aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/cmd/compile/internal/importer/iimport.go92
-rw-r--r--src/cmd/compile/internal/noder/stencil.go335
-rw-r--r--src/cmd/compile/internal/noder/types.go13
-rw-r--r--src/cmd/compile/internal/typecheck/iexport.go74
-rw-r--r--src/cmd/compile/internal/typecheck/iimport.go172
-rw-r--r--src/cmd/compile/internal/typecheck/subr.go336
-rw-r--r--src/cmd/compile/internal/types2/builtins.go6
-rw-r--r--src/cmd/compile/internal/types2/type.go22
-rw-r--r--test/typeparam/absdiff.go3
-rw-r--r--test/typeparam/absdiffimp.dir/a.go75
-rw-r--r--test/typeparam/absdiffimp.dir/main.go29
-rw-r--r--test/typeparam/absdiffimp.go7
-rw-r--r--test/typeparam/orderedmapsimp.dir/a.go226
-rw-r--r--test/typeparam/orderedmapsimp.dir/main.go67
-rw-r--r--test/typeparam/orderedmapsimp.go7
-rw-r--r--test/typeparam/value.go6
16 files changed, 1035 insertions, 435 deletions
diff --git a/src/cmd/compile/internal/importer/iimport.go b/src/cmd/compile/internal/importer/iimport.go
index fd48bfc179..fb39e93073 100644
--- a/src/cmd/compile/internal/importer/iimport.go
+++ b/src/cmd/compile/internal/importer/iimport.go
@@ -51,6 +51,11 @@ const (
iexportVersionCurrent = iexportVersionGenerics + 1
)
+type ident struct {
+ pkg string
+ name string
+}
+
const predeclReserved = 32
type itag uint64
@@ -124,6 +129,9 @@ func iImportData(imports map[string]*types2.Package, data []byte, path string) (
declData: declData,
pkgIndex: make(map[*types2.Package]map[string]uint64),
typCache: make(map[uint64]types2.Type),
+ // Separate map for typeparams, keyed by their package and unique
+ // name (name with subscript).
+ tparamIndex: make(map[ident]types2.Type),
}
for i, pt := range predeclared {
@@ -202,9 +210,10 @@ type iimporter struct {
pkgCache map[uint64]*types2.Package
posBaseCache map[uint64]*syntax.PosBase
- declData []byte
- pkgIndex map[*types2.Package]map[string]uint64
- typCache map[uint64]types2.Type
+ declData []byte
+ pkgIndex map[*types2.Package]map[string]uint64
+ typCache map[uint64]types2.Type
+ tparamIndex map[ident]types2.Type
interfaceList []*types2.Interface
}
@@ -358,6 +367,28 @@ func (r *importReader) obj(name string) {
}
}
+ case 'P':
+ // We need to "declare" a typeparam in order to have a name that
+ // can be referenced recursively (if needed) in the type param's
+ // bound.
+ if r.p.exportVersion < iexportVersionGenerics {
+ errorf("unexpected type param type")
+ }
+ index := int(r.int64())
+ name0, sub := parseSubscript(name)
+ tn := types2.NewTypeName(pos, r.currPkg, name0, nil)
+ t := (*types2.Checker)(nil).NewTypeParam(tn, index, nil)
+ if sub == 0 {
+ errorf("missing subscript")
+ }
+ t.SetId(sub)
+ // To handle recursive references to the typeparam within its
+ // bound, save the partial type in tparamIndex before reading the bounds.
+ id := ident{r.currPkg.Name(), name}
+ r.p.tparamIndex[id] = t
+
+ t.SetBound(r.typ())
+
case 'V':
typ := r.typ()
@@ -617,34 +648,15 @@ func (r *importReader) doType(base *types2.Named) types2.Type {
if r.p.exportVersion < iexportVersionGenerics {
errorf("unexpected type param type")
}
- r.currPkg = r.pkg()
- pos := r.pos()
- name := r.string()
-
- // Extract the subscript value from the type param name. We export
- // and import the subscript value, so that all type params have
- // unique names.
- sub := uint64(0)
- startsub := -1
- for i, r := range name {
- if '₀' <= r && r < '₀'+10 {
- if startsub == -1 {
- startsub = i
- }
- sub = sub*10 + uint64(r-'₀')
- }
- }
- if startsub >= 0 {
- name = name[:startsub]
- }
- index := int(r.int64())
- bound := r.typ()
- tn := types2.NewTypeName(pos, r.currPkg, name, nil)
- t := (*types2.Checker)(nil).NewTypeParam(tn, index, bound)
- if sub >= 0 {
- t.SetId(sub)
+ pkg, name := r.qualifiedIdent()
+ id := ident{pkg.Name(), name}
+ if t, ok := r.p.tparamIndex[id]; ok {
+ // We're already in the process of importing this typeparam.
+ return t
}
- return t
+ // Otherwise, import the definition of the typeparam now.
+ r.p.doDecl(pkg, name)
+ return r.p.tparamIndex[id]
case instType:
if r.p.exportVersion < iexportVersionGenerics {
@@ -753,3 +765,23 @@ func baseType(typ types2.Type) *types2.Named {
n, _ := typ.(*types2.Named)
return n
}
+
+func parseSubscript(name string) (string, uint64) {
+ // Extract the subscript value from the type param name. We export
+ // and import the subscript value, so that all type params have
+ // unique names.
+ sub := uint64(0)
+ startsub := -1
+ for i, r := range name {
+ if '₀' <= r && r < '₀'+10 {
+ if startsub == -1 {
+ startsub = i
+ }
+ sub = sub*10 + uint64(r-'₀')
+ }
+ }
+ if startsub >= 0 {
+ name = name[:startsub]
+ }
+ return name, sub
+}
diff --git a/src/cmd/compile/internal/noder/stencil.go b/src/cmd/compile/internal/noder/stencil.go
index 08c09c6fb1..3ba364f67c 100644
--- a/src/cmd/compile/internal/noder/stencil.go
+++ b/src/cmd/compile/internal/noder/stencil.go
@@ -15,7 +15,6 @@ import (
"cmd/compile/internal/types"
"fmt"
"go/constant"
- "strings"
)
// For catching problems as we add more features
@@ -425,13 +424,6 @@ func (g *irgen) instantiateMethods() {
}
-// genericSym returns the name of the base generic type for the type named by
-// sym. It simply returns the name obtained by removing everything after the
-// first bracket ("[").
-func genericTypeName(sym *types.Sym) string {
- return sym.Name[0:strings.Index(sym.Name, "[")]
-}
-
// getInstantiationForNode returns the function/method instantiation for a
// InstExpr node inst.
func (g *irgen) getInstantiationForNode(inst *ir.InstExpr) *ir.Func {
@@ -479,11 +471,7 @@ type subster struct {
g *irgen
isMethod bool // If a method is being instantiated
newf *ir.Func // Func node for the new stenciled function
- tparams []*types.Type
- targs []*types.Type
- // The substitution map from name nodes in the generic function to the
- // name nodes in the new stenciled function.
- vars map[*ir.Name]*ir.Name
+ ts typecheck.Tsubster
}
// genericSubst returns a new function with name newsym. The function is an
@@ -526,9 +514,11 @@ func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, targs []*type
g: g,
isMethod: isMethod,
newf: newf,
- tparams: tparams,
- targs: targs,
- vars: make(map[*ir.Name]*ir.Name),
+ ts: typecheck.Tsubster{
+ Tparams: tparams,
+ Targs: targs,
+ Vars: make(map[*ir.Name]*ir.Name),
+ },
}
newf.Dcl = make([]*ir.Name, 0, len(gf.Dcl)+1)
@@ -574,6 +564,9 @@ func (g *irgen) genericSubst(newsym *types.Sym, nameNode *ir.Name, targs []*type
newf.Body.Prepend(g.checkDictionary(dictionaryName, targs)...)
ir.CurFunc = savef
+ // Add any new, fully instantiated types seen during the substitution to
+ // g.instTypeList.
+ g.instTypeList = append(g.instTypeList, subst.ts.InstTypeList...)
return newf
}
@@ -586,13 +579,13 @@ func (subst *subster) localvar(name *ir.Name) *ir.Name {
if name.IsClosureVar() {
m.SetIsClosureVar(true)
}
- m.SetType(subst.typ(name.Type()))
+ m.SetType(subst.ts.Typ(name.Type()))
m.BuiltinOp = name.BuiltinOp
m.Curfn = subst.newf
m.Class = name.Class
assert(name.Class != ir.PEXTERN && name.Class != ir.PFUNC)
m.Func = name.Func
- subst.vars[name] = m
+ subst.ts.Vars[name] = m
m.SetTypecheck(1)
return m
}
@@ -635,7 +628,7 @@ func (g *irgen) checkDictionary(name *ir.Name, targs []*types.Type) (code []ir.N
return
}
-// node is like DeepCopy(), but substitutes ONAME nodes based on subst.vars, and
+// node is like DeepCopy(), but substitutes ONAME nodes based on subst.ts.vars, and
// also descends into closures. It substitutes type arguments for type parameters
// in all the new nodes.
func (subst *subster) node(n ir.Node) ir.Node {
@@ -644,10 +637,10 @@ func (subst *subster) node(n ir.Node) ir.Node {
edit = func(x ir.Node) ir.Node {
switch x.Op() {
case ir.OTYPE:
- return ir.TypeNode(subst.typ(x.Type()))
+ return ir.TypeNode(subst.ts.Typ(x.Type()))
case ir.ONAME:
- if v := subst.vars[x.(*ir.Name)]; v != nil {
+ if v := subst.ts.Vars[x.(*ir.Name)]; v != nil {
return v
}
return x
@@ -673,7 +666,7 @@ func (subst *subster) node(n ir.Node) ir.Node {
base.Fatalf(fmt.Sprintf("Nil type for %v", x))
}
} else if x.Op() != ir.OCLOSURE {
- m.SetType(subst.typ(x.Type()))
+ m.SetType(subst.ts.Typ(x.Type()))
}
}
ir.EditChildren(m, edit)
@@ -815,7 +808,7 @@ func (subst *subster) node(n ir.Node) ir.Node {
m.(*ir.ClosureExpr).Func = newfn
// Closure name can already have brackets, if it derives
// from a generic method
- newsym := typecheck.MakeInstName(oldfn.Nname.Sym(), subst.targs, subst.isMethod)
+ newsym := typecheck.MakeInstName(oldfn.Nname.Sym(), subst.ts.Targs, subst.isMethod)
newfn.Nname = ir.NewNameAt(oldfn.Nname.Pos(), newsym)
newfn.Nname.Func = newfn
newfn.Nname.Defn = newfn
@@ -828,7 +821,7 @@ func (subst *subster) node(n ir.Node) ir.Node {
newfn.Dcl = subst.namelist(oldfn.Dcl)
newfn.ClosureVars = subst.namelist(oldfn.ClosureVars)
- typed(subst.typ(oldfn.Nname.Type()), newfn.Nname)
+ typed(subst.ts.Typ(oldfn.Nname.Type()), newfn.Nname)
typed(newfn.Nname.Type(), m)
newfn.SetTypecheck(1)
@@ -867,298 +860,6 @@ func (subst *subster) list(l []ir.Node) []ir.Node {
return s
}
-// tstruct substitutes type params in types of the fields of a structure type. For
-// each field, tstruct copies the Nname, and translates it if Nname is in
-// subst.vars. To always force the creation of a new (top-level) struct,
-// regardless of whether anything changed with the types or names of the struct's
-// fields, set force to true.
-func (subst *subster) tstruct(t *types.Type, force bool) *types.Type {
- if t.NumFields() == 0 {
- if t.HasTParam() {
- // For an empty struct, we need to return a new type,
- // since it may now be fully instantiated (HasTParam
- // becomes false).
- return types.NewStruct(t.Pkg(), nil)
- }
- return t
- }
- var newfields []*types.Field
- if force {
- newfields = make([]*types.Field, t.NumFields())
- }
- for i, f := range t.Fields().Slice() {
- t2 := subst.typ(f.Type)
- if (t2 != f.Type || f.Nname != nil) && newfields == nil {
- newfields = make([]*types.Field, t.NumFields())
- for j := 0; j < i; j++ {
- newfields[j] = t.Field(j)
- }
- }
- if newfields != nil {
- // TODO(danscales): make sure this works for the field
- // names of embedded types (which should keep the name of
- // the type param, not the instantiated type).
- newfields[i] = types.NewField(f.Pos, f.Sym, t2)
- if f.Nname != nil {
- v := subst.vars[f.Nname.(*ir.Name)]
- if v != nil {
- // This is the case where we are
- // translating the type of the function we
- // are substituting, so its dcls are in
- // the subst.vars table, and we want to
- // change to reference the new dcl.
- newfields[i].Nname = v
- } else {
- // This is the case where we are
- // translating the type of a function
- // reference inside the function we are
- // substituting, so we leave the Nname
- // value as is.
- newfields[i].Nname = f.Nname
- }
- }
- }
- }
- if newfields != nil {
- return types.NewStruct(t.Pkg(), newfields)
- }
- return t
-
-}
-
-// tinter substitutes type params in types of the methods of an interface type.
-func (subst *subster) tinter(t *types.Type) *types.Type {
- if t.Methods().Len() == 0 {
- return t
- }
- var newfields []*types.Field
- for i, f := range t.Methods().Slice() {
- t2 := subst.typ(f.Type)
- if (t2 != f.Type || f.Nname != nil) && newfields == nil {
- newfields = make([]*types.Field, t.Methods().Len())
- for j := 0; j < i; j++ {
- newfields[j] = t.Methods().Index(j)
- }
- }
- if newfields != nil {
- newfields[i] = types.NewField(f.Pos, f.Sym, t2)
- }
- }
- if newfields != nil {
- return types.NewInterface(t.Pkg(), newfields)
- }
- return t
-}
-
-// typ computes the type obtained by substituting any type parameter in t with the
-// corresponding type argument in subst. If t contains no type parameters, the
-// result is t; otherwise the result is a new type. It deals with recursive types
-// by using TFORW types and finding partially or fully created types via sym.Def.
-func (subst *subster) typ(t *types.Type) *types.Type {
- if !t.HasTParam() && t.Kind() != types.TFUNC {
- // Note: function types need to be copied regardless, as the
- // types of closures may contain declarations that need
- // to be copied. See #45738.
- return t
- }
-
- if t.Kind() == types.TTYPEPARAM {
- for i, tp := range subst.tparams {
- if tp == t {
- return subst.targs[i]
- }
- }
- // If t is a simple typeparam T, then t has the name/symbol 'T'
- // and t.Underlying() == t.
- //
- // However, consider the type definition: 'type P[T any] T'. We
- // might use this definition so we can have a variant of type T
- // that we can add new methods to. Suppose t is a reference to
- // P[T]. t has the name 'P[T]', but its kind is TTYPEPARAM,
- // because P[T] is defined as T. If we look at t.Underlying(), it
- // is different, because the name of t.Underlying() is 'T' rather
- // than 'P[T]'. But the kind of t.Underlying() is also TTYPEPARAM.
- // In this case, we do the needed recursive substitution in the
- // case statement below.
- if t.Underlying() == t {
- // t is a simple typeparam that didn't match anything in tparam
- return t
- }
- // t is a more complex typeparam (e.g. P[T], as above, whose
- // definition is just T).
- assert(t.Sym() != nil)
- }
-
- var newsym *types.Sym
- var neededTargs []*types.Type
- var forw *types.Type
-
- if t.Sym() != nil {
- // Translate the type params for this type according to
- // the tparam/targs mapping from subst.
- neededTargs = make([]*types.Type, len(t.RParams()))
- for i, rparam := range t.RParams() {
- neededTargs[i] = subst.typ(rparam)
- }
- // For a named (defined) type, we have to change the name of the
- // type as well. We do this first, so we can look up if we've
- // already seen this type during this substitution or other
- // definitions/substitutions.
- genName := genericTypeName(t.Sym())
- newsym = t.Sym().Pkg.Lookup(typecheck.InstTypeName(genName, neededTargs))
- if newsym.Def != nil {
- // We've already created this instantiated defined type.
- return newsym.Def.Type()
- }
-
- // In order to deal with recursive generic types, create a TFORW
- // type initially and set the Def field of its sym, so it can be
- // found if this type appears recursively within the type.
- forw = typecheck.NewIncompleteNamedType(t.Pos(), newsym)
- //println("Creating new type by sub", newsym.Name, forw.HasTParam())
- forw.SetRParams(neededTargs)
- // Copy the OrigSym from the re-instantiated type (which is the sym of
- // the base generic type).
- assert(t.OrigSym != nil)
- forw.OrigSym = t.OrigSym
- }
-
- var newt *types.Type
-
- switch t.Kind() {
- case types.TTYPEPARAM:
- if t.Sym() == newsym {
- // The substitution did not change the type.
- return t
- }
- // Substitute the underlying typeparam (e.g. T in P[T], see
- // the example describing type P[T] above).
- newt = subst.typ(t.Underlying())
- assert(newt != t)
-
- case types.TARRAY:
- elem := t.Elem()
- newelem := subst.typ(elem)
- if newelem != elem {
- newt = types.NewArray(newelem, t.NumElem())
- }
-
- case types.TPTR:
- elem := t.Elem()
- newelem := subst.typ(elem)
- if newelem != elem {
- newt = types.NewPtr(newelem)
- }
-
- case types.TSLICE:
- elem := t.Elem()
- newelem := subst.typ(elem)
- if newelem != elem {
- newt = types.NewSlice(newelem)
- }
-
- case types.TSTRUCT:
- newt = subst.tstruct(t, false)
- if newt == t {
- newt = nil
- }
-
- case types.TFUNC:
- newrecvs := subst.tstruct(t.Recvs(), false)
- newparams := subst.tstruct(t.Params(), false)
- newresults := subst.tstruct(t.Results(), false)
- if newrecvs != t.Recvs() || newparams != t.Params() || newresults != t.Results() {
- // If any types have changed, then the all the fields of
- // of recv, params, and results must be copied, because they have
- // offset fields that are dependent, and so must have an
- // independent copy for each new signature.
- var newrecv *types.Field
- if newrecvs.NumFields() > 0 {
- if newrecvs == t.Recvs() {
- newrecvs = subst.tstruct(t.Recvs(), true)
- }
- newrecv = newrecvs.Field(0)
- }
- if newparams == t.Params() {
- newparams = subst.tstruct(t.Params(), true)
- }
- if newresults == t.Results() {
- newresults = subst.tstruct(t.Results(), true)
- }
- newt = types.NewSignature(t.Pkg(), newrecv, t.TParams().FieldSlice(), newparams.FieldSlice(), newresults.FieldSlice())
- }
-
- case types.TINTER:
- newt = subst.tinter(t)
- if newt == t {
- newt = nil
- }
-
- case types.TMAP:
- newkey := subst.typ(t.Key())
- newval := subst.typ(t.Elem())
- if newkey != t.Key() || newval != t.Elem() {
- newt = types.NewMap(newkey, newval)
- }
-
- case types.TCHAN:
- elem := t.Elem()
- newelem := subst.typ(elem)
- if newelem != elem {
- newt = types.NewChan(newelem, t.ChanDir())
- if !newt.HasTParam() {
- // TODO(danscales): not sure why I have to do this
- // only for channels.....
- types.CheckSize(newt)
- }
- }
- }
- if newt == nil {
- // Even though there were typeparams in the type, there may be no
- // change if this is a function type for a function call (which will
- // have its own tparams/targs in the function instantiation).
- return t
- }
-
- if t.Sym() == nil {
- // Not a named type, so there was no forwarding type and there are
- // no methods to substitute.
- assert(t.Methods().Len() == 0)
- return newt
- }
-
- forw.SetUnderlying(newt)
- newt = forw
-
- if t.Kind() != types.TINTER && t.Methods().Len() > 0 {
- // Fill in the method info for the new type.
- var newfields []*types.Field
- newfields = make([]*types.Field, t.Methods().Len())
- for i, f := range t.Methods().Slice() {
- t2 := subst.typ(f.Type)
- oldsym := f.Nname.Sym()
- newsym := typecheck.MakeInstName(oldsym, subst.targs, true)
- // TODO: use newsym?
- var nname *ir.Name
- if newsym.Def != nil {
- nname = newsym.Def.(*ir.Name)
- } else {
- nname = ir.NewNameAt(f.Pos, oldsym)
- nname.SetType(t2)
- oldsym.Def = nname
- }
- newfields[i] = types.NewField(f.Pos, f.Sym, t2)
- newfields[i].Nname = nname
- }
- newt.Methods().Set(newfields)
- if !newt.HasTParam() {
- // Generate all the methods for a new fully-instantiated type.
- subst.g.instTypeList = append(subst.g.instTypeList, newt)
- }
- }
- return newt
-}
-
// fields sets the Nname field for the Field nodes inside a type signature, based
// on the corresponding in/out parameters in dcl. It depends on the in and out
// parameters being in order in dcl.
@@ -1178,7 +879,7 @@ func (subst *subster) fields(class ir.Class, oldfields []*types.Field, dcl []*ir
newfields := make([]*types.Field, len(oldfields))
for j := range oldfields {
newfields[j] = oldfields[j].Copy()
- newfields[j].Type = subst.typ(oldfields[j].Type)
+ newfields[j].Type = subst.ts.Typ(oldfields[j].Type)
// A PPARAM field will be missing from dcl if its name is
// unspecified or specified as "_". So, we compare the dcl sym
// with the field sym (or sym of the field's Nname node). (Unnamed
diff --git a/src/cmd/compile/internal/noder/types.go b/src/cmd/compile/internal/noder/types.go
index f0061e79d7..b37793b2d0 100644
--- a/src/cmd/compile/internal/noder/types.go
+++ b/src/cmd/compile/internal/noder/types.go
@@ -316,13 +316,16 @@ func (g *irgen) fillinMethods(typ *types2.Named, ntyp *types.Type) {
tparams[i] = g.typ1(rparam.Type())
}
assert(len(tparams) == len(targs))
- subst := &subster{
- g: g,
- tparams: tparams,
- targs: targs,
+ ts := typecheck.Tsubster{
+ Tparams: tparams,
+ Targs: targs,
}
// Do the substitution of the type
- meth2.SetType(subst.typ(meth.Type()))
+ meth2.SetType(ts.Typ(meth.Type()))
+ // Add any new fully instantiated types
+ // seen during the substitution to
+ // g.instTypeList.
+ g.instTypeList = append(g.instTypeList, ts.InstTypeList...)
newsym.Def = meth2
}
meth = meth2
diff --git a/src/cmd/compile/internal/typecheck/iexport.go b/src/cmd/compile/internal/typecheck/iexport.go
index 66c356ee7c..f635b79ada 100644
--- a/src/cmd/compile/internal/typecheck/iexport.go
+++ b/src/cmd/compile/internal/typecheck/iexport.go
@@ -506,6 +506,20 @@ func (p *iexporter) doDecl(n *ir.Name) {
w.constExt(n)
case ir.OTYPE:
+ if n.Type().Kind() == types.TTYPEPARAM && n.Type().Underlying() == n.Type() {
+ // Even though it has local scope, a typeparam requires a
+ // declaration via its package and unique name, because it
+ // may be referenced within its type bound during its own
+ // definition.
+ w.tag('P')
+ // A typeparam has a name, and has a type bound rather
+ // than an underlying type.
+ w.pos(n.Pos())
+ w.int64(int64(n.Type().Index()))
+ w.typ(n.Type().Bound())
+ break
+ }
+
if n.Alias() {
// Alias.
w.tag('A')
@@ -519,9 +533,10 @@ func (p *iexporter) doDecl(n *ir.Name) {
w.pos(n.Pos())
if base.Flag.G > 0 {
- // Export any new typeparams needed for this type
+ // Export type parameters, if any, needed for this type
w.typeList(n.Type().RParams())
}
+
underlying := n.Type().Underlying()
if underlying == types.ErrorType.Underlying() {
// For "type T error", use error as the
@@ -837,26 +852,6 @@ func (w *exportWriter) startType(k itag) {
}
func (w *exportWriter) doTyp(t *types.Type) {
- if t.Kind() == types.TTYPEPARAM {
- assert(base.Flag.G > 0)
- // A typeparam has a name, but doesn't have an underlying type.
- // Just write out the details of the type param here. All other
- // uses of this typeparam type will be written out as its unique
- // type offset.
- w.startType(typeParamType)
- s := t.Sym()
- w.setPkg(s.Pkg, true)
- w.pos(t.Pos())
-
- // We are writing out the name with the subscript, so that the
- // typeparam name is unique.
- w.string(s.Name)
- w.int64(int64(t.Index()))
-
- w.typ(t.Bound())
- return
- }
-
s := t.Sym()
if s != nil && t.OrigSym != nil {
assert(base.Flag.G > 0)
@@ -880,6 +875,21 @@ func (w *exportWriter) doTyp(t *types.Type) {
return
}
+ // The 't.Underlying() == t' check is to confirm this is a base typeparam
+ // type, rather than a defined type with typeparam underlying type, like:
+ // type orderedAbs[T any] T
+ if t.Kind() == types.TTYPEPARAM && t.Underlying() == t {
+ assert(base.Flag.G > 0)
+ if s.Pkg == types.BuiltinPkg || s.Pkg == ir.Pkgs.Unsafe {
+ base.Fatalf("builtin type missing from typIndex: %v", t)
+ }
+ // Write out the first use of a type param as a qualified ident.
+ // This will force a "declaration" of the type param.
+ w.startType(typeParamType)
+ w.qualifiedIdent(t.Obj().(*ir.Name))
+ return
+ }
+
if s != nil {
if s.Pkg == types.BuiltinPkg || s.Pkg == ir.Pkgs.Unsafe {
base.Fatalf("builtin type missing from typIndex: %v", t)
@@ -1325,14 +1335,20 @@ func (w *exportWriter) funcExt(n *ir.Name) {
// Inline body.
if n.Type().HasTParam() {
if n.Func.Inl != nil {
- base.FatalfAt(n.Pos(), "generic function is marked inlineable")
- }
- // Populate n.Func.Inl, so body of exported generic function will
- // be written out.
- n.Func.Inl = &ir.Inline{
- Cost: 1,
- Dcl: n.Func.Dcl,
- Body: n.Func.Body,
+ // n.Func.Inl may already be set on a generic function if
+ // we imported it from another package, but shouldn't be
+ // set for a generic function in the local package.
+ if n.Sym().Pkg == types.LocalPkg {
+ base.FatalfAt(n.Pos(), "generic function is marked inlineable")
+ }
+ } else {
+ // Populate n.Func.Inl, so body of exported generic function will
+ // be written out.
+ n.Func.Inl = &ir.Inline{
+ Cost: 1,
+ Dcl: n.Func.Dcl,
+ Body: n.Func.Body,
+ }
}
}
if n.Func.Inl != nil {
diff --git a/src/cmd/compile/internal/typecheck/iimport.go b/src/cmd/compile/internal/typecheck/iimport.go
index 96107b657b..9e6115cbf7 100644
--- a/src/cmd/compile/internal/typecheck/iimport.go
+++ b/src/cmd/compile/internal/typecheck/iimport.go
@@ -342,19 +342,22 @@ func (r *importReader) doDecl(sym *types.Sym) *ir.Name {
// declaration before recursing.
n := importtype(r.p.ipkg, pos, sym)
t := n.Type()
+ if rparams != nil {
+ t.SetRParams(rparams)
+ }
// We also need to defer width calculations until
// after the underlying type has been assigned.
types.DeferCheckSize()
+ deferDoInst()
underlying := r.typ()
t.SetUnderlying(underlying)
- types.ResumeCheckSize()
-
- if rparams != nil {
- t.SetRParams(rparams)
- }
if underlying.IsInterface() {
+ // Finish up all type instantiations and CheckSize calls
+ // now that a top-level type is fully constructed.
+ resumeDoInst()
+ types.ResumeCheckSize()
r.typeExt(t)
return n
}
@@ -380,12 +383,38 @@ func (r *importReader) doDecl(sym *types.Sym) *ir.Name {
}
t.Methods().Set(ms)
+ // Finish up all instantiations and CheckSize calls now
+ // that a top-level type is fully constructed.
+ resumeDoInst()
+ types.ResumeCheckSize()
+
r.typeExt(t)
for _, m := range ms {
r.methExt(m)
}
return n
+ case 'P':
+ if r.p.exportVersion < iexportVersionGenerics {
+ base.Fatalf("unexpected type param type")
+ }
+ if sym.Def != nil {
+ // Make sure we use the same type param type for the same
+ // name, whether it is created during types1-import or
+ // this types2-to-types1 translation.
+ return sym.Def.(*ir.Name)
+ }
+ index := int(r.int64())
+ t := types.NewTypeParam(sym, index)
+ // Nname needed to save the pos.
+ nname := ir.NewDeclNameAt(pos, ir.OTYPE, sym)
+ sym.Def = nname
+ nname.SetType(t)
+ t.SetNod(nname)
+
+ t.SetBound(r.typ())
+ return nname
+
case 'V':
typ := r.typ()
@@ -545,7 +574,12 @@ func (r *importReader) pos() src.XPos {
}
func (r *importReader) typ() *types.Type {
- return r.p.typAt(r.uint64())
+ // If this is a top-level type call, defer type instantiations until the
+ // type is fully constructed.
+ deferDoInst()
+ t := r.p.typAt(r.uint64())
+ resumeDoInst()
+ return t
}
func (r *importReader) exoticType() *types.Type {
@@ -683,7 +717,13 @@ func (p *iimporter) typAt(off uint64) *types.Type {
// are pushed to compile queue, then draining from the queue for compiling.
// During this process, the size calculation is disabled, so it is not safe for
// calculating size during SSA generation anymore. See issue #44732.
- types.CheckSize(t)
+ //
+ // No need to calc sizes for re-instantiated generic types, and
+ // they are not necessarily resolved until the top-level type is
+ // defined (because of recursive types).
+ if t.OrigSym == nil || !t.HasTParam() {
+ types.CheckSize(t)
+ }
p.typCache[off] = t
}
return t
@@ -779,27 +819,18 @@ func (r *importReader) typ1() *types.Type {
if r.p.exportVersion < iexportVersionGenerics {
base.Fatalf("unexpected type param type")
}
- r.setPkg()
- pos := r.pos()
- name := r.string()
- sym := r.currPkg.Lookup(name)
- index := int(r.int64())
- bound := r.typ()
- if sym.Def != nil {
- // Make sure we use the same type param type for the same
- // name, whether it is created during types1-import or
- // this types2-to-types1 translation.
- return sym.Def.Type()
+ // Similar to code for defined types, since we "declared"
+ // typeparams to deal with recursion (typeparam is used within its
+ // own type bound).
+ ident := r.qualifiedIdent()
+ if ident.Sym().Def != nil {
+ return ident.Sym().Def.(*ir.Name).Type()
}
- t := types.NewTypeParam(sym, index)
- // Nname needed to save the pos.
- nname := ir.NewDeclNameAt(pos, ir.OTYPE, sym)
- sym.Def = nname
- nname.SetType(t)
- t.SetNod(nname)
-
- t.SetBound(bound)
- return t
+ n := expandDecl(ident)
+ if n.Op() != ir.OTYPE {
+ base.Fatalf("expected OTYPE, got %v: %v, %v", n.Op(), n.Sym(), n)
+ }
+ return n.Type()
case instType:
if r.p.exportVersion < iexportVersionGenerics {
@@ -1758,20 +1789,91 @@ func Instantiate(pos src.XPos, baseType *types.Type, targs []*types.Type) *types
name := InstTypeName(baseSym.Name, targs)
instSym := baseSym.Pkg.Lookup(name)
if instSym.Def != nil {
+ // May match existing type from previous import or
+ // types2-to-types1 conversion, or from in-progress instantiation
+ // in the current type import stack.
return instSym.Def.Type()
}
t := NewIncompleteNamedType(baseType.Pos(), instSym)
t.SetRParams(targs)
- // baseType may not yet be complete (since we are in the middle of
- // importing it), but its underlying type will be updated when baseType's
- // underlying type is finished.
- t.SetUnderlying(baseType.Underlying())
-
- // As with types2, the methods are the generic method signatures (without
- // substitution).
- t.Methods().Set(baseType.Methods().Slice())
t.OrigSym = baseSym
+ // baseType may still be TFORW or its methods may not be fully filled in
+ // (since we are in the middle of importing it). So, delay call to
+ // substInstType until we get back up to the top of the current top-most
+ // type import.
+ deferredInstStack = append(deferredInstStack, t)
+
return t
}
+
+var deferredInstStack []*types.Type
+var deferInst int
+
+// deferDoInst defers substitution on instantiated types until we are at the
+// top-most defined type, so the base types are fully defined.
+func deferDoInst() {
+ deferInst++
+}
+
+func resumeDoInst() {
+ if deferInst == 1 {
+ for len(deferredInstStack) > 0 {
+ t := deferredInstStack[0]
+ deferredInstStack = deferredInstStack[1:]
+ substInstType(t, t.OrigSym.Def.(*ir.Name).Type(), t.RParams())
+ }
+ }
+ deferInst--
+}
+
+// doInst creates a new instantiation type (which will be added to
+// deferredInstStack for completion later) for an incomplete type encountered
+// during a type substitution for an instantiation. This is needed for
+// instantiations of mutually recursive types.
+func doInst(t *types.Type) *types.Type {
+ return Instantiate(t.Pos(), t.OrigSym.Def.(*ir.Name).Type(), t.RParams())
+}
+
+// substInstType completes the instantiation of a generic type by doing a
+// substitution on the underlying type itself and any methods. t is the
+// instantiation being created, baseType is the base generic type, and targs are
+// the type arguments that baseType is being instantiated with.
+func substInstType(t *types.Type, baseType *types.Type, targs []*types.Type) {
+ subst := Tsubster{
+ Tparams: baseType.RParams(),
+ Targs: targs,
+ SubstForwFunc: doInst,
+ }
+ t.SetUnderlying(subst.Typ(baseType.Underlying()))
+
+ newfields := make([]*types.Field, baseType.Methods().Len())
+ for i, f := range baseType.Methods().Slice() {
+ recvType := f.Type.Recv().Type
+ if recvType.IsPtr() {
+ recvType = recvType.Elem()
+ }
+ // Substitute in the method using the type params used in the
+ // method (not the type params in the definition of the generic type).
+ subst := Tsubster{
+ Tparams: recvType.RParams(),
+ Targs: targs,
+ SubstForwFunc: doInst,
+ }
+ t2 := subst.Typ(f.Type)
+ oldsym := f.Nname.Sym()
+ newsym := MakeInstName(oldsym, targs, true)
+ var nname *ir.Name
+ if newsym.Def != nil {
+ nname = newsym.Def.(*ir.Name)
+ } else {
+ nname = ir.NewNameAt(f.Pos, newsym)
+ nname.SetType(t2)
+ newsym.Def = nname
+ }
+ newfields[i] = types.NewField(f.Pos, f.Sym, t2)
+ newfields[i].Nname = nname
+ }
+ t.Methods().Set(newfields)
+}
diff --git a/src/cmd/compile/internal/typecheck/subr.go b/src/cmd/compile/internal/typecheck/subr.go
index 3e7799b35b..8ef49f91c8 100644
--- a/src/cmd/compile/internal/typecheck/subr.go
+++ b/src/cmd/compile/internal/typecheck/subr.go
@@ -890,7 +890,6 @@ func TypesOf(x []ir.Node) []*types.Type {
// based on the name of the function fnsym and the targs. It replaces any
// existing bracket type list in the name. makeInstName asserts that fnsym has
// brackets in its name if and only if hasBrackets is true.
-// TODO(danscales): remove the assertions and the hasBrackets argument later.
//
// Names of declared generic functions have no brackets originally, so hasBrackets
// should be false. Names of generic methods already have brackets, since the new
@@ -902,12 +901,24 @@ func TypesOf(x []ir.Node) []*types.Type {
func MakeInstName(fnsym *types.Sym, targs []*types.Type, hasBrackets bool) *types.Sym {
b := bytes.NewBufferString("")
- // marker to distinguish generic instantiations from fully stenciled wrapper functions.
+ // Determine if the type args are concrete types or new typeparams.
+ hasTParam := false
+ for _, targ := range targs {
+ if hasTParam {
+ assert(targ.HasTParam())
+ } else if targ.HasTParam() {
+ hasTParam = true
+ }
+ }
+
+ // Marker to distinguish generic instantiations from fully stenciled wrapper functions.
// Once we move to GC shape implementations, this prefix will not be necessary as the
// GC shape naming will distinguish them.
// e.g. f[8bytenonpointer] vs. f[int].
// For now, we use .inst.f[int] vs. f[int].
- b.WriteString(".inst.")
+ if !hasTParam {
+ b.WriteString(".inst.")
+ }
name := fnsym.Name
i := strings.Index(name, "[")
@@ -942,10 +953,325 @@ func MakeInstName(fnsym *types.Sym, targs []*types.Type, hasBrackets bool) *type
return fnsym.Pkg.Lookup(b.String())
}
-// For catching problems as we add more features
-// TODO(danscales): remove assertions or replace with base.FatalfAt()
func assert(p bool) {
if !p {
panic("assertion failed")
}
}
+
+// General type substituter, for replacing typeparams with type args.
+type Tsubster struct {
+ Tparams []*types.Type
+ Targs []*types.Type
+ // If non-nil, the substitution map from name nodes in the generic function to the
+ // name nodes in the new stenciled function.
+ Vars map[*ir.Name]*ir.Name
+ // New fully-instantiated generic types whose methods should be instantiated.
+ InstTypeList []*types.Type
+ // If non-nil, function to substitute an incomplete (TFORW) type.
+ SubstForwFunc func(*types.Type) *types.Type
+}
+
+// Typ computes the type obtained by substituting any type parameter in t with the
+// corresponding type argument in subst. If t contains no type parameters, the
+// result is t; otherwise the result is a new type. It deals with recursive types
+// by using TFORW types and finding partially or fully created types via sym.Def.
+func (ts *Tsubster) Typ(t *types.Type) *types.Type {
+ if !t.HasTParam() && t.Kind() != types.TFUNC {
+ // Note: function types need to be copied regardless, as the
+ // types of closures may contain declarations that need
+ // to be copied. See #45738.
+ return t
+ }
+
+ if t.Kind() == types.TTYPEPARAM {
+ for i, tp := range ts.Tparams {
+ if tp == t {
+ return ts.Targs[i]
+ }
+ }
+ // If t is a simple typeparam T, then t has the name/symbol 'T'
+ // and t.Underlying() == t.
+ //
+ // However, consider the type definition: 'type P[T any] T'. We
+ // might use this definition so we can have a variant of type T
+ // that we can add new methods to. Suppose t is a reference to
+ // P[T]. t has the name 'P[T]', but its kind is TTYPEPARAM,
+ // because P[T] is defined as T. If we look at t.Underlying(), it
+ // is different, because the name of t.Underlying() is 'T' rather
+ // than 'P[T]'. But the kind of t.Underlying() is also TTYPEPARAM.
+ // In this case, we do the needed recursive substitution in the
+ // case statement below.
+ if t.Underlying() == t {
+ // t is a simple typeparam that didn't match anything in tparam
+ return t
+ }
+ // t is a more complex typeparam (e.g. P[T], as above, whose
+ // definition is just T).
+ assert(t.Sym() != nil)
+ }
+
+ var newsym *types.Sym
+ var neededTargs []*types.Type
+ var forw *types.Type
+
+ if t.Sym() != nil {
+ // Translate the type params for this type according to
+ // the tparam/targs mapping from subst.
+ neededTargs = make([]*types.Type, len(t.RParams()))
+ for i, rparam := range t.RParams() {
+ neededTargs[i] = ts.Typ(rparam)
+ }
+ // For a named (defined) type, we have to change the name of the
+ // type as well. We do this first, so we can look up if we've
+ // already seen this type during this substitution or other
+ // definitions/substitutions.
+ genName := genericTypeName(t.Sym())
+ newsym = t.Sym().Pkg.Lookup(InstTypeName(genName, neededTargs))
+ if newsym.Def != nil {
+ // We've already created this instantiated defined type.
+ return newsym.Def.Type()
+ }
+
+ // In order to deal with recursive generic types, create a TFORW
+ // type initially and set the Def field of its sym, so it can be
+ // found if this type appears recursively within the type.
+ forw = NewIncompleteNamedType(t.Pos(), newsym)
+ //println("Creating new type by sub", newsym.Name, forw.HasTParam())
+ forw.SetRParams(neededTargs)
+ // Copy the OrigSym from the re-instantiated type (which is the sym of
+ // the base generic type).
+ assert(t.OrigSym != nil)
+ forw.OrigSym = t.OrigSym
+ }
+
+ var newt *types.Type
+
+ switch t.Kind() {
+ case types.TTYPEPARAM:
+ if t.Sym() == newsym {
+ // The substitution did not change the type.
+ return t
+ }
+ // Substitute the underlying typeparam (e.g. T in P[T], see
+ // the example describing type P[T] above).
+ newt = ts.Typ(t.Underlying())
+ assert(newt != t)
+
+ case types.TARRAY:
+ elem := t.Elem()
+ newelem := ts.Typ(elem)
+ if newelem != elem {
+ newt = types.NewArray(newelem, t.NumElem())
+ }
+
+ case types.TPTR:
+ elem := t.Elem()
+ newelem := ts.Typ(elem)
+ if newelem != elem {
+ newt = types.NewPtr(newelem)
+ }
+
+ case types.TSLICE:
+ elem := t.Elem()
+ newelem := ts.Typ(elem)
+ if newelem != elem {
+ newt = types.NewSlice(newelem)
+ }
+
+ case types.TSTRUCT:
+ newt = ts.tstruct(t, false)
+ if newt == t {
+ newt = nil
+ }
+
+ case types.TFUNC:
+ newrecvs := ts.tstruct(t.Recvs(), false)
+ newparams := ts.tstruct(t.Params(), false)
+ newresults := ts.tstruct(t.Results(), false)
+ if newrecvs != t.Recvs() || newparams != t.Params() || newresults != t.Results() {
+ // If any types have changed, then the all the fields of
+ // of recv, params, and results must be copied, because they have
+ // offset fields that are dependent, and so must have an
+ // independent copy for each new signature.
+ var newrecv *types.Field
+ if newrecvs.NumFields() > 0 {
+ if newrecvs == t.Recvs() {
+ newrecvs = ts.tstruct(t.Recvs(), true)
+ }
+ newrecv = newrecvs.Field(0)
+ }
+ if newparams == t.Params() {
+ newparams = ts.tstruct(t.Params(), true)
+ }
+ if newresults == t.Results() {
+ newresults = ts.tstruct(t.Results(), true)
+ }
+ newt = types.NewSignature(t.Pkg(), newrecv, t.TParams().FieldSlice(), newparams.FieldSlice(), newresults.FieldSlice())
+ }
+
+ case types.TINTER:
+ newt = ts.tinter(t)
+ if newt == t {
+ newt = nil
+ }
+
+ case types.TMAP:
+ newkey := ts.Typ(t.Key())
+ newval := ts.Typ(t.Elem())
+ if newkey != t.Key() || newval != t.Elem() {
+ newt = types.NewMap(newkey, newval)
+ }
+
+ case types.TCHAN:
+ elem := t.Elem()
+ newelem := ts.Typ(elem)
+ if newelem != elem {
+ newt = types.NewChan(newelem, t.ChanDir())
+ if !newt.HasTParam() {
+ // TODO(danscales): not sure why I have to do this
+ // only for channels.....
+ types.CheckSize(newt)
+ }
+ }
+ case types.TFORW:
+ if ts.SubstForwFunc != nil {
+ newt = ts.SubstForwFunc(t)
+ } else {
+ assert(false)
+ }
+ }
+ if newt == nil {
+ // Even though there were typeparams in the type, there may be no
+ // change if this is a function type for a function call (which will
+ // have its own tparams/targs in the function instantiation).
+ return t
+ }
+
+ if t.Sym() == nil {
+ // Not a named type, so there was no forwarding type and there are
+ // no methods to substitute.
+ assert(t.Methods().Len() == 0)
+ return newt
+ }
+
+ forw.SetUnderlying(newt)
+ newt = forw
+
+ if t.Kind() != types.TINTER && t.Methods().Len() > 0 {
+ // Fill in the method info for the new type.
+ var newfields []*types.Field
+ newfields = make([]*types.Field, t.Methods().Len())
+ for i, f := range t.Methods().Slice() {
+ t2 := ts.Typ(f.Type)
+ oldsym := f.Nname.Sym()
+ newsym := MakeInstName(oldsym, ts.Targs, true)
+ var nname *ir.Name
+ if newsym.Def != nil {
+ nname = newsym.Def.(*ir.Name)
+ } else {
+ nname = ir.NewNameAt(f.Pos, newsym)
+ nname.SetType(t2)
+ newsym.Def = nname
+ }
+ newfields[i] = types.NewField(f.Pos, f.Sym, t2)
+ newfields[i].Nname = nname
+ }
+ newt.Methods().Set(newfields)
+ if !newt.HasTParam() {
+ // Generate all the methods for a new fully-instantiated type.
+ ts.InstTypeList = append(ts.InstTypeList, newt)
+ }
+ }
+ return newt
+}
+
+// tstruct substitutes type params in types of the fields of a structure type. For
+// each field, tstruct copies the Nname, and translates it if Nname is in
+// ts.vars. To always force the creation of a new (top-level) struct,
+// regardless of whether anything changed with the types or names of the struct's
+// fields, set force to true.
+func (ts *Tsubster) tstruct(t *types.Type, force bool) *types.Type {
+ if t.NumFields() == 0 {
+ if t.HasTParam() {
+ // For an empty struct, we need to return a new type,
+ // since it may now be fully instantiated (HasTParam
+ // becomes false).
+ return types.NewStruct(t.Pkg(), nil)
+ }
+ return t
+ }
+ var newfields []*types.Field
+ if force {
+ newfields = make([]*types.Field, t.NumFields())
+ }
+ for i, f := range t.Fields().Slice() {
+ t2 := ts.Typ(f.Type)
+ if (t2 != f.Type || f.Nname != nil) && newfields == nil {
+ newfields = make([]*types.Field, t.NumFields())
+ for j := 0; j < i; j++ {
+ newfields[j] = t.Field(j)
+ }
+ }
+ if newfields != nil {
+ // TODO(danscales): make sure this works for the field
+ // names of embedded types (which should keep the name of
+ // the type param, not the instantiated type).
+ newfields[i] = types.NewField(f.Pos, f.Sym, t2)
+ if f.Nname != nil && ts.Vars != nil {
+ v := ts.Vars[f.Nname.(*ir.Name)]
+ if v != nil {
+ // This is the case where we are
+ // translating the type of the function we
+ // are substituting, so its dcls are in
+ // the subst.ts.vars table, and we want to
+ // change to reference the new dcl.
+ newfields[i].Nname = v
+ } else {
+ // This is the case where we are
+ // translating the type of a function
+ // reference inside the function we are
+ // substituting, so we leave the Nname
+ // value as is.
+ newfields[i].Nname = f.Nname
+ }
+ }
+ }
+ }
+ if newfields != nil {
+ return types.NewStruct(t.Pkg(), newfields)
+ }
+ return t
+
+}
+
+// tinter substitutes type params in types of the methods of an interface type.
+func (ts *Tsubster) tinter(t *types.Type) *types.Type {
+ if t.Methods().Len() == 0 {
+ return t
+ }
+ var newfields []*types.Field
+ for i, f := range t.Methods().Slice() {
+ t2 := ts.Typ(f.Type)
+ if (t2 != f.Type || f.Nname != nil) && newfields == nil {
+ newfields = make([]*types.Field, t.Methods().Len())
+ for j := 0; j < i; j++ {
+ newfields[j] = t.Methods().Index(j)
+ }
+ }
+ if newfields != nil {
+ newfields[i] = types.NewField(f.Pos, f.Sym, t2)
+ }
+ }
+ if newfields != nil {
+ return types.NewInterface(t.Pkg(), newfields)
+ }
+ return t
+}
+
+// genericSym returns the name of the base generic type for the type named by
+// sym. It simply returns the name obtained by removing everything after the
+// first bracket ("[").
+func genericTypeName(sym *types.Sym) string {
+ return sym.Name[0:strings.Index(sym.Name, "[")]
+}
diff --git a/src/cmd/compile/internal/types2/builtins.go b/src/cmd/compile/internal/types2/builtins.go
index 20c4ff62a1..8e13b0ff18 100644
--- a/src/cmd/compile/internal/types2/builtins.go
+++ b/src/cmd/compile/internal/types2/builtins.go
@@ -767,8 +767,10 @@ func (check *Checker) applyTypeFunc(f func(Type) Type, x Type) Type {
// uses of real() where the result is used to
// define type and initialize a variable?
- // construct a suitable new type parameter
- tpar := NewTypeName(nopos, nil /* = Universe pkg */, "<type parameter>", nil)
+ // Construct a suitable new type parameter for the sum type. The
+ // type param is placed in the current package so export/import
+ // works as expected.
+ tpar := NewTypeName(nopos, check.pkg, "<type parameter>", nil)
ptyp := check.NewTypeParam(tpar, 0, &emptyInterface) // assigns type to tpar as a side-effect
tsum := newUnion(rtypes, tildes)
ptyp.bound = &Interface{allMethods: markComplete, allTypes: tsum}
diff --git a/src/cmd/compile/internal/types2/type.go b/src/cmd/compile/internal/types2/type.go
index 604520d27f..10cb651d0c 100644
--- a/src/cmd/compile/internal/types2/type.go
+++ b/src/cmd/compile/internal/types2/type.go
@@ -640,9 +640,8 @@ type TypeParam struct {
// Obj returns the type name for the type parameter t.
func (t *TypeParam) Obj() *TypeName { return t.obj }
-// NewTypeParam returns a new TypeParam.
+// NewTypeParam returns a new TypeParam. bound can be nil (and set later).
func (check *Checker) NewTypeParam(obj *TypeName, index int, bound Type) *TypeParam {
- assert(bound != nil)
// Always increment lastID, even if it is not used.
id := nextID()
if check != nil {
@@ -679,11 +678,20 @@ func (t *TypeParam) Bound() *Interface {
return iface
}
-// optype returns a type's operational type. Except for type parameters,
-// the operational type is the same as the underlying type (as returned
-// by under). For Type parameters, the operational type is determined
-// by the corresponding type constraint. The result may be the top type,
-// but it is never the incoming type parameter.
+func (t *TypeParam) SetBound(bound Type) {
+ if bound == nil {
+ panic("types2.TypeParam.SetBound: bound must not be nil")
+ }
+ t.bound = bound
+}
+
+// optype returns a type's operational type. Except for
+// type parameters, the operational type is the same
+// as the underlying type (as returned by under). For
+// Type parameters, the operational type is determined
+// by the corresponding type bound's type list. The
+// result may be the bottom or top type, but it is never
+// the incoming type parameter.
func optype(typ Type) Type {
if t := asTypeParam(typ); t != nil {
// If the optype is typ, return the top type as we have
diff --git a/test/typeparam/absdiff.go b/test/typeparam/absdiff.go
index ecaa907795..e76a998b4d 100644
--- a/test/typeparam/absdiff.go
+++ b/test/typeparam/absdiff.go
@@ -48,8 +48,7 @@ type Complex interface {
type orderedAbs[T orderedNumeric] T
func (a orderedAbs[T]) Abs() orderedAbs[T] {
- // TODO(danscales): orderedAbs[T] conversion shouldn't be needed
- if a < orderedAbs[T](0) {
+ if a < 0 {
return -a
}
return a
diff --git a/test/typeparam/absdiffimp.dir/a.go b/test/typeparam/absdiffimp.dir/a.go
new file mode 100644
index 0000000000..df81dcf538
--- /dev/null
+++ b/test/typeparam/absdiffimp.dir/a.go
@@ -0,0 +1,75 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package a
+
+import (
+ "math"
+)
+
+type Numeric interface {
+ ~int | ~int8 | ~int16 | ~int32 | ~int64 |
+ ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
+ ~float32 | ~float64 |
+ ~complex64 | ~complex128
+}
+
+// numericAbs matches numeric types with an Abs method.
+type numericAbs[T any] interface {
+ Numeric
+ Abs() T
+}
+
+// AbsDifference computes the absolute value of the difference of
+// a and b, where the absolute value is determined by the Abs method.
+func absDifference[T numericAbs[T]](a, b T) T {
+ d := a - b
+ return d.Abs()
+}
+
+// orderedNumeric matches numeric types that support the < operator.
+type orderedNumeric interface {
+ ~int | ~int8 | ~int16 | ~int32 | ~int64 |
+ ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
+ ~float32 | ~float64
+}
+
+// Complex matches the two complex types, which do not have a < operator.
+type Complex interface {
+ ~complex64 | ~complex128
+}
+
+// orderedAbs is a helper type that defines an Abs method for
+// ordered numeric types.
+type orderedAbs[T orderedNumeric] T
+
+func (a orderedAbs[T]) Abs() orderedAbs[T] {
+ if a < 0 {
+ return -a
+ }
+ return a
+}
+
+// complexAbs is a helper type that defines an Abs method for
+// complex types.
+type complexAbs[T Complex] T
+
+func (a complexAbs[T]) Abs() complexAbs[T] {
+ r := float64(real(a))
+ i := float64(imag(a))
+ d := math.Sqrt(r * r + i * i)
+ return complexAbs[T](complex(d, 0))
+}
+
+// OrderedAbsDifference returns the absolute value of the difference
+// between a and b, where a and b are of an ordered type.
+func OrderedAbsDifference[T orderedNumeric](a, b T) T {
+ return T(absDifference(orderedAbs[T](a), orderedAbs[T](b)))
+}
+
+// ComplexAbsDifference returns the absolute value of the difference
+// between a and b, where a and b are of a complex type.
+func ComplexAbsDifference[T Complex](a, b T) T {
+ return T(absDifference(complexAbs[T](a), complexAbs[T](b)))
+}
diff --git a/test/typeparam/absdiffimp.dir/main.go b/test/typeparam/absdiffimp.dir/main.go
new file mode 100644
index 0000000000..8eefdbdf38
--- /dev/null
+++ b/test/typeparam/absdiffimp.dir/main.go
@@ -0,0 +1,29 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package main
+
+import (
+ "a"
+ "fmt"
+)
+
+func main() {
+ if got, want := a.OrderedAbsDifference(1.0, -2.0), 3.0; got != want {
+ panic(fmt.Sprintf("got = %v, want = %v", got, want))
+ }
+ if got, want := a.OrderedAbsDifference(-1.0, 2.0), 3.0; got != want {
+ panic(fmt.Sprintf("got = %v, want = %v", got, want))
+ }
+ if got, want := a.OrderedAbsDifference(-20, 15), 35; got != want {
+ panic(fmt.Sprintf("got = %v, want = %v", got, want))
+ }
+
+ if got, want := a.ComplexAbsDifference(5.0+2.0i, 2.0-2.0i), 5+0i; got != want {
+ panic(fmt.Sprintf("got = %v, want = %v", got, want))
+ }
+ if got, want := a.ComplexAbsDifference(2.0-2.0i, 5.0+2.0i), 5+0i; got != want {
+ panic(fmt.Sprintf("got = %v, want = %v", got, want))
+ }
+}
diff --git a/test/typeparam/absdiffimp.go b/test/typeparam/absdiffimp.go
new file mode 100644
index 0000000000..76930e5e4f
--- /dev/null
+++ b/test/typeparam/absdiffimp.go
@@ -0,0 +1,7 @@
+// rundir -G=3
+
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ignored
diff --git a/test/typeparam/orderedmapsimp.dir/a.go b/test/typeparam/orderedmapsimp.dir/a.go
new file mode 100644
index 0000000000..1b5827b4bb
--- /dev/null
+++ b/test/typeparam/orderedmapsimp.dir/a.go
@@ -0,0 +1,226 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package a
+
+import (
+ "context"
+ "runtime"
+)
+
+type Ordered interface {
+ ~int | ~int8 | ~int16 | ~int32 | ~int64 |
+ ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
+ ~float32 | ~float64 |
+ ~string
+}
+
+// Map is an ordered map.
+type Map[K, V any] struct {
+ root *node[K, V]
+ compare func(K, K) int
+}
+
+// node is the type of a node in the binary tree.
+type node[K, V any] struct {
+ key K
+ val V
+ left, right *node[K, V]
+}
+
+// New returns a new map. It takes a comparison function that compares two
+// keys and returns < 0 if the first is less, == 0 if they are equal,
+// > 0 if the first is greater.
+func New[K, V any](compare func(K, K) int) *Map[K, V] {
+ return &Map[K, V]{compare: compare}
+}
+
+// NewOrdered returns a new map whose key is an ordered type.
+// This is like New, but does not require providing a compare function.
+// The map compare function uses the obvious key ordering.
+func NewOrdered[K Ordered, V any]() *Map[K, V] {
+ return New[K, V](func(k1, k2 K) int {
+ switch {
+ case k1 < k2:
+ return -1
+ case k1 > k2:
+ return 1
+ default:
+ return 0
+ }
+ })
+}
+
+// find looks up key in the map, returning either a pointer to the slot of the
+// node holding key, or a pointer to the slot where a node would go.
+func (m *Map[K, V]) find(key K) **node[K, V] {
+ pn := &m.root
+ for *pn != nil {
+ switch cmp := m.compare(key, (*pn).key); {
+ case cmp < 0:
+ pn = &(*pn).left
+ case cmp > 0:
+ pn = &(*pn).right
+ default:
+ return pn
+ }
+ }
+ return pn
+}
+
+// Insert inserts a new key/value into the map.
+// If the key is already present, the value is replaced.
+// Reports whether this is a new key.
+func (m *Map[K, V]) Insert(key K, val V) bool {
+ pn := m.find(key)
+ if *pn != nil {
+ (*pn).val = val
+ return false
+ }
+ *pn = &node[K, V]{key: key, val: val}
+ return true
+}
+
+// Find returns the value associated with a key, or the zero value
+// if not present. The second result reports whether the key was found.
+func (m *Map[K, V]) Find(key K) (V, bool) {
+ pn := m.find(key)
+ if *pn == nil {
+ var zero V
+ return zero, false
+ }
+ return (*pn).val, true
+}
+
+// keyValue is a pair of key and value used while iterating.
+type keyValue[K, V any] struct {
+ key K
+ val V
+}
+
+// iterate returns an iterator that traverses the map.
+// func (m *Map[K, V]) Iterate() *Iterator[K, V] {
+// sender, receiver := Ranger[keyValue[K, V]]()
+// var f func(*node[K, V]) bool
+// f = func(n *node[K, V]) bool {
+// if n == nil {
+// return true
+// }
+// // Stop the traversal if Send fails, which means that
+// // nothing is listening to the receiver.
+// return f(n.left) &&
+// sender.Send(context.Background(), keyValue[K, V]{n.key, n.val}) &&
+// f(n.right)
+// }
+// go func() {
+// f(m.root)
+// sender.Close()
+// }()
+// return &Iterator[K, V]{receiver}
+// }
+
+// Iterator is used to iterate over the map.
+type Iterator[K, V any] struct {
+ r *Receiver[keyValue[K, V]]
+}
+
+// Next returns the next key and value pair, and a boolean that reports
+// whether they are valid. If not valid, we have reached the end of the map.
+func (it *Iterator[K, V]) Next() (K, V, bool) {
+ keyval, ok := it.r.Next(context.Background())
+ if !ok {
+ var zerok K
+ var zerov V
+ return zerok, zerov, false
+ }
+ return keyval.key, keyval.val, true
+}
+
+// Equal reports whether two slices are equal: the same length and all
+// elements equal. All floating point NaNs are considered equal.
+func SliceEqual[Elem comparable](s1, s2 []Elem) bool {
+ if len(s1) != len(s2) {
+ return false
+ }
+ for i, v1 := range s1 {
+ v2 := s2[i]
+ if v1 != v2 {
+ isNaN := func(f Elem) bool { return f != f }
+ if !isNaN(v1) || !isNaN(v2) {
+ return false
+ }
+ }
+ }
+ return true
+}
+
+// Ranger returns a Sender and a Receiver. The Receiver provides a
+// Next method to retrieve values. The Sender provides a Send method
+// to send values and a Close method to stop sending values. The Next
+// method indicates when the Sender has been closed, and the Send
+// method indicates when the Receiver has been freed.
+//
+// This is a convenient way to exit a goroutine sending values when
+// the receiver stops reading them.
+func Ranger[Elem any]() (*Sender[Elem], *Receiver[Elem]) {
+ c := make(chan Elem)
+ d := make(chan struct{})
+ s := &Sender[Elem]{
+ values: c,
+ done: d,
+ }
+ r := &Receiver[Elem] {
+ values: c,
+ done: d,
+ }
+ runtime.SetFinalizer(r, (*Receiver[Elem]).finalize)
+ return s, r
+}
+
+// A Sender is used to send values to a Receiver.
+type Sender[Elem any] struct {
+ values chan<- Elem
+ done <-chan struct{}
+}
+
+// Send sends a value to the receiver. It reports whether the value was sent.
+// The value will not be sent if the context is closed or the receiver
+// is freed.
+func (s *Sender[Elem]) Send(ctx context.Context, v Elem) bool {
+ select {
+ case <-ctx.Done():
+ return false
+ case s.values <- v:
+ return true
+ case <-s.done:
+ return false
+ }
+}
+
+// Close tells the receiver that no more values will arrive.
+// After Close is called, the Sender may no longer be used.
+func (s *Sender[Elem]) Close() {
+ close(s.values)
+}
+
+// A Receiver receives values from a Sender.
+type Receiver[Elem any] struct {
+ values <-chan Elem
+ done chan<- struct{}
+}
+
+// Next returns the next value from the channel. The bool result indicates
+// whether the value is valid.
+func (r *Receiver[Elem]) Next(ctx context.Context) (v Elem, ok bool) {
+ select {
+ case <-ctx.Done():
+ case v, ok = <-r.values:
+ }
+ return v, ok
+}
+
+// finalize is a finalizer for the receiver.
+func (r *Receiver[Elem]) finalize() {
+ close(r.done)
+}
diff --git a/test/typeparam/orderedmapsimp.dir/main.go b/test/typeparam/orderedmapsimp.dir/main.go
new file mode 100644
index 0000000000..77869ad9fc
--- /dev/null
+++ b/test/typeparam/orderedmapsimp.dir/main.go
@@ -0,0 +1,67 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package main
+
+import (
+ "a"
+ "bytes"
+ "fmt"
+)
+
+func TestMap() {
+ m := a.New[[]byte, int](bytes.Compare)
+
+ if _, found := m.Find([]byte("a")); found {
+ panic(fmt.Sprintf("unexpectedly found %q in empty map", []byte("a")))
+ }
+
+ for _, c := range []int{ 'a', 'c', 'b' } {
+ if !m.Insert([]byte(string(c)), c) {
+ panic(fmt.Sprintf("key %q unexpectedly already present", []byte(string(c))))
+ }
+ }
+ if m.Insert([]byte("c"), 'x') {
+ panic(fmt.Sprintf("key %q unexpectedly not present", []byte("c")))
+ }
+
+ if v, found := m.Find([]byte("a")); !found {
+ panic(fmt.Sprintf("did not find %q", []byte("a")))
+ } else if v != 'a' {
+ panic(fmt.Sprintf("key %q returned wrong value %c, expected %c", []byte("a"), v, 'a'))
+ }
+ if v, found := m.Find([]byte("c")); !found {
+ panic(fmt.Sprintf("did not find %q", []byte("c")))
+ } else if v != 'x' {
+ panic(fmt.Sprintf("key %q returned wrong value %c, expected %c", []byte("c"), v, 'x'))
+ }
+
+ if _, found := m.Find([]byte("d")); found {
+ panic(fmt.Sprintf("unexpectedly found %q", []byte("d")))
+ }
+
+ // TODO(danscales): Iterate() has some things to be fixed with inlining in
+ // stenciled functions and using closures across packages.
+
+ // gather := func(it *a.Iterator[[]byte, int]) []int {
+ // var r []int
+ // for {
+ // _, v, ok := it.Next()
+ // if !ok {
+ // return r
+ // }
+ // r = append(r, v)
+ // }
+ // }
+ // got := gather(m.Iterate())
+ // want := []int{'a', 'b', 'x'}
+ // if !a.SliceEqual(got, want) {
+ // panic(fmt.Sprintf("Iterate returned %v, want %v", got, want))
+ // }
+
+}
+
+func main() {
+ TestMap()
+}
diff --git a/test/typeparam/orderedmapsimp.go b/test/typeparam/orderedmapsimp.go
new file mode 100644
index 0000000000..76930e5e4f
--- /dev/null
+++ b/test/typeparam/orderedmapsimp.go
@@ -0,0 +1,7 @@
+// rundir -G=3
+
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package ignored
diff --git a/test/typeparam/value.go b/test/typeparam/value.go
index 5dd7449d9c..6c6dabcf7c 100644
--- a/test/typeparam/value.go
+++ b/test/typeparam/value.go
@@ -12,7 +12,7 @@ type value[T any] struct {
val T
}
-func get[T2 any](v *value[T2]) T2 {
+func get[T any](v *value[T]) T {
return v.val
}
@@ -20,11 +20,11 @@ func set[T any](v *value[T], val T) {
v.val = val
}
-func (v *value[T2]) set(val T2) {
+func (v *value[T]) set(val T) {
v.val = val
}
-func (v *value[T2]) get() T2 {
+func (v *value[T]) get() T {
return v.val
}