aboutsummaryrefslogtreecommitdiff
path: root/src/cmd/compile/internal/noder/writer.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/compile/internal/noder/writer.go')
-rw-r--r--src/cmd/compile/internal/noder/writer.go1885
1 files changed, 1885 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/noder/writer.go b/src/cmd/compile/internal/noder/writer.go
new file mode 100644
index 0000000000..b5028e7f69
--- /dev/null
+++ b/src/cmd/compile/internal/noder/writer.go
@@ -0,0 +1,1885 @@
+// UNREVIEWED
+
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package noder
+
+import (
+ "fmt"
+ "go/constant"
+
+ "cmd/compile/internal/base"
+ "cmd/compile/internal/ir"
+ "cmd/compile/internal/syntax"
+ "cmd/compile/internal/types2"
+)
+
+type pkgWriter struct {
+ pkgEncoder
+
+ m posMap
+ curpkg *types2.Package
+ info *types2.Info
+
+ posBasesIdx map[*syntax.PosBase]int
+ pkgsIdx map[*types2.Package]int
+ typsIdx map[types2.Type]int
+ globalsIdx map[types2.Object]int
+
+ funDecls map[*types2.Func]*syntax.FuncDecl
+ typDecls map[*types2.TypeName]typeDeclGen
+
+ linknames map[types2.Object]string
+ cgoPragmas [][]string
+
+ dups dupTypes
+}
+
+func newPkgWriter(m posMap, pkg *types2.Package, info *types2.Info) *pkgWriter {
+ return &pkgWriter{
+ pkgEncoder: newPkgEncoder(),
+
+ m: m,
+ curpkg: pkg,
+ info: info,
+
+ pkgsIdx: make(map[*types2.Package]int),
+ globalsIdx: make(map[types2.Object]int),
+ typsIdx: make(map[types2.Type]int),
+
+ posBasesIdx: make(map[*syntax.PosBase]int),
+
+ funDecls: make(map[*types2.Func]*syntax.FuncDecl),
+ typDecls: make(map[*types2.TypeName]typeDeclGen),
+
+ linknames: make(map[types2.Object]string),
+ }
+}
+
+func (pw *pkgWriter) errorf(p poser, msg string, args ...interface{}) {
+ base.ErrorfAt(pw.m.pos(p), msg, args...)
+}
+
+func (pw *pkgWriter) fatalf(p poser, msg string, args ...interface{}) {
+ base.FatalfAt(pw.m.pos(p), msg, args...)
+}
+
+func (pw *pkgWriter) unexpected(what string, p poser) {
+ pw.fatalf(p, "unexpected %s: %v (%T)", what, p, p)
+}
+
+type writer struct {
+ p *pkgWriter
+
+ encoder
+
+ // For writing out object descriptions, ext points to the extension
+ // writer for where we can write the compiler's private extension
+ // details for the object.
+ //
+ // TODO(mdempsky): This is a little hacky, but works easiest with
+ // the way things are currently.
+ ext *writer
+
+ // TODO(mdempsky): We should be able to prune localsIdx whenever a
+ // scope closes, and then maybe we can just use the same map for
+ // storing the TypeParams too (as their TypeName instead).
+
+ // variables declared within this function
+ localsIdx map[*types2.Var]int
+
+ closureVars []posObj
+ closureVarsIdx map[*types2.Var]int
+
+ dict *writerDict
+ derived bool
+}
+
+// A writerDict tracks types and objects that are used by a declaration.
+type writerDict struct {
+ implicits []*types2.TypeName
+
+ // derived is a slice of type indices for computing derived types
+ // (i.e., types that depend on the declaration's type parameters).
+ derived []derivedInfo
+
+ // derivedIdx maps a Type to its corresponding index within the
+ // derived slice, if present.
+ derivedIdx map[types2.Type]int
+
+ // funcs lists references to generic functions that were
+ // instantiated with derived types (i.e., that require
+ // sub-dictionaries when called at run time).
+ funcs []objInfo
+}
+
+type derivedInfo struct {
+ idx int
+ needed bool
+}
+
+type typeInfo struct {
+ idx int
+ derived bool
+}
+
+type objInfo struct {
+ idx int // index for the generic function declaration
+ explicits []typeInfo // info for the type arguments
+}
+
+func (info objInfo) anyDerived() bool {
+ for _, explicit := range info.explicits {
+ if explicit.derived {
+ return true
+ }
+ }
+ return false
+}
+
+func (info objInfo) equals(other objInfo) bool {
+ if info.idx != other.idx {
+ return false
+ }
+ assert(len(info.explicits) == len(other.explicits))
+ for i, targ := range info.explicits {
+ if targ != other.explicits[i] {
+ return false
+ }
+ }
+ return true
+}
+
+func (pw *pkgWriter) newWriter(k reloc, marker syncMarker) *writer {
+ return &writer{
+ encoder: pw.newEncoder(k, marker),
+ p: pw,
+ }
+}
+
+// @@@ Positions
+
+func (w *writer) pos(p poser) {
+ w.sync(syncPos)
+ pos := p.Pos()
+
+ // TODO(mdempsky): Track down the remaining cases here and fix them.
+ if !w.bool(pos.IsKnown()) {
+ return
+ }
+
+ // TODO(mdempsky): Delta encoding. Also, if there's a b-side, update
+ // its position base too (but not vice versa!).
+ w.posBase(pos.Base())
+ w.uint(pos.Line())
+ w.uint(pos.Col())
+}
+
+func (w *writer) posBase(b *syntax.PosBase) {
+ w.reloc(relocPosBase, w.p.posBaseIdx(b))
+}
+
+func (pw *pkgWriter) posBaseIdx(b *syntax.PosBase) int {
+ if idx, ok := pw.posBasesIdx[b]; ok {
+ return idx
+ }
+
+ w := pw.newWriter(relocPosBase, syncPosBase)
+ w.p.posBasesIdx[b] = w.idx
+
+ // TODO(mdempsky): What exactly does "fileh" do anyway? Is writing
+ // out both of these strings really the right thing to do here?
+ fn := b.Filename()
+ w.string(fn)
+ w.string(fileh(fn))
+
+ if !w.bool(b.IsFileBase()) {
+ w.pos(b)
+ w.uint(b.Line())
+ w.uint(b.Col())
+ }
+
+ return w.flush()
+}
+
+// @@@ Packages
+
+func (w *writer) pkg(pkg *types2.Package) {
+ w.sync(syncPkg)
+ w.reloc(relocPkg, w.p.pkgIdx(pkg))
+}
+
+func (pw *pkgWriter) pkgIdx(pkg *types2.Package) int {
+ if idx, ok := pw.pkgsIdx[pkg]; ok {
+ return idx
+ }
+
+ w := pw.newWriter(relocPkg, syncPkgDef)
+ pw.pkgsIdx[pkg] = w.idx
+
+ if pkg == nil {
+ w.string("builtin")
+ } else {
+ var path string
+ if pkg != w.p.curpkg {
+ path = pkg.Path()
+ }
+ w.string(path)
+ w.string(pkg.Name())
+ w.len(pkg.Height())
+
+ w.len(len(pkg.Imports()))
+ for _, imp := range pkg.Imports() {
+ w.pkg(imp)
+ }
+ }
+
+ return w.flush()
+}
+
+// @@@ Types
+
+func (w *writer) typ(typ types2.Type) {
+ w.typInfo(w.p.typIdx(typ, w.dict))
+}
+
+func (w *writer) typInfo(info typeInfo) {
+ w.sync(syncType)
+ if w.bool(info.derived) {
+ w.len(info.idx)
+ w.derived = true
+ } else {
+ w.reloc(relocType, info.idx)
+ }
+}
+
+// typIdx returns the index where the export data description of type
+// can be read back in. If no such index exists yet, it's created.
+//
+// typIdx also reports whether typ is a derived type; that is, whether
+// its identity depends on type parameters.
+func (pw *pkgWriter) typIdx(typ types2.Type, dict *writerDict) typeInfo {
+ if quirksMode() {
+ typ = pw.dups.orig(typ)
+ }
+
+ if idx, ok := pw.typsIdx[typ]; ok {
+ return typeInfo{idx: idx, derived: false}
+ }
+ if dict != nil {
+ if idx, ok := dict.derivedIdx[typ]; ok {
+ return typeInfo{idx: idx, derived: true}
+ }
+ }
+
+ w := pw.newWriter(relocType, syncTypeIdx)
+ w.dict = dict
+
+ switch typ := typ.(type) {
+ default:
+ base.Fatalf("unexpected type: %v (%T)", typ, typ)
+
+ case *types2.Basic:
+ switch kind := typ.Kind(); {
+ case kind == types2.Invalid:
+ base.Fatalf("unexpected types2.Invalid")
+
+ case types2.Typ[kind] == typ:
+ w.code(typeBasic)
+ w.len(int(kind))
+
+ default:
+ // Handle "byte" and "rune" as references to their TypeName.
+ obj := types2.Universe.Lookup(typ.Name())
+ assert(obj.Type() == typ)
+
+ w.code(typeNamed)
+ w.obj(obj, nil)
+ }
+
+ case *types2.Named:
+ // Type aliases can refer to uninstantiated generic types, so we
+ // might see len(TParams) != 0 && len(TArgs) == 0 here.
+ // TODO(mdempsky): Revisit after #46477 is resolved.
+ assert(typ.TParams().Len() == len(typ.TArgs()) || len(typ.TArgs()) == 0)
+
+ // TODO(mdempsky): Why do we need to loop here?
+ orig := typ
+ for orig.TArgs() != nil {
+ orig = orig.Orig()
+ }
+
+ w.code(typeNamed)
+ w.obj(orig.Obj(), typ.TArgs())
+
+ case *types2.TypeParam:
+ index := func() int {
+ for idx, name := range w.dict.implicits {
+ if name.Type().(*types2.TypeParam) == typ {
+ return idx
+ }
+ }
+
+ return len(w.dict.implicits) + typ.Index()
+ }()
+
+ w.derived = true
+ w.code(typeTypeParam)
+ w.len(index)
+
+ case *types2.Array:
+ w.code(typeArray)
+ w.uint64(uint64(typ.Len()))
+ w.typ(typ.Elem())
+
+ case *types2.Chan:
+ w.code(typeChan)
+ w.len(int(typ.Dir()))
+ w.typ(typ.Elem())
+
+ case *types2.Map:
+ w.code(typeMap)
+ w.typ(typ.Key())
+ w.typ(typ.Elem())
+
+ case *types2.Pointer:
+ w.code(typePointer)
+ w.typ(typ.Elem())
+
+ case *types2.Signature:
+ assert(typ.TParams() == nil)
+ w.code(typeSignature)
+ w.signature(typ)
+
+ case *types2.Slice:
+ w.code(typeSlice)
+ w.typ(typ.Elem())
+
+ case *types2.Struct:
+ w.code(typeStruct)
+ w.structType(typ)
+
+ case *types2.Interface:
+ w.code(typeInterface)
+ w.interfaceType(typ)
+
+ case *types2.Union:
+ w.code(typeUnion)
+ w.unionType(typ)
+ }
+
+ if w.derived {
+ idx := len(dict.derived)
+ dict.derived = append(dict.derived, derivedInfo{idx: w.flush()})
+ dict.derivedIdx[typ] = idx
+ return typeInfo{idx: idx, derived: true}
+ }
+
+ pw.typsIdx[typ] = w.idx
+ return typeInfo{idx: w.flush(), derived: false}
+}
+
+func (w *writer) structType(typ *types2.Struct) {
+ w.len(typ.NumFields())
+ for i := 0; i < typ.NumFields(); i++ {
+ f := typ.Field(i)
+ w.pos(f)
+ w.selector(f)
+ w.typ(f.Type())
+ w.string(typ.Tag(i))
+ w.bool(f.Embedded())
+ }
+}
+
+func (w *writer) unionType(typ *types2.Union) {
+ w.len(typ.Len())
+ for i := 0; i < typ.Len(); i++ {
+ t := typ.Term(i)
+ w.bool(t.Tilde())
+ w.typ(t.Type())
+ }
+}
+
+func (w *writer) interfaceType(typ *types2.Interface) {
+ w.len(typ.NumExplicitMethods())
+ w.len(typ.NumEmbeddeds())
+
+ for i := 0; i < typ.NumExplicitMethods(); i++ {
+ m := typ.ExplicitMethod(i)
+ sig := m.Type().(*types2.Signature)
+ assert(sig.TParams() == nil)
+
+ w.pos(m)
+ w.selector(m)
+ w.signature(sig)
+ }
+
+ for i := 0; i < typ.NumEmbeddeds(); i++ {
+ w.typ(typ.EmbeddedType(i))
+ }
+}
+
+func (w *writer) signature(sig *types2.Signature) {
+ w.sync(syncSignature)
+ w.params(sig.Params())
+ w.params(sig.Results())
+ w.bool(sig.Variadic())
+}
+
+func (w *writer) params(typ *types2.Tuple) {
+ w.sync(syncParams)
+ w.len(typ.Len())
+ for i := 0; i < typ.Len(); i++ {
+ w.param(typ.At(i))
+ }
+}
+
+func (w *writer) param(param *types2.Var) {
+ w.sync(syncParam)
+ w.pos(param)
+ w.localIdent(param)
+ w.typ(param.Type())
+}
+
+// @@@ Objects
+
+func (w *writer) obj(obj types2.Object, explicits []types2.Type) {
+ explicitInfos := make([]typeInfo, len(explicits))
+ for i, explicit := range explicits {
+ explicitInfos[i] = w.p.typIdx(explicit, w.dict)
+ }
+ info := objInfo{idx: w.p.objIdx(obj), explicits: explicitInfos}
+
+ if _, ok := obj.(*types2.Func); ok && info.anyDerived() {
+ idx := -1
+ for i, prev := range w.dict.funcs {
+ if prev.equals(info) {
+ idx = i
+ }
+ }
+ if idx < 0 {
+ idx = len(w.dict.funcs)
+ w.dict.funcs = append(w.dict.funcs, info)
+ }
+
+ // TODO(mdempsky): Push up into expr; this shouldn't appear
+ // outside of expression context.
+ w.sync(syncObject)
+ w.bool(true)
+ w.len(idx)
+ return
+ }
+
+ // TODO(mdempsky): Push up into typIdx; this shouldn't be needed
+ // except while writing out types.
+ if isDefinedType(obj) && obj.Pkg() == w.p.curpkg {
+ decl, ok := w.p.typDecls[obj.(*types2.TypeName)]
+ assert(ok)
+ if len(decl.implicits) != 0 {
+ w.derived = true
+ }
+ }
+
+ w.sync(syncObject)
+ w.bool(false)
+ w.reloc(relocObj, info.idx)
+
+ w.len(len(info.explicits))
+ for _, info := range info.explicits {
+ w.typInfo(info)
+ }
+}
+
+func (pw *pkgWriter) objIdx(obj types2.Object) int {
+ if idx, ok := pw.globalsIdx[obj]; ok {
+ return idx
+ }
+
+ dict := &writerDict{
+ derivedIdx: make(map[types2.Type]int),
+ }
+
+ if isDefinedType(obj) && obj.Pkg() == pw.curpkg {
+ decl, ok := pw.typDecls[obj.(*types2.TypeName)]
+ assert(ok)
+ dict.implicits = decl.implicits
+ }
+
+ w := pw.newWriter(relocObj, syncObject1)
+ w.ext = pw.newWriter(relocObjExt, syncObject1)
+ wname := pw.newWriter(relocName, syncObject1)
+ wdict := pw.newWriter(relocObjDict, syncObject1)
+
+ pw.globalsIdx[obj] = w.idx // break cycles
+ assert(w.ext.idx == w.idx)
+ assert(wname.idx == w.idx)
+ assert(wdict.idx == w.idx)
+
+ w.dict = dict
+ w.ext.dict = dict
+
+ code := w.doObj(obj)
+ w.flush()
+ w.ext.flush()
+
+ wname.qualifiedIdent(obj)
+ wname.code(code)
+ wname.flush()
+
+ wdict.objDict(obj, w.dict)
+ wdict.flush()
+
+ return w.idx
+}
+
+func (w *writer) doObj(obj types2.Object) codeObj {
+ if obj.Pkg() != w.p.curpkg {
+ return objStub
+ }
+
+ switch obj := obj.(type) {
+ default:
+ w.p.unexpected("object", obj)
+ panic("unreachable")
+
+ case *types2.Const:
+ w.pos(obj)
+ w.value(obj.Type(), obj.Val())
+ return objConst
+
+ case *types2.Func:
+ decl, ok := w.p.funDecls[obj]
+ assert(ok)
+ sig := obj.Type().(*types2.Signature)
+
+ w.pos(obj)
+ w.typeParamNames(sig.TParams())
+ w.signature(sig)
+ w.pos(decl)
+ w.ext.funcExt(obj)
+ return objFunc
+
+ case *types2.TypeName:
+ decl, ok := w.p.typDecls[obj]
+ assert(ok)
+
+ if obj.IsAlias() {
+ w.pos(obj)
+ w.typ(obj.Type())
+ return objAlias
+ }
+
+ named := obj.Type().(*types2.Named)
+ assert(named.TArgs() == nil)
+
+ w.pos(obj)
+ w.typeParamNames(named.TParams())
+ w.ext.typeExt(obj)
+ w.typExpr(decl.Type)
+
+ w.len(named.NumMethods())
+ for i := 0; i < named.NumMethods(); i++ {
+ w.method(named.Method(i))
+ }
+
+ return objType
+
+ case *types2.Var:
+ w.pos(obj)
+ w.typ(obj.Type())
+ w.ext.varExt(obj)
+ return objVar
+ }
+}
+
+// typExpr writes the type represented by the given expression.
+func (w *writer) typExpr(expr syntax.Expr) {
+ tv, ok := w.p.info.Types[expr]
+ assert(ok)
+ assert(tv.IsType())
+ w.typ(tv.Type)
+}
+
+func (w *writer) value(typ types2.Type, val constant.Value) {
+ w.sync(syncValue)
+ w.typ(typ)
+ w.rawValue(val)
+}
+
+// objDict writes the dictionary needed for reading the given object.
+func (w *writer) objDict(obj types2.Object, dict *writerDict) {
+ // TODO(mdempsky): Split objDict into multiple entries? reader.go
+ // doesn't care about the type parameter bounds, and reader2.go
+ // doesn't care about referenced functions.
+
+ w.dict = dict // TODO(mdempsky): This is a bit sketchy.
+
+ w.len(len(dict.implicits))
+
+ tparams := objTypeParams(obj)
+ ntparams := tparams.Len()
+ w.len(ntparams)
+ for i := 0; i < ntparams; i++ {
+ w.typ(tparams.At(i).Type().(*types2.TypeParam).Constraint())
+ }
+
+ nderived := len(dict.derived)
+ w.len(nderived)
+ for _, typ := range dict.derived {
+ w.reloc(relocType, typ.idx)
+ w.bool(typ.needed)
+ }
+
+ nfuncs := len(dict.funcs)
+ w.len(nfuncs)
+ for _, fn := range dict.funcs {
+ w.reloc(relocObj, fn.idx)
+ w.len(len(fn.explicits))
+ for _, targ := range fn.explicits {
+ w.typInfo(targ)
+ }
+ }
+
+ assert(len(dict.derived) == nderived)
+ assert(len(dict.funcs) == nfuncs)
+}
+
+func (w *writer) typeParamNames(tparams *types2.TypeParams) {
+ w.sync(syncTypeParamNames)
+
+ ntparams := tparams.Len()
+ for i := 0; i < ntparams; i++ {
+ tparam := tparams.At(i)
+ w.pos(tparam)
+ w.localIdent(tparam)
+ }
+}
+
+func (w *writer) method(meth *types2.Func) {
+ decl, ok := w.p.funDecls[meth]
+ assert(ok)
+ sig := meth.Type().(*types2.Signature)
+
+ w.sync(syncMethod)
+ w.pos(meth)
+ w.selector(meth)
+ w.typeParamNames(sig.RParams())
+ w.param(sig.Recv())
+ w.signature(sig)
+
+ w.pos(decl) // XXX: Hack to workaround linker limitations.
+ w.ext.funcExt(meth)
+}
+
+// qualifiedIdent writes out the name of an object declared at package
+// scope. (For now, it's also used to refer to local defined types.)
+func (w *writer) qualifiedIdent(obj types2.Object) {
+ w.sync(syncSym)
+
+ name := obj.Name()
+ if isDefinedType(obj) && obj.Pkg() == w.p.curpkg {
+ decl, ok := w.p.typDecls[obj.(*types2.TypeName)]
+ assert(ok)
+ if decl.gen != 0 {
+ // TODO(mdempsky): Find a better solution than embedding middle
+ // dot in the symbol name; this is terrible.
+ name = fmt.Sprintf("%s·%v", name, decl.gen)
+ }
+ }
+
+ w.pkg(obj.Pkg())
+ w.string(name)
+}
+
+// TODO(mdempsky): We should be able to omit pkg from both localIdent
+// and selector, because they should always be known from context.
+// However, past frustrations with this optimization in iexport make
+// me a little nervous to try it again.
+
+// localIdent writes the name of a locally declared object (i.e.,
+// objects that can only be accessed by name, within the context of a
+// particular function).
+func (w *writer) localIdent(obj types2.Object) {
+ assert(!isGlobal(obj))
+ w.sync(syncLocalIdent)
+ w.pkg(obj.Pkg())
+ w.string(obj.Name())
+}
+
+// selector writes the name of a field or method (i.e., objects that
+// can only be accessed using selector expressions).
+func (w *writer) selector(obj types2.Object) {
+ w.sync(syncSelector)
+ w.pkg(obj.Pkg())
+ w.string(obj.Name())
+}
+
+// @@@ Compiler extensions
+
+func (w *writer) funcExt(obj *types2.Func) {
+ decl, ok := w.p.funDecls[obj]
+ assert(ok)
+
+ // TODO(mdempsky): Extend these pragma validation flags to account
+ // for generics. E.g., linkname probably doesn't make sense at
+ // least.
+
+ pragma := asPragmaFlag(decl.Pragma)
+ if pragma&ir.Systemstack != 0 && pragma&ir.Nosplit != 0 {
+ w.p.errorf(decl, "go:nosplit and go:systemstack cannot be combined")
+ }
+
+ if decl.Body != nil {
+ if pragma&ir.Noescape != 0 {
+ w.p.errorf(decl, "can only use //go:noescape with external func implementations")
+ }
+ } else {
+ if base.Flag.Complete || decl.Name.Value == "init" {
+ // Linknamed functions are allowed to have no body. Hopefully
+ // the linkname target has a body. See issue 23311.
+ if _, ok := w.p.linknames[obj]; !ok {
+ w.p.errorf(decl, "missing function body")
+ }
+ }
+ }
+
+ sig, block := obj.Type().(*types2.Signature), decl.Body
+ body, closureVars := w.p.bodyIdx(w.p.curpkg, sig, block, w.dict)
+ assert(len(closureVars) == 0)
+
+ w.sync(syncFuncExt)
+ w.pragmaFlag(pragma)
+ w.linkname(obj)
+ w.bool(false) // stub extension
+ w.reloc(relocBody, body)
+ w.sync(syncEOF)
+}
+
+func (w *writer) typeExt(obj *types2.TypeName) {
+ decl, ok := w.p.typDecls[obj]
+ assert(ok)
+
+ w.sync(syncTypeExt)
+
+ w.pragmaFlag(asPragmaFlag(decl.Pragma))
+
+ // No LSym.SymIdx info yet.
+ w.int64(-1)
+ w.int64(-1)
+}
+
+func (w *writer) varExt(obj *types2.Var) {
+ w.sync(syncVarExt)
+ w.linkname(obj)
+}
+
+func (w *writer) linkname(obj types2.Object) {
+ w.sync(syncLinkname)
+ w.int64(-1)
+ w.string(w.p.linknames[obj])
+}
+
+func (w *writer) pragmaFlag(p ir.PragmaFlag) {
+ w.sync(syncPragma)
+ w.int(int(p))
+}
+
+// @@@ Function bodies
+
+func (pw *pkgWriter) bodyIdx(pkg *types2.Package, sig *types2.Signature, block *syntax.BlockStmt, dict *writerDict) (idx int, closureVars []posObj) {
+ w := pw.newWriter(relocBody, syncFuncBody)
+ w.dict = dict
+
+ w.funcargs(sig)
+ if w.bool(block != nil) {
+ w.stmts(block.List)
+ w.pos(block.Rbrace)
+ }
+
+ return w.flush(), w.closureVars
+}
+
+func (w *writer) funcargs(sig *types2.Signature) {
+ do := func(params *types2.Tuple, result bool) {
+ for i := 0; i < params.Len(); i++ {
+ w.funcarg(params.At(i), result)
+ }
+ }
+
+ if recv := sig.Recv(); recv != nil {
+ w.funcarg(recv, false)
+ }
+ do(sig.Params(), false)
+ do(sig.Results(), true)
+}
+
+func (w *writer) funcarg(param *types2.Var, result bool) {
+ if param.Name() != "" || result {
+ w.addLocal(param)
+ }
+}
+
+func (w *writer) addLocal(obj *types2.Var) {
+ w.sync(syncAddLocal)
+ idx := len(w.localsIdx)
+ if enableSync {
+ w.int(idx)
+ }
+ if w.localsIdx == nil {
+ w.localsIdx = make(map[*types2.Var]int)
+ }
+ w.localsIdx[obj] = idx
+}
+
+func (w *writer) useLocal(pos syntax.Pos, obj *types2.Var) {
+ w.sync(syncUseObjLocal)
+
+ if idx, ok := w.localsIdx[obj]; w.bool(ok) {
+ w.len(idx)
+ return
+ }
+
+ idx, ok := w.closureVarsIdx[obj]
+ if !ok {
+ if w.closureVarsIdx == nil {
+ w.closureVarsIdx = make(map[*types2.Var]int)
+ }
+ idx = len(w.closureVars)
+ w.closureVars = append(w.closureVars, posObj{pos, obj})
+ w.closureVarsIdx[obj] = idx
+ }
+ w.len(idx)
+}
+
+func (w *writer) openScope(pos syntax.Pos) {
+ w.sync(syncOpenScope)
+ w.pos(pos)
+}
+
+func (w *writer) closeScope(pos syntax.Pos) {
+ w.sync(syncCloseScope)
+ w.pos(pos)
+ w.closeAnotherScope()
+}
+
+func (w *writer) closeAnotherScope() {
+ w.sync(syncCloseAnotherScope)
+}
+
+// @@@ Statements
+
+func (w *writer) stmt(stmt syntax.Stmt) {
+ var stmts []syntax.Stmt
+ if stmt != nil {
+ stmts = []syntax.Stmt{stmt}
+ }
+ w.stmts(stmts)
+}
+
+func (w *writer) stmts(stmts []syntax.Stmt) {
+ w.sync(syncStmts)
+ for _, stmt := range stmts {
+ w.stmt1(stmt)
+ }
+ w.code(stmtEnd)
+ w.sync(syncStmtsEnd)
+}
+
+func (w *writer) stmt1(stmt syntax.Stmt) {
+ switch stmt := stmt.(type) {
+ default:
+ w.p.unexpected("statement", stmt)
+
+ case nil, *syntax.EmptyStmt:
+ return
+
+ case *syntax.AssignStmt:
+ switch {
+ case stmt.Rhs == nil:
+ w.code(stmtIncDec)
+ w.op(binOps[stmt.Op])
+ w.expr(stmt.Lhs)
+ w.pos(stmt)
+
+ case stmt.Op != 0 && stmt.Op != syntax.Def:
+ w.code(stmtAssignOp)
+ w.op(binOps[stmt.Op])
+ w.expr(stmt.Lhs)
+ w.pos(stmt)
+ w.expr(stmt.Rhs)
+
+ default:
+ w.code(stmtAssign)
+ w.pos(stmt)
+ w.exprList(stmt.Rhs)
+ w.assignList(stmt.Lhs)
+ }
+
+ case *syntax.BlockStmt:
+ w.code(stmtBlock)
+ w.blockStmt(stmt)
+
+ case *syntax.BranchStmt:
+ w.code(stmtBranch)
+ w.pos(stmt)
+ w.op(branchOps[stmt.Tok])
+ w.optLabel(stmt.Label)
+
+ case *syntax.CallStmt:
+ w.code(stmtCall)
+ w.pos(stmt)
+ w.op(callOps[stmt.Tok])
+ w.expr(stmt.Call)
+
+ case *syntax.DeclStmt:
+ for _, decl := range stmt.DeclList {
+ w.declStmt(decl)
+ }
+
+ case *syntax.ExprStmt:
+ w.code(stmtExpr)
+ w.expr(stmt.X)
+
+ case *syntax.ForStmt:
+ w.code(stmtFor)
+ w.forStmt(stmt)
+
+ case *syntax.IfStmt:
+ w.code(stmtIf)
+ w.ifStmt(stmt)
+
+ case *syntax.LabeledStmt:
+ w.code(stmtLabel)
+ w.pos(stmt)
+ w.label(stmt.Label)
+ w.stmt1(stmt.Stmt)
+
+ case *syntax.ReturnStmt:
+ w.code(stmtReturn)
+ w.pos(stmt)
+ w.exprList(stmt.Results)
+
+ case *syntax.SelectStmt:
+ w.code(stmtSelect)
+ w.selectStmt(stmt)
+
+ case *syntax.SendStmt:
+ w.code(stmtSend)
+ w.pos(stmt)
+ w.expr(stmt.Chan)
+ w.expr(stmt.Value)
+
+ case *syntax.SwitchStmt:
+ w.code(stmtSwitch)
+ w.switchStmt(stmt)
+ }
+}
+
+func (w *writer) assignList(expr syntax.Expr) {
+ exprs := unpackListExpr(expr)
+ w.len(len(exprs))
+
+ for _, expr := range exprs {
+ if name, ok := expr.(*syntax.Name); ok && name.Value != "_" {
+ if obj, ok := w.p.info.Defs[name]; ok {
+ obj := obj.(*types2.Var)
+
+ w.bool(true)
+ w.pos(obj)
+ w.localIdent(obj)
+ w.typ(obj.Type())
+
+ // TODO(mdempsky): Minimize locals index size by deferring
+ // this until the variables actually come into scope.
+ w.addLocal(obj)
+ continue
+ }
+ }
+
+ w.bool(false)
+ w.expr(expr)
+ }
+}
+
+func (w *writer) declStmt(decl syntax.Decl) {
+ switch decl := decl.(type) {
+ default:
+ w.p.unexpected("declaration", decl)
+
+ case *syntax.ConstDecl:
+
+ case *syntax.TypeDecl:
+ // Quirk: The legacy inliner doesn't support inlining functions
+ // with type declarations. Unified IR doesn't have any need to
+ // write out type declarations explicitly (they're always looked
+ // up via global index tables instead), so we just write out a
+ // marker so the reader knows to synthesize a fake declaration to
+ // prevent inlining.
+ if quirksMode() {
+ w.code(stmtTypeDeclHack)
+ }
+
+ case *syntax.VarDecl:
+ values := unpackListExpr(decl.Values)
+
+ // Quirk: When N variables are declared with N initialization
+ // values, we need to decompose that into N interleaved
+ // declarations+initializations, because it leads to different
+ // (albeit semantically equivalent) code generation.
+ if quirksMode() && len(decl.NameList) == len(values) {
+ for i, name := range decl.NameList {
+ w.code(stmtAssign)
+ w.pos(decl)
+ w.exprList(values[i])
+ w.assignList(name)
+ }
+ break
+ }
+
+ w.code(stmtAssign)
+ w.pos(decl)
+ w.exprList(decl.Values)
+ w.assignList(namesAsExpr(decl.NameList))
+ }
+}
+
+func (w *writer) blockStmt(stmt *syntax.BlockStmt) {
+ w.sync(syncBlockStmt)
+ w.openScope(stmt.Pos())
+ w.stmts(stmt.List)
+ w.closeScope(stmt.Rbrace)
+}
+
+func (w *writer) forStmt(stmt *syntax.ForStmt) {
+ w.sync(syncForStmt)
+ w.openScope(stmt.Pos())
+
+ if rang, ok := stmt.Init.(*syntax.RangeClause); w.bool(ok) {
+ w.pos(rang)
+ w.expr(rang.X)
+ w.assignList(rang.Lhs)
+ } else {
+ w.pos(stmt)
+ w.stmt(stmt.Init)
+ w.expr(stmt.Cond)
+ w.stmt(stmt.Post)
+ }
+
+ w.blockStmt(stmt.Body)
+ w.closeAnotherScope()
+}
+
+func (w *writer) ifStmt(stmt *syntax.IfStmt) {
+ w.sync(syncIfStmt)
+ w.openScope(stmt.Pos())
+ w.pos(stmt)
+ w.stmt(stmt.Init)
+ w.expr(stmt.Cond)
+ w.blockStmt(stmt.Then)
+ w.stmt(stmt.Else)
+ w.closeAnotherScope()
+}
+
+func (w *writer) selectStmt(stmt *syntax.SelectStmt) {
+ w.sync(syncSelectStmt)
+
+ w.pos(stmt)
+ w.len(len(stmt.Body))
+ for i, clause := range stmt.Body {
+ if i > 0 {
+ w.closeScope(clause.Pos())
+ }
+ w.openScope(clause.Pos())
+
+ w.pos(clause)
+ w.stmt(clause.Comm)
+ w.stmts(clause.Body)
+ }
+ if len(stmt.Body) > 0 {
+ w.closeScope(stmt.Rbrace)
+ }
+}
+
+func (w *writer) switchStmt(stmt *syntax.SwitchStmt) {
+ w.sync(syncSwitchStmt)
+
+ w.openScope(stmt.Pos())
+ w.pos(stmt)
+ w.stmt(stmt.Init)
+
+ if guard, ok := stmt.Tag.(*syntax.TypeSwitchGuard); w.bool(ok) {
+ w.pos(guard)
+ if tag := guard.Lhs; w.bool(tag != nil) {
+ w.pos(tag)
+ w.string(tag.Value)
+ }
+ w.expr(guard.X)
+ } else {
+ w.expr(stmt.Tag)
+ }
+
+ w.len(len(stmt.Body))
+ for i, clause := range stmt.Body {
+ if i > 0 {
+ w.closeScope(clause.Pos())
+ }
+ w.openScope(clause.Pos())
+
+ w.pos(clause)
+ w.exprList(clause.Cases)
+
+ if obj, ok := w.p.info.Implicits[clause]; ok {
+ // TODO(mdempsky): These pos details are quirkish, but also
+ // necessary so the variable's position is correct for DWARF
+ // scope assignment later. It would probably be better for us to
+ // instead just set the variable's DWARF scoping info earlier so
+ // we can give it the correct position information.
+ pos := clause.Pos()
+ if typs := unpackListExpr(clause.Cases); len(typs) != 0 {
+ pos = typeExprEndPos(typs[len(typs)-1])
+ }
+ w.pos(pos)
+
+ obj := obj.(*types2.Var)
+ w.typ(obj.Type())
+ w.addLocal(obj)
+ }
+
+ w.stmts(clause.Body)
+ }
+ if len(stmt.Body) > 0 {
+ w.closeScope(stmt.Rbrace)
+ }
+
+ w.closeScope(stmt.Rbrace)
+}
+
+func (w *writer) label(label *syntax.Name) {
+ w.sync(syncLabel)
+
+ // TODO(mdempsky): Replace label strings with dense indices.
+ w.string(label.Value)
+}
+
+func (w *writer) optLabel(label *syntax.Name) {
+ w.sync(syncOptLabel)
+ if w.bool(label != nil) {
+ w.label(label)
+ }
+}
+
+// @@@ Expressions
+
+func (w *writer) expr(expr syntax.Expr) {
+ expr = unparen(expr) // skip parens; unneeded after typecheck
+
+ obj, targs := lookupObj(w.p.info, expr)
+
+ if tv, ok := w.p.info.Types[expr]; ok {
+ // TODO(mdempsky): Be more judicious about which types are marked as "needed".
+ w.needType(tv.Type)
+
+ if tv.IsType() {
+ w.code(exprType)
+ w.typ(tv.Type)
+ return
+ }
+
+ if tv.Value != nil {
+ pos := expr.Pos()
+ if quirksMode() {
+ if obj != nil {
+ // Quirk: IR (and thus iexport) doesn't track position
+ // information for uses of declared objects.
+ pos = syntax.Pos{}
+ } else if tv.Value.Kind() == constant.String {
+ // Quirk: noder.sum picks a particular position for certain
+ // string concatenations.
+ pos = sumPos(expr)
+ }
+ }
+
+ w.code(exprConst)
+ w.pos(pos)
+ w.value(tv.Type, tv.Value)
+
+ // TODO(mdempsky): These details are only important for backend
+ // diagnostics. Explore writing them out separately.
+ w.op(constExprOp(expr))
+ w.string(syntax.String(expr))
+ return
+ }
+ }
+
+ if obj != nil {
+ if isGlobal(obj) {
+ w.code(exprName)
+ w.obj(obj, targs)
+ return
+ }
+
+ obj := obj.(*types2.Var)
+ assert(len(targs) == 0)
+
+ w.code(exprLocal)
+ w.useLocal(expr.Pos(), obj)
+ return
+ }
+
+ switch expr := expr.(type) {
+ default:
+ w.p.unexpected("expression", expr)
+
+ case nil: // absent slice index, for condition, or switch tag
+ w.code(exprNone)
+
+ case *syntax.Name:
+ assert(expr.Value == "_")
+ w.code(exprBlank)
+
+ case *syntax.CompositeLit:
+ w.code(exprCompLit)
+ w.compLit(expr)
+
+ case *syntax.FuncLit:
+ w.code(exprFuncLit)
+ w.funcLit(expr)
+
+ case *syntax.SelectorExpr:
+ sel, ok := w.p.info.Selections[expr]
+ assert(ok)
+
+ w.code(exprSelector)
+ w.expr(expr.X)
+ w.pos(expr)
+ w.selector(sel.Obj())
+
+ case *syntax.IndexExpr:
+ tv, ok := w.p.info.Types[expr.Index]
+ assert(ok && tv.IsValue())
+
+ w.code(exprIndex)
+ w.expr(expr.X)
+ w.pos(expr)
+ w.expr(expr.Index)
+
+ case *syntax.SliceExpr:
+ w.code(exprSlice)
+ w.expr(expr.X)
+ w.pos(expr)
+ for _, n := range &expr.Index {
+ w.expr(n)
+ }
+
+ case *syntax.AssertExpr:
+ w.code(exprAssert)
+ w.expr(expr.X)
+ w.pos(expr)
+ w.expr(expr.Type)
+
+ case *syntax.Operation:
+ if expr.Y == nil {
+ w.code(exprUnaryOp)
+ w.op(unOps[expr.Op])
+ w.pos(expr)
+ w.expr(expr.X)
+ break
+ }
+
+ w.code(exprBinaryOp)
+ w.op(binOps[expr.Op])
+ w.expr(expr.X)
+ w.pos(expr)
+ w.expr(expr.Y)
+
+ case *syntax.CallExpr:
+ tv, ok := w.p.info.Types[expr.Fun]
+ assert(ok)
+ if tv.IsType() {
+ assert(len(expr.ArgList) == 1)
+ assert(!expr.HasDots)
+
+ w.code(exprConvert)
+ w.typ(tv.Type)
+ w.pos(expr)
+ w.expr(expr.ArgList[0])
+ break
+ }
+
+ writeFunExpr := func() {
+ if selector, ok := unparen(expr.Fun).(*syntax.SelectorExpr); ok {
+ if sel, ok := w.p.info.Selections[selector]; ok && sel.Kind() == types2.MethodVal {
+ w.expr(selector.X)
+ w.bool(true) // method call
+ w.pos(selector)
+ w.selector(sel.Obj())
+ return
+ }
+ }
+
+ if inf, ok := w.p.info.Inferred[expr]; ok {
+ obj, _ := lookupObj(w.p.info, expr.Fun)
+ assert(obj != nil)
+
+ // As if w.expr(expr.Fun), but using inf.TArgs instead.
+ w.code(exprName)
+ w.obj(obj, inf.TArgs)
+ } else {
+ w.expr(expr.Fun)
+ }
+ w.bool(false) // not a method call (i.e., normal function call)
+ }
+
+ w.code(exprCall)
+ writeFunExpr()
+ w.pos(expr)
+ w.exprs(expr.ArgList)
+ w.bool(expr.HasDots)
+ }
+}
+
+func (w *writer) compLit(lit *syntax.CompositeLit) {
+ tv, ok := w.p.info.Types[lit]
+ assert(ok)
+
+ w.sync(syncCompLit)
+ w.pos(lit)
+ w.typ(tv.Type)
+
+ typ := tv.Type
+ if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
+ typ = ptr.Elem()
+ }
+ str, isStruct := typ.Underlying().(*types2.Struct)
+
+ w.len(len(lit.ElemList))
+ for i, elem := range lit.ElemList {
+ if isStruct {
+ if kv, ok := elem.(*syntax.KeyValueExpr); ok {
+ // use position of expr.Key rather than of elem (which has position of ':')
+ w.pos(kv.Key)
+ w.len(fieldIndex(w.p.info, str, kv.Key.(*syntax.Name)))
+ elem = kv.Value
+ } else {
+ w.pos(elem)
+ w.len(i)
+ }
+ } else {
+ if kv, ok := elem.(*syntax.KeyValueExpr); w.bool(ok) {
+ // use position of expr.Key rather than of elem (which has position of ':')
+ w.pos(kv.Key)
+ w.expr(kv.Key)
+ elem = kv.Value
+ }
+ }
+ w.pos(elem)
+ w.expr(elem)
+ }
+}
+
+func (w *writer) funcLit(expr *syntax.FuncLit) {
+ tv, ok := w.p.info.Types[expr]
+ assert(ok)
+ sig := tv.Type.(*types2.Signature)
+
+ body, closureVars := w.p.bodyIdx(w.p.curpkg, sig, expr.Body, w.dict)
+
+ w.sync(syncFuncLit)
+ w.pos(expr)
+ w.pos(expr.Type) // for QuirksMode
+ w.signature(sig)
+
+ w.len(len(closureVars))
+ for _, cv := range closureVars {
+ w.pos(cv.pos)
+ if quirksMode() {
+ cv.pos = expr.Body.Rbrace
+ }
+ w.useLocal(cv.pos, cv.obj)
+ }
+
+ w.reloc(relocBody, body)
+}
+
+type posObj struct {
+ pos syntax.Pos
+ obj *types2.Var
+}
+
+func (w *writer) exprList(expr syntax.Expr) {
+ w.sync(syncExprList)
+ w.exprs(unpackListExpr(expr))
+}
+
+func (w *writer) exprs(exprs []syntax.Expr) {
+ if len(exprs) == 0 {
+ assert(exprs == nil)
+ }
+
+ w.sync(syncExprs)
+ w.len(len(exprs))
+ for _, expr := range exprs {
+ w.expr(expr)
+ }
+}
+
+func (w *writer) op(op ir.Op) {
+ // TODO(mdempsky): Remove in favor of explicit codes? Would make
+ // export data more stable against internal refactorings, but low
+ // priority at the moment.
+ assert(op != 0)
+ w.sync(syncOp)
+ w.len(int(op))
+}
+
+func (w *writer) needType(typ types2.Type) {
+ // Decompose tuple into component element types.
+ if typ, ok := typ.(*types2.Tuple); ok {
+ for i := 0; i < typ.Len(); i++ {
+ w.needType(typ.At(i).Type())
+ }
+ return
+ }
+
+ if info := w.p.typIdx(typ, w.dict); info.derived {
+ w.dict.derived[info.idx].needed = true
+ }
+}
+
+// @@@ Package initialization
+
+// Caution: This code is still clumsy, because toolstash -cmp is
+// particularly sensitive to it.
+
+type typeDeclGen struct {
+ *syntax.TypeDecl
+ gen int
+
+ // Implicit type parameters in scope at this type declaration.
+ implicits []*types2.TypeName
+}
+
+type fileImports struct {
+ importedEmbed, importedUnsafe bool
+}
+
+type declCollector struct {
+ pw *pkgWriter
+ typegen *int
+ file *fileImports
+ withinFunc bool
+ implicits []*types2.TypeName
+}
+
+func (c *declCollector) withTParams(obj types2.Object) *declCollector {
+ tparams := objTypeParams(obj)
+ n := tparams.Len()
+ if n == 0 {
+ return c
+ }
+
+ copy := *c
+ copy.implicits = copy.implicits[:len(copy.implicits):len(copy.implicits)]
+ for i := 0; i < n; i++ {
+ copy.implicits = append(copy.implicits, tparams.At(i))
+ }
+ return &copy
+}
+
+func (c *declCollector) Visit(n syntax.Node) syntax.Visitor {
+ pw := c.pw
+
+ switch n := n.(type) {
+ case *syntax.File:
+ pw.checkPragmas(n.Pragma, ir.GoBuildPragma, false)
+
+ case *syntax.ImportDecl:
+ pw.checkPragmas(n.Pragma, 0, false)
+
+ switch pkgNameOf(pw.info, n).Imported().Path() {
+ case "embed":
+ c.file.importedEmbed = true
+ case "unsafe":
+ c.file.importedUnsafe = true
+ }
+
+ case *syntax.ConstDecl:
+ pw.checkPragmas(n.Pragma, 0, false)
+
+ case *syntax.FuncDecl:
+ pw.checkPragmas(n.Pragma, funcPragmas, false)
+
+ obj := pw.info.Defs[n.Name].(*types2.Func)
+ pw.funDecls[obj] = n
+
+ return c.withTParams(obj)
+
+ case *syntax.TypeDecl:
+ obj := pw.info.Defs[n.Name].(*types2.TypeName)
+ d := typeDeclGen{TypeDecl: n, implicits: c.implicits}
+
+ if n.Alias {
+ pw.checkPragmas(n.Pragma, 0, false)
+ } else {
+ pw.checkPragmas(n.Pragma, typePragmas, false)
+
+ // Assign a unique ID to function-scoped defined types.
+ if c.withinFunc {
+ *c.typegen++
+ d.gen = *c.typegen
+ }
+ }
+
+ pw.typDecls[obj] = d
+
+ // TODO(mdempsky): Omit? Not strictly necessary; only matters for
+ // type declarations within function literals within parameterized
+ // type declarations, but types2 the function literals will be
+ // constant folded away.
+ return c.withTParams(obj)
+
+ case *syntax.VarDecl:
+ pw.checkPragmas(n.Pragma, 0, true)
+
+ if p, ok := n.Pragma.(*pragmas); ok && len(p.Embeds) > 0 {
+ if err := checkEmbed(n, c.file.importedEmbed, c.withinFunc); err != nil {
+ pw.errorf(p.Embeds[0].Pos, "%s", err)
+ }
+ }
+
+ // Workaround for #46208. For variable declarations that
+ // declare multiple variables and have an explicit type
+ // expression, the type expression is evaluated multiple
+ // times. This affects toolstash -cmp, because iexport is
+ // sensitive to *types.Type pointer identity.
+ if quirksMode() && n.Type != nil {
+ tv, ok := pw.info.Types[n.Type]
+ assert(ok)
+ assert(tv.IsType())
+ for _, name := range n.NameList {
+ obj := pw.info.Defs[name].(*types2.Var)
+ pw.dups.add(obj.Type(), tv.Type)
+ }
+ }
+
+ case *syntax.BlockStmt:
+ if !c.withinFunc {
+ copy := *c
+ copy.withinFunc = true
+ return &copy
+ }
+ }
+
+ return c
+}
+
+func (pw *pkgWriter) collectDecls(noders []*noder) {
+ var typegen int
+ for _, p := range noders {
+ var file fileImports
+
+ syntax.Walk(p.file, &declCollector{
+ pw: pw,
+ typegen: &typegen,
+ file: &file,
+ })
+
+ pw.cgoPragmas = append(pw.cgoPragmas, p.pragcgobuf...)
+
+ for _, l := range p.linknames {
+ if !file.importedUnsafe {
+ pw.errorf(l.pos, "//go:linkname only allowed in Go files that import \"unsafe\"")
+ continue
+ }
+
+ switch obj := pw.curpkg.Scope().Lookup(l.local).(type) {
+ case *types2.Func, *types2.Var:
+ if _, ok := pw.linknames[obj]; !ok {
+ pw.linknames[obj] = l.remote
+ } else {
+ pw.errorf(l.pos, "duplicate //go:linkname for %s", l.local)
+ }
+
+ default:
+ // TODO(mdempsky): Enable after #42938 is fixed.
+ if false {
+ pw.errorf(l.pos, "//go:linkname must refer to declared function or variable")
+ }
+ }
+ }
+ }
+}
+
+func (pw *pkgWriter) checkPragmas(p syntax.Pragma, allowed ir.PragmaFlag, embedOK bool) {
+ if p == nil {
+ return
+ }
+ pragma := p.(*pragmas)
+
+ for _, pos := range pragma.Pos {
+ if pos.Flag&^allowed != 0 {
+ pw.errorf(pos.Pos, "misplaced compiler directive")
+ }
+ }
+
+ if !embedOK {
+ for _, e := range pragma.Embeds {
+ pw.errorf(e.Pos, "misplaced go:embed directive")
+ }
+ }
+}
+
+func (w *writer) pkgInit(noders []*noder) {
+ if quirksMode() {
+ posBases := posBasesOf(noders)
+ w.len(len(posBases))
+ for _, posBase := range posBases {
+ w.posBase(posBase)
+ }
+
+ objs := importedObjsOf(w.p.curpkg, w.p.info, noders)
+ w.len(len(objs))
+ for _, obj := range objs {
+ w.qualifiedIdent(obj)
+ }
+ }
+
+ w.len(len(w.p.cgoPragmas))
+ for _, cgoPragma := range w.p.cgoPragmas {
+ w.strings(cgoPragma)
+ }
+
+ w.sync(syncDecls)
+ for _, p := range noders {
+ for _, decl := range p.file.DeclList {
+ w.pkgDecl(decl)
+ }
+ }
+ w.code(declEnd)
+
+ w.sync(syncEOF)
+}
+
+func (w *writer) pkgDecl(decl syntax.Decl) {
+ switch decl := decl.(type) {
+ default:
+ w.p.unexpected("declaration", decl)
+
+ case *syntax.ImportDecl:
+
+ case *syntax.ConstDecl:
+ w.code(declOther)
+ w.pkgObjs(decl.NameList...)
+
+ case *syntax.FuncDecl:
+ if decl.Name.Value == "_" {
+ break // skip blank functions
+ }
+
+ obj := w.p.info.Defs[decl.Name].(*types2.Func)
+ sig := obj.Type().(*types2.Signature)
+
+ if sig.RParams() != nil || sig.TParams() != nil {
+ break // skip generic functions
+ }
+
+ if recv := sig.Recv(); recv != nil {
+ w.code(declMethod)
+ w.typ(recvBase(recv))
+ w.selector(obj)
+ break
+ }
+
+ w.code(declFunc)
+ w.pkgObjs(decl.Name)
+
+ case *syntax.TypeDecl:
+ if len(decl.TParamList) != 0 {
+ break // skip generic type decls
+ }
+
+ if decl.Name.Value == "_" {
+ break // skip blank type decls
+ }
+
+ name := w.p.info.Defs[decl.Name].(*types2.TypeName)
+ // Skip type declarations for interfaces that are only usable as
+ // type parameter bounds.
+ if iface, ok := name.Type().Underlying().(*types2.Interface); ok && iface.IsConstraint() {
+ break
+ }
+
+ // Skip aliases to uninstantiated generic types.
+ // TODO(mdempsky): Revisit after #46477 is resolved.
+ if name.IsAlias() {
+ named, ok := name.Type().(*types2.Named)
+ if ok && named.TParams().Len() != 0 && len(named.TArgs()) == 0 {
+ break
+ }
+ }
+
+ w.code(declOther)
+ w.pkgObjs(decl.Name)
+
+ case *syntax.VarDecl:
+ w.code(declVar)
+ w.pos(decl)
+ w.pkgObjs(decl.NameList...)
+ w.exprList(decl.Values)
+
+ var embeds []pragmaEmbed
+ if p, ok := decl.Pragma.(*pragmas); ok {
+ embeds = p.Embeds
+ }
+ w.len(len(embeds))
+ for _, embed := range embeds {
+ w.pos(embed.Pos)
+ w.strings(embed.Patterns)
+ }
+ }
+}
+
+func (w *writer) pkgObjs(names ...*syntax.Name) {
+ w.sync(syncDeclNames)
+ w.len(len(names))
+
+ for _, name := range names {
+ obj, ok := w.p.info.Defs[name]
+ assert(ok)
+
+ w.sync(syncDeclName)
+ w.obj(obj, nil)
+ }
+}
+
+// @@@ Helpers
+
+// isDefinedType reports whether obj is a defined type.
+func isDefinedType(obj types2.Object) bool {
+ if obj, ok := obj.(*types2.TypeName); ok {
+ return !obj.IsAlias()
+ }
+ return false
+}
+
+// isGlobal reports whether obj was declared at package scope.
+//
+// Caveat: blank objects are not declared.
+func isGlobal(obj types2.Object) bool {
+ return obj.Parent() == obj.Pkg().Scope()
+}
+
+// lookupObj returns the object that expr refers to, if any. If expr
+// is an explicit instantiation of a generic object, then the type
+// arguments are returned as well.
+func lookupObj(info *types2.Info, expr syntax.Expr) (obj types2.Object, targs []types2.Type) {
+ if index, ok := expr.(*syntax.IndexExpr); ok {
+ if inf, ok := info.Inferred[index]; ok {
+ targs = inf.TArgs
+ } else {
+ args := unpackListExpr(index.Index)
+
+ if len(args) == 1 {
+ tv, ok := info.Types[args[0]]
+ assert(ok)
+ if tv.IsValue() {
+ return // normal index expression
+ }
+ }
+
+ targs = make([]types2.Type, len(args))
+ for i, arg := range args {
+ tv, ok := info.Types[arg]
+ assert(ok)
+ assert(tv.IsType())
+ targs[i] = tv.Type
+ }
+ }
+
+ expr = index.X
+ }
+
+ // Strip package qualifier, if present.
+ if sel, ok := expr.(*syntax.SelectorExpr); ok {
+ if !isPkgQual(info, sel) {
+ return // normal selector expression
+ }
+ expr = sel.Sel
+ }
+
+ if name, ok := expr.(*syntax.Name); ok {
+ obj, _ = info.Uses[name]
+ }
+ return
+}
+
+// isPkgQual reports whether the given selector expression is a
+// package-qualified identifier.
+func isPkgQual(info *types2.Info, sel *syntax.SelectorExpr) bool {
+ if name, ok := sel.X.(*syntax.Name); ok {
+ _, isPkgName := info.Uses[name].(*types2.PkgName)
+ return isPkgName
+ }
+ return false
+}
+
+// recvBase returns the base type for the given receiver parameter.
+func recvBase(recv *types2.Var) *types2.Named {
+ typ := recv.Type()
+ if ptr, ok := typ.(*types2.Pointer); ok {
+ typ = ptr.Elem()
+ }
+ return typ.(*types2.Named)
+}
+
+// namesAsExpr returns a list of names as a syntax.Expr.
+func namesAsExpr(names []*syntax.Name) syntax.Expr {
+ if len(names) == 1 {
+ return names[0]
+ }
+
+ exprs := make([]syntax.Expr, len(names))
+ for i, name := range names {
+ exprs[i] = name
+ }
+ return &syntax.ListExpr{ElemList: exprs}
+}
+
+// fieldIndex returns the index of the struct field named by key.
+func fieldIndex(info *types2.Info, str *types2.Struct, key *syntax.Name) int {
+ field := info.Uses[key].(*types2.Var)
+
+ for i := 0; i < str.NumFields(); i++ {
+ if str.Field(i) == field {
+ return i
+ }
+ }
+
+ panic(fmt.Sprintf("%s: %v is not a field of %v", key.Pos(), field, str))
+}
+
+// objTypeParams returns the type parameters on the given object.
+func objTypeParams(obj types2.Object) *types2.TypeParams {
+ switch obj := obj.(type) {
+ case *types2.Func:
+ sig := obj.Type().(*types2.Signature)
+ if sig.Recv() != nil {
+ return sig.RParams()
+ }
+ return sig.TParams()
+ case *types2.TypeName:
+ if !obj.IsAlias() {
+ return obj.Type().(*types2.Named).TParams()
+ }
+ }
+ return nil
+}
+
+func asPragmaFlag(p syntax.Pragma) ir.PragmaFlag {
+ if p == nil {
+ return 0
+ }
+ return p.(*pragmas).Flag
+}