsq := new(big.Int).Mul(zinv, zinv)
-
- xOut = new(big.Int).Mul(x, zinvsq)
- xOut.Mod(xOut, curve.P)
- zinvsq.Mul(zinvsq, zinv)
- yOut = new(big.Int).Mul(y, zinvsq)
- yOut.Mod(yOut, curve.P)
- return
-}
-
-func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
- // If there is a dedicated constant-time implementation for this curve operation,
- // use that instead of the generic one.
- if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
- return specific.Add(x1, y1, x2, y2)
- }
-
- z1 := zForAffine(x1, y1)
- z2 := zForAffine(x2, y2)
- return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2))
-}
-
-// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
-// (x2, y2, z2) and returns their sum, also in Jacobian form.
-func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
- // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
- x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int)
- if z1.Sign() == 0 {
- x3.Set(x2)
- y3.Set(y2)
- z3.Set(z2)
- return x3, y3, z3
- }
- if z2.Sign() == 0 {
- x3.Set(x1)
- y3.Set(y1)
- z3.Set(z1)
- return x3, y3, z3
- }
-
- z1z1 := new(big.Int).Mul(z1, z1)
- z1z1.Mod(z1z1, curve.P)
- z2z2 := new(big.Int).Mul(z2, z2)
- z2z2.Mod(z2z2, curve.P)
-
- u1 := new(big.Int).Mul(x1, z2z2)
- u1.Mod(u1, curve.P)
- u2 := new(big.Int).Mul(x2, z1z1)
- u2.Mod(u2, curve.P)
- h := new(big.Int).Sub(u2, u1)
- xEqual := h.Sign() == 0
- if h.Sign() == -1 {
- h.Add(h, curve.P)
- }
- i := new(big.Int).Lsh(h, 1)
- i.Mul(i, i)
- j := new(big.Int).Mul(h, i)
-
- s1 := new(big.Int).Mul(y1, z2)
- s1.Mul(s1, z2z2)
- s1.Mod(s1, curve.P)
- s2 := new(big.Int).Mul(y2, z1)
- s2.Mul(s2, z1z1)
- s2.Mod(s2, curve.P)
- r := new(big.Int).Sub(s2, s1)
- if r.Sign() == -1 {
- r.Add(r, curve.P)
- }
- yEqual := r.Sign() == 0
- if xEqual && yEqual {
- return curve.doubleJacobian(x1, y1, z1)
- }
- r.Lsh(r, 1)
- v := new(big.Int).Mul(u1, i)
-
- x3.Set(r)
- x3.Mul(x3, x3)
- x3.Sub(x3, j)
- x3.Sub(x3, v)
- x3.Sub(x3, v)
- x3.Mod(x3, curve.P)
-
- y3.Set(r)
- v.Sub(v, x3)
- y3.Mul(y3, v)
- s1.Mul(s1, j)
- s1.Lsh(s1, 1)
- y3.Sub(y3, s1)
- y3.Mod(y3, curve.P)
-
- z3.Add(z1, z2)
- z3.Mul(z3, z3)
- z3.Sub(z3, z1z1)
- z3.Sub(z3, z2z2)
- z3.Mul(z3, h)
- z3.Mod(z3, curve.P)
-
- return x3, y3, z3
-}
-
-func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
- // If there is a dedicated constant-time implementation for this curve operation,
- // use that instead of the generic one.
- if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok {
- return specific.Double(x1, y1)
- }
-
- z1 := zForAffine(x1, y1)
- return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1))
-}
-
-// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
-// returns its double, also in Jacobian form.
-func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
- // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
- delta := new(big.Int).Mul(z, z)
- delta.Mod(delta, curve.P)
- gamma := new(big.Int).Mul(y, y)
- gamma.Mod(gamma, curve.P)
- alpha := new(big.Int).Sub(x, delta)
- if alpha.Sign() == -1 {
- alpha.Add(alpha, curve.P)
- }
- alpha2 := new(big.Int).Add(x, delta)
- alpha.Mul(alpha, alpha2)
- alpha2.Set(alpha)
- alpha.Lsh(alpha, 1)
- alpha.Add(alpha, alpha2)
-
- beta := alpha2.Mul(x, gamma)
-
- x3 := new(big.Int).Mul(alpha, alpha)
- beta8 := new(big.Int).Lsh(beta, 3)
- beta8.Mod(beta8, curve.P)
- x3.Sub(x3, beta8)
- if x3.Sign() == -1 {
- x3.Add(x3, curve.P)
- }
- x3.Mod(x3, curve.P)
-
- z3 := new(big.Int).Add(y, z)
- z3.Mul(z3, z3)
- z3.Sub(z3, gamma)
- if z3.Sign() == -1 {
- z3.Add(z3, curve.P)
- }
- z3.Sub(z3, delta)
- if z3.Sign() == -1 {
- z3.Add(z3, curve.P)
- }
- z3.Mod(z3, curve.P)
-
- beta.Lsh(beta, 2)
- beta.Sub(beta, x3)
- if beta.Sign() == -1 {
- beta.Add(beta, curve.P)
- }
- y3 := alpha.Mul(alpha, beta)
-
- gamma.Mul(gamma, gamma)
- gamma.Lsh(gamma, 3)
- gamma.Mod(gamma, curve.P)
-
- y3.Sub(y3, gamma)
- if y3.Sign() == -1 {
- y3.Add(y3, curve.P)
- }
- y3.Mod(y3, curve.P)
-
- return x3, y3, z3
-}
-
-func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
- // If there is a dedicated constant-time implementation for this curve operation,
- // use that instead of the generic one.
- if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok {
- return specific.ScalarMult(Bx, By, k)
- }
-
- Bz := new(big.Int).SetInt64(1)
- x, y, z := new(big.Int), new(big.Int), new(big.Int)
-
- for _, byte := range k {
- for bitNum := 0; bitNum < 8; bitNum++ {
- x, y, z = curve.doubleJacobian(x, y, z)
- if byte&0x80 == 0x80 {
- x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z)
- }
- byte <<= 1
- }
- }
-
- return curve.affineFromJacobian(x, y, z)
-}
-
-func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
- // If there is a dedicated constant-time implementation for this curve operation,
- // use that instead of the generic one.
- if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok {
- return specific.ScalarBaseMult(k)
- }
-
- return curve.ScalarMult(curve.Gx, curve.Gy, k)
-}
-
var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f}
// GenerateKey returns a public/private key pair. The private key is