aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/reflectdata/alg.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/reflectdata/alg.go')
-rw-r--r--src/cmd/compile/internal/reflectdata/alg.go262
1 files changed, 7 insertions, 255 deletions
diff --git a/src/cmd/compile/internal/reflectdata/alg.go b/src/cmd/compile/internal/reflectdata/alg.go
index 9fe90da0fe..de23387ca1 100644
--- a/src/cmd/compile/internal/reflectdata/alg.go
+++ b/src/cmd/compile/internal/reflectdata/alg.go
@@ -6,10 +6,9 @@ package reflectdata
import (
"fmt"
- "math/bits"
- "sort"
"cmd/compile/internal/base"
+ "cmd/compile/internal/compare"
"cmd/compile/internal/ir"
"cmd/compile/internal/objw"
"cmd/compile/internal/typecheck"
@@ -17,32 +16,6 @@ import (
"cmd/internal/obj"
)
-// isRegularMemory reports whether t can be compared/hashed as regular memory.
-func isRegularMemory(t *types.Type) bool {
- a, _ := types.AlgType(t)
- return a == types.AMEM
-}
-
-// eqCanPanic reports whether == on type t could panic (has an interface somewhere).
-// t must be comparable.
-func eqCanPanic(t *types.Type) bool {
- switch t.Kind() {
- default:
- return false
- case types.TINTER:
- return true
- case types.TARRAY:
- return eqCanPanic(t.Elem())
- case types.TSTRUCT:
- for _, f := range t.FieldSlice() {
- if !f.Sym.IsBlank() && eqCanPanic(f.Type) {
- return true
- }
- }
- return false
- }
-}
-
// AlgType returns the fixed-width AMEMxx variants instead of the general
// AMEM kind when possible.
func AlgType(t *types.Type) types.AlgKind {
@@ -206,7 +179,7 @@ func genhash(t *types.Type) *obj.LSym {
}
// Hash non-memory fields with appropriate hash function.
- if !isRegularMemory(f.Type) {
+ if !compare.IsRegularMemory(f.Type) {
hashel := hashfor(f.Type)
call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym) // TODO: fields from other packages?
@@ -219,7 +192,7 @@ func genhash(t *types.Type) *obj.LSym {
}
// Otherwise, hash a maximal length run of raw memory.
- size, next := memrun(t, i)
+ size, next := compare.Memrun(t, i)
// h = hashel(&p.first, size, h)
hashel := hashmem(f.Type)
@@ -510,12 +483,12 @@ func geneq(t *types.Type) *obj.LSym {
// Second, check that all the contents match (expensive).
checkAll(3, false, func(pi, qi ir.Node) ir.Node {
// Compare lengths.
- eqlen, _ := EqString(pi, qi)
+ eqlen, _ := compare.EqString(pi, qi)
return eqlen
})
checkAll(1, true, func(pi, qi ir.Node) ir.Node {
// Compare contents.
- _, eqmem := EqString(pi, qi)
+ _, eqmem := compare.EqString(pi, qi)
return eqmem
})
case types.TFLOAT32, types.TFLOAT64:
@@ -532,81 +505,7 @@ func geneq(t *types.Type) *obj.LSym {
}
case types.TSTRUCT:
- // Build a list of conditions to satisfy.
- // The conditions are a list-of-lists. Conditions are reorderable
- // within each inner list. The outer lists must be evaluated in order.
- var conds [][]ir.Node
- conds = append(conds, []ir.Node{})
- and := func(n ir.Node) {
- i := len(conds) - 1
- conds[i] = append(conds[i], n)
- }
-
- // Walk the struct using memequal for runs of AMEM
- // and calling specific equality tests for the others.
- for i, fields := 0, t.FieldSlice(); i < len(fields); {
- f := fields[i]
-
- // Skip blank-named fields.
- if f.Sym.IsBlank() {
- i++
- continue
- }
-
- // Compare non-memory fields with field equality.
- if !isRegularMemory(f.Type) {
- if eqCanPanic(f.Type) {
- // Enforce ordering by starting a new set of reorderable conditions.
- conds = append(conds, []ir.Node{})
- }
- p := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym)
- q := ir.NewSelectorExpr(base.Pos, ir.OXDOT, nq, f.Sym)
- switch {
- case f.Type.IsString():
- eqlen, eqmem := EqString(p, q)
- and(eqlen)
- and(eqmem)
- default:
- and(ir.NewBinaryExpr(base.Pos, ir.OEQ, p, q))
- }
- if eqCanPanic(f.Type) {
- // Also enforce ordering after something that can panic.
- conds = append(conds, []ir.Node{})
- }
- i++
- continue
- }
-
- // Find maximal length run of memory-only fields.
- size, next := memrun(t, i)
-
- // TODO(rsc): All the calls to newname are wrong for
- // cross-package unexported fields.
- if s := fields[i:next]; len(s) <= 2 {
- // Two or fewer fields: use plain field equality.
- for _, f := range s {
- and(eqfield(np, nq, f.Sym))
- }
- } else {
- // More than two fields: use memequal.
- and(eqmem(np, nq, f.Sym, size))
- }
- i = next
- }
-
- // Sort conditions to put runtime calls last.
- // Preserve the rest of the ordering.
- var flatConds []ir.Node
- for _, c := range conds {
- isCall := func(n ir.Node) bool {
- return n.Op() == ir.OCALL || n.Op() == ir.OCALLFUNC
- }
- sort.SliceStable(c, func(i, j int) bool {
- return !isCall(c[i]) && isCall(c[j])
- })
- flatConds = append(flatConds, c...)
- }
-
+ flatConds := compare.EqStruct(t, np, nq)
if len(flatConds) == 0 {
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(true)))
} else {
@@ -631,7 +530,7 @@ func geneq(t *types.Type) *obj.LSym {
// return (or goto ret)
fn.Body.Append(ir.NewLabelStmt(base.Pos, neq))
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(false)))
- if eqCanPanic(t) || anyCall(fn) {
+ if compare.EqCanPanic(t) || anyCall(fn) {
// Epilogue is large, so share it with the equal case.
fn.Body.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, ret))
} else {
@@ -680,153 +579,6 @@ func anyCall(fn *ir.Func) bool {
})
}
-// eqfield returns the node
-//
-// p.field == q.field
-func eqfield(p ir.Node, q ir.Node, field *types.Sym) ir.Node {
- nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field)
- ny := ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field)
- ne := ir.NewBinaryExpr(base.Pos, ir.OEQ, nx, ny)
- return ne
-}
-
-// EqString returns the nodes
-//
-// len(s) == len(t)
-//
-// and
-//
-// memequal(s.ptr, t.ptr, len(s))
-//
-// which can be used to construct string equality comparison.
-// eqlen must be evaluated before eqmem, and shortcircuiting is required.
-func EqString(s, t ir.Node) (eqlen *ir.BinaryExpr, eqmem *ir.CallExpr) {
- s = typecheck.Conv(s, types.Types[types.TSTRING])
- t = typecheck.Conv(t, types.Types[types.TSTRING])
- sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, s)
- tptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, t)
- slen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, s), types.Types[types.TUINTPTR])
- tlen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, t), types.Types[types.TUINTPTR])
-
- fn := typecheck.LookupRuntime("memequal")
- fn = typecheck.SubstArgTypes(fn, types.Types[types.TUINT8], types.Types[types.TUINT8])
- call := typecheck.Call(base.Pos, fn, []ir.Node{sptr, tptr, ir.Copy(slen)}, false).(*ir.CallExpr)
-
- cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, slen, tlen)
- cmp = typecheck.Expr(cmp).(*ir.BinaryExpr)
- cmp.SetType(types.Types[types.TBOOL])
- return cmp, call
-}
-
-// EqInterface returns the nodes
-//
-// s.tab == t.tab (or s.typ == t.typ, as appropriate)
-//
-// and
-//
-// ifaceeq(s.tab, s.data, t.data) (or efaceeq(s.typ, s.data, t.data), as appropriate)
-//
-// which can be used to construct interface equality comparison.
-// eqtab must be evaluated before eqdata, and shortcircuiting is required.
-func EqInterface(s, t ir.Node) (eqtab *ir.BinaryExpr, eqdata *ir.CallExpr) {
- if !types.Identical(s.Type(), t.Type()) {
- base.Fatalf("EqInterface %v %v", s.Type(), t.Type())
- }
- // func ifaceeq(tab *uintptr, x, y unsafe.Pointer) (ret bool)
- // func efaceeq(typ *uintptr, x, y unsafe.Pointer) (ret bool)
- var fn ir.Node
- if s.Type().IsEmptyInterface() {
- fn = typecheck.LookupRuntime("efaceeq")
- } else {
- fn = typecheck.LookupRuntime("ifaceeq")
- }
-
- stab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s)
- ttab := ir.NewUnaryExpr(base.Pos, ir.OITAB, t)
- sdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, s)
- tdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, t)
- sdata.SetType(types.Types[types.TUNSAFEPTR])
- tdata.SetType(types.Types[types.TUNSAFEPTR])
- sdata.SetTypecheck(1)
- tdata.SetTypecheck(1)
-
- call := typecheck.Call(base.Pos, fn, []ir.Node{stab, sdata, tdata}, false).(*ir.CallExpr)
-
- cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, stab, ttab)
- cmp = typecheck.Expr(cmp).(*ir.BinaryExpr)
- cmp.SetType(types.Types[types.TBOOL])
- return cmp, call
-}
-
-// eqmem returns the node
-//
-// memequal(&p.field, &q.field [, size])
-func eqmem(p ir.Node, q ir.Node, field *types.Sym, size int64) ir.Node {
- nx := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field)))
- ny := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field)))
-
- fn, needsize := eqmemfunc(size, nx.Type().Elem())
- call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
- call.Args.Append(nx)
- call.Args.Append(ny)
- if needsize {
- call.Args.Append(ir.NewInt(size))
- }
-
- return call
-}
-
-func eqmemfunc(size int64, t *types.Type) (fn *ir.Name, needsize bool) {
- switch size {
- default:
- fn = typecheck.LookupRuntime("memequal")
- needsize = true
- case 1, 2, 4, 8, 16:
- buf := fmt.Sprintf("memequal%d", int(size)*8)
- fn = typecheck.LookupRuntime(buf)
- }
-
- fn = typecheck.SubstArgTypes(fn, t, t)
- return fn, needsize
-}
-
-// memrun finds runs of struct fields for which memory-only algs are appropriate.
-// t is the parent struct type, and start is the field index at which to start the run.
-// size is the length in bytes of the memory included in the run.
-// next is the index just after the end of the memory run.
-func memrun(t *types.Type, start int) (size int64, next int) {
- next = start
- for {
- next++
- if next == t.NumFields() {
- break
- }
- // Stop run after a padded field.
- if types.IsPaddedField(t, next-1) {
- break
- }
- // Also, stop before a blank or non-memory field.
- if f := t.Field(next); f.Sym.IsBlank() || !isRegularMemory(f.Type) {
- break
- }
- // For issue 46283, don't combine fields if the resulting load would
- // require a larger alignment than the component fields.
- if base.Ctxt.Arch.Alignment > 1 {
- align := t.Alignment()
- if off := t.Field(start).Offset; off&(align-1) != 0 {
- // Offset is less aligned than the containing type.
- // Use offset to determine alignment.
- align = 1 << uint(bits.TrailingZeros64(uint64(off)))
- }
- size := t.Field(next).End() - t.Field(start).Offset
- if size > align {
- break
- }
- }
- }
- return t.Field(next-1).End() - t.Field(start).Offset, next
-}
-
func hashmem(t *types.Type) ir.Node {
sym := ir.Pkgs.Runtime.Lookup("memhash")