aboutsummaryrefslogtreecommitdiff
path: root/src/bytes
diff options
context:
space:
mode:
authorKeith Randall <keithr@alum.mit.edu>2019-07-18 16:02:37 -0400
committerKeith Randall <khr@golang.org>2019-08-29 21:27:53 +0000
commitbf36219cdd1d354d58107ed8903679f538948154 (patch)
tree178288dadcddf0970bacf1bb724c3da716e8e93c /src/bytes
parentfbfb41e6389089b637562b41e05d40f5581b3bbd (diff)
downloadgo-bf36219cdd1d354d58107ed8903679f538948154.tar.gz
go-bf36219cdd1d354d58107ed8903679f538948154.zip
bytes/hash: add hashing package for bytes and strings
Fixes #28322 R=go1.14 RELNOTE=yes Change-Id: Ic29f8b587c8c77472260836a5c3e13edaded13fa Reviewed-on: https://go-review.googlesource.com/c/go/+/186877 Reviewed-by: Alan Donovan <adonovan@google.com>
Diffstat (limited to 'src/bytes')
-rw-r--r--src/bytes/hash/hash.go185
-rw-r--r--src/bytes/hash/hash_test.go66
-rw-r--r--src/bytes/hash/smhasher_test.go461
3 files changed, 712 insertions, 0 deletions
diff --git a/src/bytes/hash/hash.go b/src/bytes/hash/hash.go
new file mode 100644
index 0000000000..0e44e37ae7
--- /dev/null
+++ b/src/bytes/hash/hash.go
@@ -0,0 +1,185 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package bytes/hash provides hash functions on byte sequences. These
+// hash functions are intended to be used to implement hash tables or
+// other data structures that need to map arbitrary strings or byte
+// sequences to a uniform distribution of integers. The hash functions
+// are collision-resistant but are not cryptographically secure (use
+// one of the hash functions in crypto/* if you need that).
+//
+// The produced hashes depend only on the sequence of bytes provided
+// to the Hash object, not on the way in which they are provided. For
+// example, the calls
+// h.AddString("foo")
+// h.AddBytes([]byte{'f','o','o'})
+// h.AddByte('f'); h.AddByte('o'); h.AddByte('o')
+// will all have the same effect.
+//
+// Two Hash instances in the same process using the same seed
+// behave identically.
+//
+// Two Hash instances with the same seed in different processes are
+// not guaranteed to behave identically, even if the processes share
+// the same binary.
+//
+// Hashes are intended to be collision-resistant, even for situations
+// where an adversary controls the byte sequences being hashed.
+// All bits of the Hash result are close to uniformly and
+// independently distributed, so can be safely restricted to a range
+// using bit masking, shifting, or modular arithmetic.
+package hash
+
+import (
+ "unsafe"
+)
+
+// A Seed controls the behavior of a Hash. Two Hash objects with the
+// same seed in the same process will behave identically. Two Hash
+// objects with different seeds will very likely behave differently.
+type Seed struct {
+ s uint64
+}
+
+// A Hash object is used to compute the hash of a byte sequence.
+type Hash struct {
+ seed Seed // initial seed used for this hash
+ state Seed // current hash of all flushed bytes
+ buf [64]byte // unflushed byte buffer
+ n int // number of unflushed bytes
+}
+
+// AddByte adds b to the sequence of bytes hashed by h.
+func (h *Hash) AddByte(b byte) {
+ if h.n == len(h.buf) {
+ h.flush()
+ }
+ h.buf[h.n] = b
+ h.n++
+}
+
+// AddBytes adds b to the sequence of bytes hashed by h.
+func (h *Hash) AddBytes(b []byte) {
+ for h.n+len(b) > len(h.buf) {
+ k := copy(h.buf[h.n:], b)
+ h.n = len(h.buf)
+ b = b[k:]
+ h.flush()
+ }
+ h.n += copy(h.buf[h.n:], b)
+}
+
+// AddString adds the bytes of s to the sequence of bytes hashed by h.
+func (h *Hash) AddString(s string) {
+ for h.n+len(s) > len(h.buf) {
+ k := copy(h.buf[h.n:], s)
+ h.n = len(h.buf)
+ s = s[k:]
+ h.flush()
+ }
+ h.n += copy(h.buf[h.n:], s)
+}
+
+// Seed returns the seed value specified in the most recent call to
+// SetSeed, or the initial seed if SetSeed was never called.
+func (h *Hash) Seed() Seed {
+ return h.seed
+}
+
+// SetSeed sets the seed used by h. Two Hash objects with the same
+// seed in the same process will behave identically. Two Hash objects
+// with different seeds will very likely behave differently. Any
+// bytes added to h previous to this call will be discarded.
+func (h *Hash) SetSeed(seed Seed) {
+ h.seed = seed
+ h.state = seed
+ h.n = 0
+}
+
+// Reset discards all bytes added to h.
+// (The seed remains the same.)
+func (h *Hash) Reset() {
+ h.state = h.seed
+ h.n = 0
+}
+
+// precondition: buffer is full.
+func (h *Hash) flush() {
+ if h.n != len(h.buf) {
+ panic("flush of partially full buffer")
+ }
+ h.state.s = rthash(h.buf[:], h.state.s)
+ h.n = 0
+}
+
+// Hash returns a value which depends on h's seed and the sequence of
+// bytes added to h (since the last call to Reset or SetSeed).
+func (h *Hash) Hash() uint64 {
+ return rthash(h.buf[:h.n], h.state.s)
+}
+
+// MakeSeed returns a Seed initialized using the bits in s.
+// Two seeds generated with the same s are guaranteed to be equal.
+// Two seeds generated with different s are very likely to be different.
+// TODO: disallow this? See Alan's comment in the issue.
+func MakeSeed(s uint64) Seed {
+ return Seed{s: s}
+}
+
+// New returns a new Hash object. Different hash objects allocated by
+// this function will very likely have different seeds.
+func New() *Hash {
+ seed := Seed{s: uint64(runtime_fastrand())}
+ return &Hash{
+ seed: seed,
+ state: seed,
+ }
+}
+
+//go:linkname runtime_fastrand runtime.fastrand
+func runtime_fastrand() uint32
+
+func rthash(b []byte, seed uint64) uint64 {
+ if len(b) == 0 {
+ return seed
+ }
+ // The runtime hasher only works on uintptr. For 64-bit
+ // architectures, we use the hasher directly. Otherwise,
+ // we use two parallel hashers on the lower and upper 32 bits.
+ if unsafe.Sizeof(uintptr(0)) == 8 {
+ return uint64(runtime_memhash(unsafe.Pointer(&b[0]), uintptr(seed), uintptr(len(b))))
+ }
+ lo := runtime_memhash(unsafe.Pointer(&b[0]), uintptr(seed), uintptr(len(b)))
+ hi := runtime_memhash(unsafe.Pointer(&b[0]), uintptr(seed>>32), uintptr(len(b)))
+ // TODO: mix lo/hi? Get 64 bits some other way?
+ return uint64(hi)<<32 | uint64(lo)
+}
+
+//go:linkname runtime_memhash runtime.memhash
+func runtime_memhash(p unsafe.Pointer, seed, s uintptr) uintptr
+
+// Wrapper functions so that a bytes/hash.Hash implements
+// the hash.Hash and hash.Hash64 interfaces.
+
+func (h *Hash) Write(b []byte) (int, error) {
+ h.AddBytes(b)
+ return len(b), nil
+}
+func (h *Hash) Sum(b []byte) []byte {
+ x := h.Hash()
+ return append(b,
+ byte(x>>0),
+ byte(x>>8),
+ byte(x>>16),
+ byte(x>>24),
+ byte(x>>32),
+ byte(x>>40),
+ byte(x>>48),
+ byte(x>>56))
+}
+func (h *Hash) Sum64() uint64 {
+ return h.Hash()
+}
+func (h *Hash) Size() int { return 8 }
+func (h *Hash) BlockSize() int { return len(h.buf) }
diff --git a/src/bytes/hash/hash_test.go b/src/bytes/hash/hash_test.go
new file mode 100644
index 0000000000..311f451be2
--- /dev/null
+++ b/src/bytes/hash/hash_test.go
@@ -0,0 +1,66 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package hash_test
+
+import (
+ "bytes/hash"
+ basehash "hash"
+ "testing"
+)
+
+func TestUnseededHash(t *testing.T) {
+ m := map[uint64]struct{}{}
+ for i := 0; i < 1000; i++ {
+ h := hash.New()
+ m[h.Hash()] = struct{}{}
+ }
+ if len(m) < 900 {
+ t.Errorf("empty hash not sufficiently random: got %d, want 1000", len(m))
+ }
+}
+
+func TestSeededHash(t *testing.T) {
+ s := hash.MakeSeed(1234)
+ m := map[uint64]struct{}{}
+ for i := 0; i < 1000; i++ {
+ h := hash.New()
+ h.SetSeed(s)
+ m[h.Hash()] = struct{}{}
+ }
+ if len(m) != 1 {
+ t.Errorf("seeded hash is random: got %d, want 1", len(m))
+ }
+}
+
+func TestHashGrouping(t *testing.T) {
+ b := []byte("foo")
+ h1 := hash.New()
+ h2 := hash.New()
+ h2.SetSeed(h1.Seed())
+ h1.AddBytes(b)
+ for _, x := range b {
+ h2.AddByte(x)
+ }
+ if h1.Hash() != h2.Hash() {
+ t.Errorf("hash of \"foo\" and \"f\",\"o\",\"o\" not identical")
+ }
+}
+
+func TestHashBytesVsString(t *testing.T) {
+ s := "foo"
+ b := []byte(s)
+ h1 := hash.New()
+ h2 := hash.New()
+ h2.SetSeed(h1.Seed())
+ h1.AddString(s)
+ h2.AddBytes(b)
+ if h1.Hash() != h2.Hash() {
+ t.Errorf("hash of string and byts not identical")
+ }
+}
+
+// Make sure a Hash implements the hash.Hash and hash.Hash64 interfaces.
+var _ basehash.Hash = &hash.Hash{}
+var _ basehash.Hash64 = &hash.Hash{}
diff --git a/src/bytes/hash/smhasher_test.go b/src/bytes/hash/smhasher_test.go
new file mode 100644
index 0000000000..1b7b44db09
--- /dev/null
+++ b/src/bytes/hash/smhasher_test.go
@@ -0,0 +1,461 @@
+// Copyright 2019 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package hash_test
+
+import (
+ "bytes/hash"
+ "fmt"
+ "math"
+ "math/rand"
+ "runtime"
+ "strings"
+ "testing"
+)
+
+// Smhasher is a torture test for hash functions.
+// https://code.google.com/p/smhasher/
+// This code is a port of some of the Smhasher tests to Go.
+
+// Sanity checks.
+// hash should not depend on values outside key.
+// hash should not depend on alignment.
+func TestSmhasherSanity(t *testing.T) {
+ r := rand.New(rand.NewSource(1234))
+ const REP = 10
+ const KEYMAX = 128
+ const PAD = 16
+ const OFFMAX = 16
+ for k := 0; k < REP; k++ {
+ for n := 0; n < KEYMAX; n++ {
+ for i := 0; i < OFFMAX; i++ {
+ var b [KEYMAX + OFFMAX + 2*PAD]byte
+ var c [KEYMAX + OFFMAX + 2*PAD]byte
+ randBytes(r, b[:])
+ randBytes(r, c[:])
+ copy(c[PAD+i:PAD+i+n], b[PAD:PAD+n])
+ if bytesHash(b[PAD:PAD+n], 0) != bytesHash(c[PAD+i:PAD+i+n], 0) {
+ t.Errorf("hash depends on bytes outside key")
+ }
+ }
+ }
+ }
+}
+
+func bytesHash(b []byte, seed uint64) uint64 {
+ h := hash.New()
+ h.SetSeed(hash.MakeSeed(seed))
+ h.AddBytes(b)
+ return h.Hash()
+}
+func stringHash(s string, seed uint64) uint64 {
+ h := hash.New()
+ h.SetSeed(hash.MakeSeed(seed))
+ h.AddString(s)
+ return h.Hash()
+}
+
+const hashSize = 64
+
+func randBytes(r *rand.Rand, b []byte) {
+ r.Read(b) // can't fail
+}
+
+// A hashSet measures the frequency of hash collisions.
+type hashSet struct {
+ m map[uint64]struct{} // set of hashes added
+ n int // number of hashes added
+}
+
+func newHashSet() *hashSet {
+ return &hashSet{make(map[uint64]struct{}), 0}
+}
+func (s *hashSet) add(h uint64) {
+ s.m[h] = struct{}{}
+ s.n++
+}
+func (s *hashSet) addS(x string) {
+ s.add(stringHash(x, 0))
+}
+func (s *hashSet) addB(x []byte) {
+ s.add(bytesHash(x, 0))
+}
+func (s *hashSet) addS_seed(x string, seed uint64) {
+ s.add(stringHash(x, seed))
+}
+func (s *hashSet) check(t *testing.T) {
+ const SLOP = 10.0
+ collisions := s.n - len(s.m)
+ pairs := int64(s.n) * int64(s.n-1) / 2
+ expected := float64(pairs) / math.Pow(2.0, float64(hashSize))
+ stddev := math.Sqrt(expected)
+ if float64(collisions) > expected+SLOP*(3*stddev+1) {
+ t.Errorf("unexpected number of collisions: got=%d mean=%f stddev=%f", collisions, expected, stddev)
+ }
+}
+
+// a string plus adding zeros must make distinct hashes
+func TestSmhasherAppendedZeros(t *testing.T) {
+ s := "hello" + strings.Repeat("\x00", 256)
+ h := newHashSet()
+ for i := 0; i <= len(s); i++ {
+ h.addS(s[:i])
+ }
+ h.check(t)
+}
+
+// All 0-3 byte strings have distinct hashes.
+func TestSmhasherSmallKeys(t *testing.T) {
+ h := newHashSet()
+ var b [3]byte
+ for i := 0; i < 256; i++ {
+ b[0] = byte(i)
+ h.addB(b[:1])
+ for j := 0; j < 256; j++ {
+ b[1] = byte(j)
+ h.addB(b[:2])
+ if !testing.Short() {
+ for k := 0; k < 256; k++ {
+ b[2] = byte(k)
+ h.addB(b[:3])
+ }
+ }
+ }
+ }
+ h.check(t)
+}
+
+// Different length strings of all zeros have distinct hashes.
+func TestSmhasherZeros(t *testing.T) {
+ N := 256 * 1024
+ if testing.Short() {
+ N = 1024
+ }
+ h := newHashSet()
+ b := make([]byte, N)
+ for i := 0; i <= N; i++ {
+ h.addB(b[:i])
+ }
+ h.check(t)
+}
+
+// Strings with up to two nonzero bytes all have distinct hashes.
+func TestSmhasherTwoNonzero(t *testing.T) {
+ if runtime.GOARCH == "wasm" {
+ t.Skip("Too slow on wasm")
+ }
+ if testing.Short() {
+ t.Skip("Skipping in short mode")
+ }
+ h := newHashSet()
+ for n := 2; n <= 16; n++ {
+ twoNonZero(h, n)
+ }
+ h.check(t)
+}
+func twoNonZero(h *hashSet, n int) {
+ b := make([]byte, n)
+
+ // all zero
+ h.addB(b)
+
+ // one non-zero byte
+ for i := 0; i < n; i++ {
+ for x := 1; x < 256; x++ {
+ b[i] = byte(x)
+ h.addB(b)
+ b[i] = 0
+ }
+ }
+
+ // two non-zero bytes
+ for i := 0; i < n; i++ {
+ for x := 1; x < 256; x++ {
+ b[i] = byte(x)
+ for j := i + 1; j < n; j++ {
+ for y := 1; y < 256; y++ {
+ b[j] = byte(y)
+ h.addB(b)
+ b[j] = 0
+ }
+ }
+ b[i] = 0
+ }
+ }
+}
+
+// Test strings with repeats, like "abcdabcdabcdabcd..."
+func TestSmhasherCyclic(t *testing.T) {
+ if testing.Short() {
+ t.Skip("Skipping in short mode")
+ }
+ r := rand.New(rand.NewSource(1234))
+ const REPEAT = 8
+ const N = 1000000
+ for n := 4; n <= 12; n++ {
+ h := newHashSet()
+ b := make([]byte, REPEAT*n)
+ for i := 0; i < N; i++ {
+ b[0] = byte(i * 79 % 97)
+ b[1] = byte(i * 43 % 137)
+ b[2] = byte(i * 151 % 197)
+ b[3] = byte(i * 199 % 251)
+ randBytes(r, b[4:n])
+ for j := n; j < n*REPEAT; j++ {
+ b[j] = b[j-n]
+ }
+ h.addB(b)
+ }
+ h.check(t)
+ }
+}
+
+// Test strings with only a few bits set
+func TestSmhasherSparse(t *testing.T) {
+ if runtime.GOARCH == "wasm" {
+ t.Skip("Too slow on wasm")
+ }
+ if testing.Short() {
+ t.Skip("Skipping in short mode")
+ }
+ sparse(t, 32, 6)
+ sparse(t, 40, 6)
+ sparse(t, 48, 5)
+ sparse(t, 56, 5)
+ sparse(t, 64, 5)
+ sparse(t, 96, 4)
+ sparse(t, 256, 3)
+ sparse(t, 2048, 2)
+}
+func sparse(t *testing.T, n int, k int) {
+ b := make([]byte, n/8)
+ h := newHashSet()
+ setbits(h, b, 0, k)
+ h.check(t)
+}
+
+// set up to k bits at index i and greater
+func setbits(h *hashSet, b []byte, i int, k int) {
+ h.addB(b)
+ if k == 0 {
+ return
+ }
+ for j := i; j < len(b)*8; j++ {
+ b[j/8] |= byte(1 << uint(j&7))
+ setbits(h, b, j+1, k-1)
+ b[j/8] &= byte(^(1 << uint(j&7)))
+ }
+}
+
+// Test all possible combinations of n blocks from the set s.
+// "permutation" is a bad name here, but it is what Smhasher uses.
+func TestSmhasherPermutation(t *testing.T) {
+ if runtime.GOARCH == "wasm" {
+ t.Skip("Too slow on wasm")
+ }
+ if testing.Short() {
+ t.Skip("Skipping in short mode")
+ }
+ permutation(t, []uint32{0, 1, 2, 3, 4, 5, 6, 7}, 8)
+ permutation(t, []uint32{0, 1 << 29, 2 << 29, 3 << 29, 4 << 29, 5 << 29, 6 << 29, 7 << 29}, 8)
+ permutation(t, []uint32{0, 1}, 20)
+ permutation(t, []uint32{0, 1 << 31}, 20)
+ permutation(t, []uint32{0, 1, 2, 3, 4, 5, 6, 7, 1 << 29, 2 << 29, 3 << 29, 4 << 29, 5 << 29, 6 << 29, 7 << 29}, 6)
+}
+func permutation(t *testing.T, s []uint32, n int) {
+ b := make([]byte, n*4)
+ h := newHashSet()
+ genPerm(h, b, s, 0)
+ h.check(t)
+}
+func genPerm(h *hashSet, b []byte, s []uint32, n int) {
+ h.addB(b[:n])
+ if n == len(b) {
+ return
+ }
+ for _, v := range s {
+ b[n] = byte(v)
+ b[n+1] = byte(v >> 8)
+ b[n+2] = byte(v >> 16)
+ b[n+3] = byte(v >> 24)
+ genPerm(h, b, s, n+4)
+ }
+}
+
+type key interface {
+ clear() // set bits all to 0
+ random(r *rand.Rand) // set key to something random
+ bits() int // how many bits key has
+ flipBit(i int) // flip bit i of the key
+ hash() uint64 // hash the key
+ name() string // for error reporting
+}
+
+type bytesKey struct {
+ b []byte
+}
+
+func (k *bytesKey) clear() {
+ for i := range k.b {
+ k.b[i] = 0
+ }
+}
+func (k *bytesKey) random(r *rand.Rand) {
+ randBytes(r, k.b)
+}
+func (k *bytesKey) bits() int {
+ return len(k.b) * 8
+}
+func (k *bytesKey) flipBit(i int) {
+ k.b[i>>3] ^= byte(1 << uint(i&7))
+}
+func (k *bytesKey) hash() uint64 {
+ return bytesHash(k.b, 0)
+}
+func (k *bytesKey) name() string {
+ return fmt.Sprintf("bytes%d", len(k.b))
+}
+
+// Flipping a single bit of a key should flip each output bit with 50% probability.
+func TestSmhasherAvalanche(t *testing.T) {
+ if runtime.GOARCH == "wasm" {
+ t.Skip("Too slow on wasm")
+ }
+ if testing.Short() {
+ t.Skip("Skipping in short mode")
+ }
+ avalancheTest1(t, &bytesKey{make([]byte, 2)})
+ avalancheTest1(t, &bytesKey{make([]byte, 4)})
+ avalancheTest1(t, &bytesKey{make([]byte, 8)})
+ avalancheTest1(t, &bytesKey{make([]byte, 16)})
+ avalancheTest1(t, &bytesKey{make([]byte, 32)})
+ avalancheTest1(t, &bytesKey{make([]byte, 200)})
+}
+func avalancheTest1(t *testing.T, k key) {
+ const REP = 100000
+ r := rand.New(rand.NewSource(1234))
+ n := k.bits()
+
+ // grid[i][j] is a count of whether flipping
+ // input bit i affects output bit j.
+ grid := make([][hashSize]int, n)
+
+ for z := 0; z < REP; z++ {
+ // pick a random key, hash it
+ k.random(r)
+ h := k.hash()
+
+ // flip each bit, hash & compare the results
+ for i := 0; i < n; i++ {
+ k.flipBit(i)
+ d := h ^ k.hash()
+ k.flipBit(i)
+
+ // record the effects of that bit flip
+ g := &grid[i]
+ for j := 0; j < hashSize; j++ {
+ g[j] += int(d & 1)
+ d >>= 1
+ }
+ }
+ }
+
+ // Each entry in the grid should be about REP/2.
+ // More precisely, we did N = k.bits() * hashSize experiments where
+ // each is the sum of REP coin flips. We want to find bounds on the
+ // sum of coin flips such that a truly random experiment would have
+ // all sums inside those bounds with 99% probability.
+ N := n * hashSize
+ var c float64
+ // find c such that Prob(mean-c*stddev < x < mean+c*stddev)^N > .9999
+ for c = 0.0; math.Pow(math.Erf(c/math.Sqrt(2)), float64(N)) < .9999; c += .1 {
+ }
+ c *= 4.0 // allowed slack - we don't need to be perfectly random
+ mean := .5 * REP
+ stddev := .5 * math.Sqrt(REP)
+ low := int(mean - c*stddev)
+ high := int(mean + c*stddev)
+ for i := 0; i < n; i++ {
+ for j := 0; j < hashSize; j++ {
+ x := grid[i][j]
+ if x < low || x > high {
+ t.Errorf("bad bias for %s bit %d -> bit %d: %d/%d\n", k.name(), i, j, x, REP)
+ }
+ }
+ }
+}
+
+// All bit rotations of a set of distinct keys
+func TestSmhasherWindowed(t *testing.T) {
+ windowed(t, &bytesKey{make([]byte, 128)})
+}
+func windowed(t *testing.T, k key) {
+ if runtime.GOARCH == "wasm" {
+ t.Skip("Too slow on wasm")
+ }
+ if testing.Short() {
+ t.Skip("Skipping in short mode")
+ }
+ const BITS = 16
+
+ for r := 0; r < k.bits(); r++ {
+ h := newHashSet()
+ for i := 0; i < 1<<BITS; i++ {
+ k.clear()
+ for j := 0; j < BITS; j++ {
+ if i>>uint(j)&1 != 0 {
+ k.flipBit((j + r) % k.bits())
+ }
+ }
+ h.add(k.hash())
+ }
+ h.check(t)
+ }
+}
+
+// All keys of the form prefix + [A-Za-z0-9]*N + suffix.
+func TestSmhasherText(t *testing.T) {
+ if testing.Short() {
+ t.Skip("Skipping in short mode")
+ }
+ text(t, "Foo", "Bar")
+ text(t, "FooBar", "")
+ text(t, "", "FooBar")
+}
+func text(t *testing.T, prefix, suffix string) {
+ const N = 4
+ const S = "ABCDEFGHIJKLMNOPQRSTabcdefghijklmnopqrst0123456789"
+ const L = len(S)
+ b := make([]byte, len(prefix)+N+len(suffix))
+ copy(b, prefix)
+ copy(b[len(prefix)+N:], suffix)
+ h := newHashSet()
+ c := b[len(prefix):]
+ for i := 0; i < L; i++ {
+ c[0] = S[i]
+ for j := 0; j < L; j++ {
+ c[1] = S[j]
+ for k := 0; k < L; k++ {
+ c[2] = S[k]
+ for x := 0; x < L; x++ {
+ c[3] = S[x]
+ h.addB(b)
+ }
+ }
+ }
+ }
+ h.check(t)
+}
+
+// Make sure different seed values generate different hashes.
+func TestSmhasherSeed(t *testing.T) {
+ h := newHashSet()
+ const N = 100000
+ s := "hello"
+ for i := 0; i < N; i++ {
+ h.addS_seed(s, uint64(i))
+ h.addS_seed(s, uint64(i)<<32) // make sure high bits are used
+ }
+ h.check(t)
+}