aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRuss Cox <rsc@golang.org>2011-04-13 16:55:20 -0400
committerRuss Cox <rsc@golang.org>2011-04-13 16:55:20 -0400
commit7b6ee1a5d4823c3fdf9d157774c90d0865c128be (patch)
treea2adeba8027f8aa3bc53d1bdcec07ed0520ce644
parente6cf42c39a77efd911b60bd4c1eb6e3bc88d1fc8 (diff)
downloadgo-7b6ee1a5d4823c3fdf9d157774c90d0865c128be.tar.gz
go-7b6ee1a5d4823c3fdf9d157774c90d0865c128be.zip
reflect: inline method implementations
This CL is only cut-and-paste, moving code around. Moving it in a separate CL should simplify the diffs in later CLs. There are three patterns here. 1. A function like func (v Value) M() (...) { return v.panicIfNot(K).(*kValue).M() } becomes func (v Value) M() (...) { vv := v.panicIfNot(K).(*kValue) // body of (*kValue).M, s/v./vv./g } 2. A function like func (v Value) M() (...) { return v.panicIfNots(kList).(mer).M() } becomes func (v Value) M() (...) { switch vv := v.panicIfNots(kList).(type) { case *k1Value: // body of (*k1Value).M, s/v./vv./g case *k2Value: // body of (*k2Value).M, s/v./vv./g ... } panic("not reached") } 3. The rewrite of Value.Set follows 2, but each case is built from the bodies of (*kValue).SetValue and (*kValue).Set. func (v *kValue) SetValue(x Value) { v.Set(x.panicIfNot(K).(*kValue) } func (v *kValue) Set(x *kValue) { ... body } becomes, in the switch from 2, case *kValue: xx := x.panicIfNot(K).(*kValue) ... body, s/v./vv./g; s/x./xx./g R=r CC=golang-dev https://golang.org/cl/4398044
-rw-r--r--src/pkg/reflect/value.go1528
1 files changed, 629 insertions, 899 deletions
diff --git a/src/pkg/reflect/value.go b/src/pkg/reflect/value.go
index eeae6cce54..ddc31100f1 100644
--- a/src/pkg/reflect/value.go
+++ b/src/pkg/reflect/value.go
@@ -135,7 +135,7 @@ func (v Value) Addr() Value {
// It panics if v's kind is not Bool.
func (v Value) Bool() bool {
u := v.panicIfNot(Bool).(*boolValue)
- return u.Get()
+ return *(*bool)(u.addr)
}
// CanAddr returns true if the value's address can be obtained with Addr.
@@ -161,25 +161,133 @@ func (v Value) CanSet() bool {
// It panics if v's Kind is not Func.
// It returns the output parameters as Values.
func (v Value) Call(in []Value) []Value {
- return v.panicIfNot(Func).(*funcValue).Call(in)
-}
+ fv := v.panicIfNot(Func).(*funcValue)
+ t := fv.Type()
+ nin := len(in)
+ if fv.first != nil && !fv.isInterface {
+ nin++
+ }
+ if nin != t.NumIn() {
+ panic("funcValue: wrong argument count")
+ }
+ nout := t.NumOut()
-var capKinds = []Kind{Array, Chan, Slice}
+ // Compute arg size & allocate.
+ // This computation is 6g/8g-dependent
+ // and probably wrong for gccgo, but so
+ // is most of this function.
+ size := uintptr(0)
+ if fv.isInterface {
+ // extra word for interface value
+ size += ptrSize
+ }
+ for i := 0; i < nin; i++ {
+ tv := t.In(i)
+ a := uintptr(tv.Align())
+ size = (size + a - 1) &^ (a - 1)
+ size += tv.Size()
+ }
+ size = (size + ptrSize - 1) &^ (ptrSize - 1)
+ for i := 0; i < nout; i++ {
+ tv := t.Out(i)
+ a := uintptr(tv.Align())
+ size = (size + a - 1) &^ (a - 1)
+ size += tv.Size()
+ }
+
+ // size must be > 0 in order for &args[0] to be valid.
+ // the argument copying is going to round it up to
+ // a multiple of ptrSize anyway, so make it ptrSize to begin with.
+ if size < ptrSize {
+ size = ptrSize
+ }
+
+ // round to pointer size
+ size = (size + ptrSize - 1) &^ (ptrSize - 1)
+
+ // Copy into args.
+ //
+ // TODO(rsc): revisit when reference counting happens.
+ // The values are holding up the in references for us,
+ // but something must be done for the out references.
+ // For now make everything look like a pointer by pretending
+ // to allocate a []*int.
+ args := make([]*int, size/ptrSize)
+ ptr := uintptr(unsafe.Pointer(&args[0]))
+ off := uintptr(0)
+ delta := 0
+ if v := fv.first; v != nil {
+ // Hard-wired first argument.
+ if fv.isInterface {
+ // v is a single uninterpreted word
+ memmove(addr(ptr), v.getAddr(), ptrSize)
+ off = ptrSize
+ } else {
+ // v is a real value
+ tv := v.Type()
+ typesMustMatch(t.In(0), tv)
+ n := tv.Size()
+ memmove(addr(ptr), v.getAddr(), n)
+ off = n
+ delta = 1
+ }
+ }
+ for i, v := range in {
+ tv := v.Type()
+ typesMustMatch(t.In(i+delta), tv)
+ a := uintptr(tv.Align())
+ off = (off + a - 1) &^ (a - 1)
+ n := tv.Size()
+ memmove(addr(ptr+off), v.internal().getAddr(), n)
+ off += n
+ }
+ off = (off + ptrSize - 1) &^ (ptrSize - 1)
+
+ // Call
+ call(*(**byte)(fv.addr), (*byte)(addr(ptr)), uint32(size))
+
+ // Copy return values out of args.
+ //
+ // TODO(rsc): revisit like above.
+ ret := make([]Value, nout)
+ for i := 0; i < nout; i++ {
+ tv := t.Out(i)
+ a := uintptr(tv.Align())
+ off = (off + a - 1) &^ (a - 1)
+ v := Zero(tv)
+ n := tv.Size()
+ memmove(v.internal().getAddr(), addr(ptr+off), n)
+ ret[i] = v
+ off += n
+ }
-type capper interface {
- Cap() int
+ return ret
}
+var capKinds = []Kind{Array, Chan, Slice}
+
// Cap returns v's capacity.
// It panics if v's Kind is not Array, Chan, or Slice.
func (v Value) Cap() int {
- return v.panicIfNots(capKinds).(capper).Cap()
+ switch vv := v.panicIfNots(capKinds).(type) {
+ case *arrayValue:
+ return vv.typ.Len()
+ case *chanValue:
+ ch := *(**byte)(vv.addr)
+ return int(chancap(ch))
+ case *sliceValue:
+ return int(vv.slice().Cap)
+ }
+ panic("not reached")
}
// Close closes the channel v.
// It panics if v's Kind is not Chan.
func (v Value) Close() {
- v.panicIfNot(Chan).(*chanValue).Close()
+ vv := v.panicIfNot(Chan).(*chanValue)
+
+ ch := *(**byte)(vv.addr)
+ chanclose(ch)
}
var complexKinds = []Kind{Complex64, Complex128}
@@ -187,40 +295,84 @@ var complexKinds = []Kind{Complex64, Complex128}
// Complex returns v's underlying value, as a complex128.
// It panics if v's Kind is not Complex64 or Complex128
func (v Value) Complex() complex128 {
- return v.panicIfNots(complexKinds).(*complexValue).Get()
+ vv := v.panicIfNots(complexKinds).(*complexValue)
+
+ switch vv.typ.Kind() {
+ case Complex64:
+ return complex128(*(*complex64)(vv.addr))
+ case Complex128:
+ return *(*complex128)(vv.addr)
+ }
+ panic("reflect: invalid complex kind")
}
var interfaceOrPtr = []Kind{Interface, Ptr}
-type elemer interface {
- Elem() Value
-}
-
// Elem returns the value that the interface v contains
// or that the pointer v points to.
// It panics if v's Kind is not Interface or Ptr.
// It returns the zero Value if v is nil.
func (v Value) Elem() Value {
- return v.panicIfNots(interfaceOrPtr).(elemer).Elem()
+ switch vv := v.panicIfNots(interfaceOrPtr).(type) {
+ case *interfaceValue:
+ return NewValue(vv.Interface())
+ case *ptrValue:
+ if v.IsNil() {
+ return Value{}
+ }
+ flag := canAddr
+ if vv.flag&canStore != 0 {
+ flag |= canSet | canStore
+ }
+ return newValue(vv.typ.Elem(), *(*addr)(vv.addr), flag)
+ }
+ panic("not reached")
}
// Field returns the i'th field of the struct v.
// It panics if v's Kind is not Struct.
func (v Value) Field(i int) Value {
- return v.panicIfNot(Struct).(*structValue).Field(i)
+ vv := v.panicIfNot(Struct).(*structValue)
+
+ t := vv.typ
+ if i < 0 || i >= t.NumField() {
+ panic("reflect: Field index out of range")
+ }
+ f := t.Field(i)
+ flag := vv.flag
+ if f.PkgPath != "" {
+ // unexported field
+ flag &^= canSet | canStore
+ }
+ return newValue(f.Type, addr(uintptr(vv.addr)+f.Offset), flag)
}
// FieldByIndex returns the nested field corresponding to index.
// It panics if v's Kind is not struct.
func (v Value) FieldByIndex(index []int) Value {
- return v.panicIfNot(Struct).(*structValue).FieldByIndex(index)
+ v.panicIfNot(Struct)
+ for i, x := range index {
+ if i > 0 {
+ if v.Kind() == Ptr {
+ v = v.Elem()
+ }
+ if v.Kind() != Struct {
+ return Value{}
+ }
+ }
+ v = v.Field(x)
+ }
+ return v
}
// FieldByName returns the struct field with the given name.
// It returns the zero Value if no field was found.
// It panics if v's Kind is not struct.
func (v Value) FieldByName(name string) Value {
- return v.panicIfNot(Struct).(*structValue).FieldByName(name)
+ if f, ok := v.Type().FieldByName(name); ok {
+ return v.FieldByIndex(f.Index)
+ }
+ return Value{}
}
// FieldByNameFunc returns the struct field with a name
@@ -228,7 +380,10 @@ func (v Value) FieldByName(name string) Value {
// It panics if v's Kind is not struct.
// It returns the zero Value if no field was found.
func (v Value) FieldByNameFunc(match func(string) bool) Value {
- return v.panicIfNot(Struct).(*structValue).FieldByNameFunc(match)
+ if f, ok := v.Type().FieldByNameFunc(match); ok {
+ return v.FieldByIndex(f.Index)
+ }
+ return Value{}
}
var floatKinds = []Kind{Float32, Float64}
@@ -236,7 +391,16 @@ var floatKinds = []Kind{Float32, Float64}
// Float returns v's underlying value, as an float64.
// It panics if v's Kind is not Float32 or Float64
func (v Value) Float() float64 {
- return v.panicIfNots(floatKinds).(*floatValue).Get()
+ vv := v.panicIfNots(floatKinds).(*floatValue)
+
+ switch vv.typ.Kind() {
+ case Float32:
+ return float64(*(*float32)(vv.addr))
+ case Float64:
+ return *(*float64)(vv.addr)
+ }
+ panic("reflect: invalid float kind")
+
}
var arrayOrSlice = []Kind{Array, Slice}
@@ -244,7 +408,29 @@ var arrayOrSlice = []Kind{Array, Slice}
// Index returns v's i'th element.
// It panics if v's Kind is not Array or Slice.
func (v Value) Index(i int) Value {
- return v.panicIfNots(arrayOrSlice).(arrayOrSliceValue).Elem(i)
+ switch vv := v.panicIfNots(arrayOrSlice).(type) {
+ case *arrayValue:
+ typ := vv.typ.Elem()
+ n := v.Len()
+ if i < 0 || i >= n {
+ panic("array index out of bounds")
+ }
+ p := addr(uintptr(vv.addr()) + uintptr(i)*typ.Size())
+ return newValue(typ, p, vv.flag)
+ case *sliceValue:
+ typ := vv.typ.Elem()
+ n := v.Len()
+ if i < 0 || i >= n {
+ panic("reflect: slice index out of range")
+ }
+ p := addr(uintptr(vv.addr()) + uintptr(i)*typ.Size())
+ flag := canAddr
+ if vv.flag&canStore != 0 {
+ flag |= canSet | canStore
+ }
+ return newValue(typ, p, flag)
+ }
+ panic("not reached")
}
var intKinds = []Kind{Int, Int8, Int16, Int32, Int64}
@@ -252,7 +438,21 @@ var intKinds = []Kind{Int, Int8, Int16, Int32, Int64}
// Int returns v's underlying value, as an int64.
// It panics if v's Kind is not a sized or unsized Int kind.
func (v Value) Int() int64 {
- return v.panicIfNots(intKinds).(*intValue).Get()
+ vv := v.panicIfNots(intKinds).(*intValue)
+
+ switch vv.typ.Kind() {
+ case Int:
+ return int64(*(*int)(vv.addr))
+ case Int8:
+ return int64(*(*int8)(vv.addr))
+ case Int16:
+ return int64(*(*int16)(vv.addr))
+ case Int32:
+ return int64(*(*int32)(vv.addr))
+ case Int64:
+ return *(*int64)(vv.addr)
+ }
+ panic("reflect: invalid int kind")
}
// Interface returns v's value as an interface{}.
@@ -266,19 +466,31 @@ func (v Value) Interface() interface{} {
// InterfaceData returns the interface v's value as a uintptr pair.
// It panics if v's Kind is not Interface.
func (v Value) InterfaceData() [2]uintptr {
- return v.panicIfNot(Interface).(*interfaceValue).Get()
+ vv := v.panicIfNot(Interface).(*interfaceValue)
+
+ return *(*[2]uintptr)(vv.addr)
}
var nilKinds = []Kind{Chan, Func, Interface, Map, Ptr, Slice}
-type isNiller interface {
- IsNil() bool
-}
-
// IsNil returns true if v is a nil value.
// It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
func (v Value) IsNil() bool {
- return v.panicIfNots(nilKinds).(isNiller).IsNil()
+ switch vv := v.panicIfNots(nilKinds).(type) {
+ case *chanValue:
+ return *(*uintptr)(vv.addr) == 0
+ case *funcValue:
+ return *(*uintptr)(vv.addr) == 0
+ case *interfaceValue:
+ return vv.Interface() == nil
+ case *mapValue:
+ return *(*uintptr)(vv.addr) == 0
+ case *ptrValue:
+ return *(*uintptr)(vv.addr) == 0
+ case *sliceValue:
+ return vv.slice().Data == 0
+ }
+ panic("not reached")
}
// IsValid returns true if v represents a value.
@@ -301,28 +513,68 @@ func (v Value) Kind() Kind {
var lenKinds = []Kind{Array, Chan, Map, Slice}
-type lenner interface {
- Len() int
-}
-
// Len returns v's length.
// It panics if v's Kind is not Array, Chan, Map, or Slice.
func (v Value) Len() int {
- return v.panicIfNots(lenKinds).(lenner).Len()
+ switch vv := v.panicIfNots(lenKinds).(type) {
+ case *arrayValue:
+ return vv.typ.Len()
+ case *chanValue:
+ ch := *(**byte)(vv.addr)
+ return int(chanlen(ch))
+ case *mapValue:
+ m := *(**byte)(vv.addr)
+ if m == nil {
+ return 0
+ }
+ return int(maplen(m))
+ case *sliceValue:
+ return int(vv.slice().Len)
+ }
+ panic("not reached")
}
// MapIndex returns the value associated with key in the map v.
// It panics if v's Kind is not Map.
// It returns the zero Value if key is not found in the map.
func (v Value) MapIndex(key Value) Value {
- return v.panicIfNot(Map).(*mapValue).Elem(key)
+ vv := v.panicIfNot(Map).(*mapValue)
+ t := vv.Type()
+ typesMustMatch(t.Key(), key.Type())
+ m := *(**byte)(vv.addr)
+ if m == nil {
+ return Value{}
+ }
+ newval := Zero(t.Elem())
+ if !mapaccess(m, (*byte)(key.internal().getAddr()), (*byte)(newval.internal().getAddr())) {
+ return Value{}
+ }
+ return newval
}
// MapKeys returns a slice containing all the keys present in the map,
// in unspecified order.
// It panics if v's Kind is not Map.
func (v Value) MapKeys() []Value {
- return v.panicIfNot(Map).(*mapValue).Keys()
+ vv := v.panicIfNot(Map).(*mapValue)
+ tk := vv.Type().Key()
+ m := *(**byte)(vv.addr)
+ mlen := int32(0)
+ if m != nil {
+ mlen = maplen(m)
+ }
+ it := mapiterinit(m)
+ a := make([]Value, mlen)
+ var i int
+ for i = 0; i < len(a); i++ {
+ k := Zero(tk)
+ if !mapiterkey(it, (*byte)(k.internal().getAddr())) {
+ break
+ }
+ a[i] = k
+ mapiternext(it)
+ }
+ return a[0:i]
}
// Method returns a function value corresponding to v's i'th method.
@@ -335,124 +587,390 @@ func (v Value) Method(i int) Value {
// NumField returns the number of fields in the struct v.
// It panics if v's Kind is not Struct.
func (v Value) NumField() int {
- return v.panicIfNot(Struct).(*structValue).NumField()
+ return v.panicIfNot(Struct).(*structValue).typ.NumField()
}
// OverflowComplex returns true if the complex128 x cannot be represented by v's type.
// It panics if v's Kind is not Complex64 or Complex128.
func (v Value) OverflowComplex(x complex128) bool {
- return v.panicIfNots(complexKinds).(*complexValue).Overflow(x)
+ vv := v.panicIfNots(complexKinds).(*complexValue)
+
+ if vv.typ.Size() == 16 {
+ return false
+ }
+ r := real(x)
+ i := imag(x)
+ if r < 0 {
+ r = -r
+ }
+ if i < 0 {
+ i = -i
+ }
+ return math.MaxFloat32 <= r && r <= math.MaxFloat64 ||
+ math.MaxFloat32 <= i && i <= math.MaxFloat64
}
// OverflowFloat returns true if the float64 x cannot be represented by v's type.
// It panics if v's Kind is not Float32 or Float64.
func (v Value) OverflowFloat(x float64) bool {
- return v.panicIfNots(floatKinds).(*floatValue).Overflow(x)
+ vv := v.panicIfNots(floatKinds).(*floatValue)
+
+ if vv.typ.Size() == 8 {
+ return false
+ }
+ if x < 0 {
+ x = -x
+ }
+ return math.MaxFloat32 < x && x <= math.MaxFloat64
}
// OverflowInt returns true if the int64 x cannot be represented by v's type.
// It panics if v's Kind is not a sized or unsized Int kind.
func (v Value) OverflowInt(x int64) bool {
- return v.panicIfNots(intKinds).(*intValue).Overflow(x)
+ vv := v.panicIfNots(intKinds).(*intValue)
+
+ bitSize := uint(vv.typ.Bits())
+ trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+ return x != trunc
}
// OverflowUint returns true if the uint64 x cannot be represented by v's type.
// It panics if v's Kind is not a sized or unsized Uint kind.
func (v Value) OverflowUint(x uint64) bool {
- return v.panicIfNots(uintKinds).(*uintValue).Overflow(x)
+ vv := v.panicIfNots(uintKinds).(*uintValue)
+
+ bitSize := uint(vv.typ.Bits())
+ trunc := (x << (64 - bitSize)) >> (64 - bitSize)
+ return x != trunc
}
var pointerKinds = []Kind{Chan, Func, Map, Ptr, Slice, UnsafePointer}
-type uintptrGetter interface {
- Get() uintptr
-}
-
// Pointer returns v's value as a uintptr.
// It returns uintptr instead of unsafe.Pointer so that
// code using reflect cannot obtain unsafe.Pointers
// without importing the unsafe package explicitly.
// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
func (v Value) Pointer() uintptr {
- return v.panicIfNots(pointerKinds).(uintptrGetter).Get()
+ switch vv := v.panicIfNots(pointerKinds).(type) {
+ case *chanValue:
+ return *(*uintptr)(vv.addr)
+ case *funcValue:
+ return *(*uintptr)(vv.addr)
+ case *mapValue:
+ return *(*uintptr)(vv.addr)
+ case *ptrValue:
+ return *(*uintptr)(vv.addr)
+ case *sliceValue:
+ typ := vv.typ
+ return uintptr(vv.addr()) + uintptr(v.Cap())*typ.Elem().Size()
+ case *unsafePointerValue:
+ return uintptr(*(*unsafe.Pointer)(vv.addr))
+ }
+ panic("not reached")
}
-
// Recv receives and returns a value from the channel v.
// It panics if v's Kind is not Chan.
// The receive blocks until a value is ready.
// The boolean value ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
func (v Value) Recv() (x Value, ok bool) {
- return v.panicIfNot(Chan).(*chanValue).Recv()
+ return v.panicIfNot(Chan).(*chanValue).recv(nil)
+}
+
+// internal recv; non-blocking if selected != nil
+func (v *chanValue) recv(selected *bool) (Value, bool) {
+ t := v.Type()
+ if t.ChanDir()&RecvDir == 0 {
+ panic("recv on send-only channel")
+ }
+ ch := *(**byte)(v.addr)
+ x := Zero(t.Elem())
+ var ok bool
+ chanrecv(ch, (*byte)(x.internal().getAddr()), selected, &ok)
+ return x, ok
}
// Send sends x on the channel v.
// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
func (v Value) Send(x Value) {
- v.panicIfNot(Chan).(*chanValue).Send(x)
+ v.panicIfNot(Chan).(*chanValue).send(x, nil)
+}
+
+// internal send; non-blocking if selected != nil
+func (v *chanValue) send(x Value, selected *bool) {
+ t := v.Type()
+ if t.ChanDir()&SendDir == 0 {
+ panic("send on recv-only channel")
+ }
+ typesMustMatch(t.Elem(), x.Type())
+ ch := *(**byte)(v.addr)
+ chansend(ch, (*byte)(x.internal().getAddr()), selected)
}
// Set assigns x to the value v; x must have the same type as v.
// It panics if CanSet() returns false or if x is the zero Value.
func (v Value) Set(x Value) {
x.internal()
- v.internal().SetValue(x)
+ switch vv := v.internal().(type) {
+ case *arrayValue:
+ xx := x.panicIfNot(Array).(*arrayValue)
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ typesMustMatch(vv.typ, xx.typ)
+ Copy(v, x)
+
+ case *boolValue:
+ v.SetBool(x.Bool())
+
+ case *chanValue:
+ x := x.panicIfNot(Chan).(*chanValue)
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ typesMustMatch(vv.typ, x.typ)
+ *(*uintptr)(vv.addr) = *(*uintptr)(x.addr)
+
+ case *floatValue:
+ v.SetFloat(x.Float())
+
+ case *funcValue:
+ x := x.panicIfNot(Func).(*funcValue)
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ typesMustMatch(vv.typ, x.typ)
+ *(*uintptr)(vv.addr) = *(*uintptr)(x.addr)
+
+ case *intValue:
+ v.SetInt(x.Int())
+
+ case *interfaceValue:
+ i := x.Interface()
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ // Two different representations; see comment in Get.
+ // Empty interface is easy.
+ t := (*interfaceType)(unsafe.Pointer(vv.typ.(*commonType)))
+ if t.NumMethod() == 0 {
+ *(*interface{})(vv.addr) = i
+ return
+ }
+
+ // Non-empty interface requires a runtime check.
+ setiface(t, &i, vv.addr)
+
+ case *mapValue:
+ x := x.panicIfNot(Map).(*mapValue)
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ if x == nil {
+ *(**uintptr)(vv.addr) = nil
+ return
+ }
+ typesMustMatch(vv.typ, x.typ)
+ *(*uintptr)(vv.addr) = *(*uintptr)(x.addr)
+
+ case *ptrValue:
+ x := x.panicIfNot(Ptr).(*ptrValue)
+ if x == nil {
+ *(**uintptr)(vv.addr) = nil
+ return
+ }
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ if x.flag&canStore == 0 {
+ panic("cannot copy pointer obtained from unexported struct field")
+ }
+ typesMustMatch(vv.typ, x.typ)
+ // TODO: This will have to move into the runtime
+ // once the new gc goes in
+ *(*uintptr)(vv.addr) = *(*uintptr)(x.addr)
+
+ case *sliceValue:
+ x := x.panicIfNot(Slice).(*sliceValue)
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ typesMustMatch(vv.typ, x.typ)
+ *vv.slice() = *x.slice()
+
+ case *stringValue:
+ // Do the kind check explicitly, because x.String() does not.
+ x.panicIfNot(String)
+ v.SetString(x.String())
+
+ case *structValue:
+ x := x.panicIfNot(Struct).(*structValue)
+ // TODO: This will have to move into the runtime
+ // once the gc goes in.
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ typesMustMatch(vv.typ, x.typ)
+ memmove(vv.addr, x.addr, vv.typ.Size())
+
+ case *uintValue:
+ v.SetUint(x.Uint())
+
+ case *unsafePointerValue:
+ // Do the kind check explicitly, because x.UnsafePointer
+ // applies to more than just the UnsafePointer Kind.
+ x.panicIfNot(UnsafePointer)
+ v.SetPointer(unsafe.Pointer(x.Pointer()))
+ }
}
// SetBool sets v's underlying value.
// It panics if v's Kind is not Bool or if CanSet() is false.
func (v Value) SetBool(x bool) {
- v.panicIfNot(Bool).(*boolValue).Set(x)
+ vv := v.panicIfNot(Bool).(*boolValue)
+
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ *(*bool)(vv.addr) = x
}
// SetComplex sets v's underlying value to x.
// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
func (v Value) SetComplex(x complex128) {
- v.panicIfNots(complexKinds).(*complexValue).Set(x)
+ vv := v.panicIfNots(complexKinds).(*complexValue)
+
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ switch vv.typ.Kind() {
+ default:
+ panic("reflect: invalid complex kind")
+ case Complex64:
+ *(*complex64)(vv.addr) = complex64(x)
+ case Complex128:
+ *(*complex128)(vv.addr) = x
+ }
}
// SetFloat sets v's underlying value to x.
// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
func (v Value) SetFloat(x float64) {
- v.panicIfNots(floatKinds).(*floatValue).Set(x)
+ vv := v.panicIfNots(floatKinds).(*floatValue)
+
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ switch vv.typ.Kind() {
+ default:
+ panic("reflect: invalid float kind")
+ case Float32:
+ *(*float32)(vv.addr) = float32(x)
+ case Float64:
+ *(*float64)(vv.addr) = x
+ }
}
// SetInt sets v's underlying value to x.
// It panics if v's Kind is not a sized or unsized Int kind, or if CanSet() is false.
func (v Value) SetInt(x int64) {
- v.panicIfNots(intKinds).(*intValue).Set(x)
+ vv := v.panicIfNots(intKinds).(*intValue)
+
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ switch vv.typ.Kind() {
+ default:
+ panic("reflect: invalid int kind")
+ case Int:
+ *(*int)(vv.addr) = int(x)
+ case Int8:
+ *(*int8)(vv.addr) = int8(x)
+ case Int16:
+ *(*int16)(vv.addr) = int16(x)
+ case Int32:
+ *(*int32)(vv.addr) = int32(x)
+ case Int64:
+ *(*int64)(vv.addr) = x
+ }
}
// SetLen sets v's length to n.
// It panics if v's Kind is not Slice.
func (v Value) SetLen(n int) {
- v.panicIfNot(Slice).(*sliceValue).SetLen(n)
+ vv := v.panicIfNot(Slice).(*sliceValue)
+
+ s := vv.slice()
+ if n < 0 || n > int(s.Cap) {
+ panic("reflect: slice length out of range in SetLen")
+ }
+ s.Len = n
}
// SetMapIndex sets the value associated with key in the map v to val.
// It panics if v's Kind is not Map.
// If val is the zero Value, SetMapIndex deletes the key from the map.
func (v Value) SetMapIndex(key, val Value) {
- v.panicIfNot(Map).(*mapValue).SetElem(key, val)
+ vv := v.panicIfNot(Map).(*mapValue)
+ t := vv.Type()
+ typesMustMatch(t.Key(), key.Type())
+ var vaddr *byte
+ if val.IsValid() {
+ typesMustMatch(t.Elem(), val.Type())
+ vaddr = (*byte)(val.internal().getAddr())
+ }
+ m := *(**byte)(vv.addr)
+ mapassign(m, (*byte)(key.internal().getAddr()), vaddr)
}
// SetUint sets v's underlying value to x.
// It panics if v's Kind is not a sized or unsized Uint kind, or if CanSet() is false.
func (v Value) SetUint(x uint64) {
- v.panicIfNots(uintKinds).(*uintValue).Set(x)
+ vv := v.panicIfNots(uintKinds).(*uintValue)
+
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ switch vv.typ.Kind() {
+ default:
+ panic("reflect: invalid uint kind")
+ case Uint:
+ *(*uint)(vv.addr) = uint(x)
+ case Uint8:
+ *(*uint8)(vv.addr) = uint8(x)
+ case Uint16:
+ *(*uint16)(vv.addr) = uint16(x)
+ case Uint32:
+ *(*uint32)(vv.addr) = uint32(x)
+ case Uint64:
+ *(*uint64)(vv.addr) = x
+ case Uintptr:
+ *(*uintptr)(vv.addr) = uintptr(x)
+ }
}
// SetPointer sets the unsafe.Pointer value v to x.
// It panics if v's Kind is not UnsafePointer.
func (v Value) SetPointer(x unsafe.Pointer) {
- v.panicIfNot(UnsafePointer).(*unsafePointerValue).Set(x)
+ vv := v.panicIfNot(UnsafePointer).(*unsafePointerValue)
+
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ *(*unsafe.Pointer)(vv.addr) = x
}
// SetString sets v's underlying value to x.
// It panics if v's Kind is not String or if CanSet() is false.
func (v Value) SetString(x string) {
- v.panicIfNot(String).(*stringValue).Set(x)
+ vv := v.panicIfNot(String).(*stringValue)
+
+ if !vv.CanSet() {
+ panic(cannotSet)
+ }
+ *(*string)(vv.addr) = x
}
// BUG(rsc): Value.Slice should allow slicing arrays.
@@ -460,7 +978,25 @@ func (v Value) SetString(x string) {
// Slice returns a slice of v.
// It panics if v's Kind is not Slice.
func (v Value) Slice(beg, end int) Value {
- return v.panicIfNot(Slice).(*sliceValue).Slice(beg, end)
+ vv := v.panicIfNot(Slice).(*sliceValue)
+
+ cap := v.Cap()
+ if beg < 0 || end < beg || end > cap {
+ panic("slice index out of bounds")
+ }
+ typ := vv.typ
+ s := new(SliceHeader)
+ s.Data = uintptr(vv.addr()) + uintptr(beg)*typ.Elem().Size()
+ s.Len = end - beg
+ s.Cap = cap - beg
+
+ // Like the result of Addr, we treat Slice as an
+ // unaddressable temporary, so don't set canAddr.
+ flag := canSet
+ if vv.flag&canStore != 0 {
+ flag |= canStore
+ }
+ return newValue(typ, addr(s), flag)
}
// String returns the string v's underlying value, as a string.
@@ -473,7 +1009,8 @@ func (v Value) String() string {
return "<invalid Value>"
}
if vi.Kind() == String {
- return vi.(*stringValue).Get()
+ vv := vi.(*stringValue)
+ return *(*string)(vv.addr)
}
return "<" + vi.Type().String() + " Value>"
}
@@ -484,14 +1021,25 @@ func (v Value) String() string {
// The boolean ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
func (v Value) TryRecv() (x Value, ok bool) {
- return v.panicIfNot(Chan).(*chanValue).TryRecv()
+ vv := v.panicIfNot(Chan).(*chanValue)
+
+ var selected bool
+ x, ok = vv.recv(&selected)
+ if !selected {
+ return Value{}, false
+ }
+ return x, ok
}
// TrySend attempts to send x on the channel v but will not block.
// It panics if v's Kind is not Chan.
// It returns true if the value was sent, false otherwise.
func (v Value) TrySend(x Value) bool {
- return v.panicIfNot(Chan).(*chanValue).TrySend(x)
+ vv := v.panicIfNot(Chan).(*chanValue)
+
+ var selected bool
+ vv.send(x, &selected)
+ return selected
}
// Type returns v's type.
@@ -504,7 +1052,23 @@ var uintKinds = []Kind{Uint, Uint8, Uint16, Uint32, Uint64, Uintptr}
// Uint returns v's underlying value, as a uint64.
// It panics if v's Kind is not a sized or unsized Uint kind.
func (v Value) Uint() uint64 {
- return v.panicIfNots(uintKinds).(*uintValue).Get()
+ vv := v.panicIfNots(uintKinds).(*uintValue)
+
+ switch vv.typ.Kind() {
+ case Uint:
+ return uint64(*(*uint)(vv.addr))
+ case Uint8:
+ return uint64(*(*uint8)(vv.addr))
+ case Uint16:
+ return uint64(*(*uint16)(vv.addr))
+ case Uint32:
+ return uint64(*(*uint32)(vv.addr))
+ case Uint64:
+ return *(*uint64)(vv.addr)
+ case Uintptr:
+ return uint64(*(*uintptr)(vv.addr))
+ }
+ panic("reflect: invalid uint kind")
}
// UnsafeAddr returns a pointer to v's data.
@@ -529,9 +1093,6 @@ type valueInterface interface {
// If CanSet returns false, calling the type-specific Set will panic.
CanSet() bool
- // SetValue assigns v to the value; v must have the same type as the value.
- SetValue(v Value)
-
// CanAddr returns true if the value's address can be obtained with Addr.
// Such values are called addressable. A value is addressable if it is
// an element of a slice, an element of an addressable array,
@@ -635,169 +1196,21 @@ type boolValue struct {
value "bool"
}
-// Get returns the underlying bool value.
-func (v *boolValue) Get() bool { return *(*bool)(v.addr) }
-
-// Set sets v to the value x.
-func (v *boolValue) Set(x bool) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- *(*bool)(v.addr) = x
-}
-
-// Set sets v to the value x.
-func (v *boolValue) SetValue(x Value) { v.Set(x.Bool()) }
-
// floatValue represents a float value.
type floatValue struct {
value "float"
}
-// Get returns the underlying int value.
-func (v *floatValue) Get() float64 {
- switch v.typ.Kind() {
- case Float32:
- return float64(*(*float32)(v.addr))
- case Float64:
- return *(*float64)(v.addr)
- }
- panic("reflect: invalid float kind")
-}
-
-// Set sets v to the value x.
-func (v *floatValue) Set(x float64) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- switch v.typ.Kind() {
- default:
- panic("reflect: invalid float kind")
- case Float32:
- *(*float32)(v.addr) = float32(x)
- case Float64:
- *(*float64)(v.addr) = x
- }
-}
-
-// Overflow returns true if x cannot be represented by the type of v.
-func (v *floatValue) Overflow(x float64) bool {
- if v.typ.Size() == 8 {
- return false
- }
- if x < 0 {
- x = -x
- }
- return math.MaxFloat32 < x && x <= math.MaxFloat64
-}
-
-// Set sets v to the value x.
-func (v *floatValue) SetValue(x Value) { v.Set(x.Float()) }
-
// complexValue represents a complex value.
type complexValue struct {
value "complex"
}
-// Get returns the underlying complex value.
-func (v *complexValue) Get() complex128 {
- switch v.typ.Kind() {
- case Complex64:
- return complex128(*(*complex64)(v.addr))
- case Complex128:
- return *(*complex128)(v.addr)
- }
- panic("reflect: invalid complex kind")
-}
-
-// Set sets v to the value x.
-func (v *complexValue) Set(x complex128) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- switch v.typ.Kind() {
- default:
- panic("reflect: invalid complex kind")
- case Complex64:
- *(*complex64)(v.addr) = complex64(x)
- case Complex128:
- *(*complex128)(v.addr) = x
- }
-}
-
-// How did we forget this one?
-func (v *complexValue) Overflow(x complex128) bool {
- if v.typ.Size() == 16 {
- return false
- }
- r := real(x)
- i := imag(x)
- if r < 0 {
- r = -r
- }
- if i < 0 {
- i = -i
- }
- return math.MaxFloat32 <= r && r <= math.MaxFloat64 ||
- math.MaxFloat32 <= i && i <= math.MaxFloat64
-}
-
-// Set sets v to the value x.
-func (v *complexValue) SetValue(x Value) { v.Set(x.Complex()) }
-
// intValue represents an int value.
type intValue struct {
value "int"
}
-// Get returns the underlying int value.
-func (v *intValue) Get() int64 {
- switch v.typ.Kind() {
- case Int:
- return int64(*(*int)(v.addr))
- case Int8:
- return int64(*(*int8)(v.addr))
- case Int16:
- return int64(*(*int16)(v.addr))
- case Int32:
- return int64(*(*int32)(v.addr))
- case Int64:
- return *(*int64)(v.addr)
- }
- panic("reflect: invalid int kind")
-}
-
-// Set sets v to the value x.
-func (v *intValue) Set(x int64) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- switch v.typ.Kind() {
- default:
- panic("reflect: invalid int kind")
- case Int:
- *(*int)(v.addr) = int(x)
- case Int8:
- *(*int8)(v.addr) = int8(x)
- case Int16:
- *(*int16)(v.addr) = int16(x)
- case Int32:
- *(*int32)(v.addr) = int32(x)
- case Int64:
- *(*int64)(v.addr) = x
- }
-}
-
-// Set sets v to the value x.
-func (v *intValue) SetValue(x Value) { v.Set(x.Int()) }
-
-// Overflow returns true if x cannot be represented by the type of v.
-func (v *intValue) Overflow(x int64) bool {
- bitSize := uint(v.typ.Bits())
- trunc := (x << (64 - bitSize)) >> (64 - bitSize)
- return x != trunc
-}
-
// StringHeader is the runtime representation of a string.
type StringHeader struct {
Data uintptr
@@ -809,106 +1222,16 @@ type stringValue struct {
value "string"
}
-// Get returns the underlying string value.
-func (v *stringValue) Get() string { return *(*string)(v.addr) }
-
-// Set sets v to the value x.
-func (v *stringValue) Set(x string) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- *(*string)(v.addr) = x
-}
-
-// Set sets v to the value x.
-func (v *stringValue) SetValue(x Value) {
- // Do the kind check explicitly, because x.String() does not.
- v.Set(x.panicIfNot(String).(*stringValue).Get())
-}
-
// uintValue represents a uint value.
type uintValue struct {
value "uint"
}
-// Get returns the underlying uuint value.
-func (v *uintValue) Get() uint64 {
- switch v.typ.Kind() {
- case Uint:
- return uint64(*(*uint)(v.addr))
- case Uint8:
- return uint64(*(*uint8)(v.addr))
- case Uint16:
- return uint64(*(*uint16)(v.addr))
- case Uint32:
- return uint64(*(*uint32)(v.addr))
- case Uint64:
- return *(*uint64)(v.addr)
- case Uintptr:
- return uint64(*(*uintptr)(v.addr))
- }
- panic("reflect: invalid uint kind")
-}
-
-// Set sets v to the value x.
-func (v *uintValue) Set(x uint64) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- switch v.typ.Kind() {
- default:
- panic("reflect: invalid uint kind")
- case Uint:
- *(*uint)(v.addr) = uint(x)
- case Uint8:
- *(*uint8)(v.addr) = uint8(x)
- case Uint16:
- *(*uint16)(v.addr) = uint16(x)
- case Uint32:
- *(*uint32)(v.addr) = uint32(x)
- case Uint64:
- *(*uint64)(v.addr) = x
- case Uintptr:
- *(*uintptr)(v.addr) = uintptr(x)
- }
-}
-
-// Overflow returns true if x cannot be represented by the type of v.
-func (v *uintValue) Overflow(x uint64) bool {
- bitSize := uint(v.typ.Bits())
- trunc := (x << (64 - bitSize)) >> (64 - bitSize)
- return x != trunc
-}
-
-// Set sets v to the value x.
-func (v *uintValue) SetValue(x Value) { v.Set(x.Uint()) }
-
// unsafePointerValue represents an unsafe.Pointer value.
type unsafePointerValue struct {
value "unsafe.Pointer"
}
-// Get returns the underlying uintptr value.
-// Get returns uintptr, not unsafe.Pointer, so that
-// programs that do not import "unsafe" cannot
-// obtain a value of unsafe.Pointer type from "reflect".
-func (v *unsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) }
-
-// Set sets v to the value x.
-func (v *unsafePointerValue) Set(x unsafe.Pointer) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- *(*unsafe.Pointer)(v.addr) = x
-}
-
-// Set sets v to the value x.
-func (v *unsafePointerValue) SetValue(x Value) {
- // Do the kind check explicitly, because x.UnsafePointer
- // applies to more than just the UnsafePointer Kind.
- v.Set(unsafe.Pointer(x.panicIfNot(UnsafePointer).(*unsafePointerValue).Get()))
-}
-
func typesMustMatch(t1, t2 Type) {
if t1 != t2 {
panic("type mismatch: " + t1.String() + " != " + t2.String())
@@ -923,9 +1246,6 @@ func typesMustMatch(t1, t2 Type) {
// implemented by both arrayValue and sliceValue.
type arrayOrSliceValue interface {
valueInterface
- Len() int
- Cap() int
- Elem(i int) Value
addr() addr
}
@@ -961,9 +1281,9 @@ func grow(s Value, extra int) (Value, int, int) {
// Each x must have the same type as s' element type.
func Append(s Value, x ...Value) Value {
s, i0, i1 := grow(s, len(x))
- sa := s.panicIfNot(Slice).(*sliceValue)
+ s.panicIfNot(Slice)
for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
- sa.Elem(i).Set(x[j])
+ s.Index(i).Set(x[j])
}
return s
}
@@ -1002,41 +1322,9 @@ type arrayValue struct {
value "array"
}
-// Len returns the length of the array.
-func (v *arrayValue) Len() int { return v.typ.Len() }
-
-// Cap returns the capacity of the array (equal to Len()).
-func (v *arrayValue) Cap() int { return v.typ.Len() }
-
// addr returns the base address of the data in the array.
func (v *arrayValue) addr() addr { return v.value.addr }
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *arrayValue) Set(x *arrayValue) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- typesMustMatch(v.typ, x.typ)
- Copy(Value{v}, Value{x})
-}
-
-// Set sets v to the value x.
-func (v *arrayValue) SetValue(x Value) {
- v.Set(x.panicIfNot(Array).(*arrayValue))
-}
-
-// Elem returns the i'th element of v.
-func (v *arrayValue) Elem(i int) Value {
- typ := v.typ.Elem()
- n := v.Len()
- if i < 0 || i >= n {
- panic("array index out of bounds")
- }
- p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
- return newValue(typ, p, v.flag)
-}
-
/*
* slice
*/
@@ -1055,87 +1343,9 @@ type sliceValue struct {
func (v *sliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) }
-// IsNil returns whether v is a nil slice.
-func (v *sliceValue) IsNil() bool { return v.slice().Data == 0 }
-
-// Len returns the length of the slice.
-func (v *sliceValue) Len() int { return int(v.slice().Len) }
-
-// Cap returns the capacity of the slice.
-func (v *sliceValue) Cap() int { return int(v.slice().Cap) }
-
// addr returns the base address of the data in the slice.
func (v *sliceValue) addr() addr { return addr(v.slice().Data) }
-// SetLen changes the length of v.
-// The new length n must be between 0 and the capacity, inclusive.
-func (v *sliceValue) SetLen(n int) {
- s := v.slice()
- if n < 0 || n > int(s.Cap) {
- panic("reflect: slice length out of range in SetLen")
- }
- s.Len = n
-}
-
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *sliceValue) Set(x *sliceValue) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- typesMustMatch(v.typ, x.typ)
- *v.slice() = *x.slice()
-}
-
-// Set sets v to the value x.
-func (v *sliceValue) SetValue(x Value) {
- v.Set(x.panicIfNot(Slice).(*sliceValue))
-}
-
-// Get returns the uintptr address of the v.Cap()'th element. This gives
-// the same result for all slices of the same array.
-// It is mainly useful for printing.
-func (v *sliceValue) Get() uintptr {
- typ := v.typ
- return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size()
-}
-
-// Slice returns a sub-slice of the slice v.
-func (v *sliceValue) Slice(beg, end int) Value {
- cap := v.Cap()
- if beg < 0 || end < beg || end > cap {
- panic("slice index out of bounds")
- }
- typ := v.typ
- s := new(SliceHeader)
- s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size()
- s.Len = end - beg
- s.Cap = cap - beg
-
- // Like the result of Addr, we treat Slice as an
- // unaddressable temporary, so don't set canAddr.
- flag := canSet
- if v.flag&canStore != 0 {
- flag |= canStore
- }
- return newValue(typ, addr(s), flag)
-}
-
-// Elem returns the i'th element of v.
-func (v *sliceValue) Elem(i int) Value {
- typ := v.typ.Elem()
- n := v.Len()
- if i < 0 || i >= n {
- panic("reflect: slice index out of range")
- }
- p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
- flag := canAddr
- if v.flag&canStore != 0 {
- flag |= canSet | canStore
- }
- return newValue(typ, p, flag)
-}
-
// MakeSlice creates a new zero-initialized slice value
// for the specified slice type, length, and capacity.
func MakeSlice(typ Type, len, cap int) Value {
@@ -1159,28 +1369,6 @@ type chanValue struct {
value "chan"
}
-// IsNil returns whether v is a nil channel.
-func (v *chanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
-
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *chanValue) Set(x *chanValue) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- typesMustMatch(v.typ, x.typ)
- *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
-}
-
-// Set sets v to the value x.
-func (v *chanValue) SetValue(x Value) {
- v.Set(x.panicIfNot(Chan).(*chanValue))
-}
-
-// Get returns the uintptr value of v.
-// It is mainly useful for printing.
-func (v *chanValue) Get() uintptr { return *(*uintptr)(v.addr) }
-
// implemented in ../pkg/runtime/reflect.cgo
func makechan(typ *runtime.ChanType, size uint32) (ch *byte)
func chansend(ch, val *byte, selected *bool)
@@ -1189,79 +1377,6 @@ func chanclose(ch *byte)
func chanlen(ch *byte) int32
func chancap(ch *byte) int32
-// Close closes the channel.
-func (v *chanValue) Close() {
- ch := *(**byte)(v.addr)
- chanclose(ch)
-}
-
-func (v *chanValue) Len() int {
- ch := *(**byte)(v.addr)
- return int(chanlen(ch))
-}
-
-func (v *chanValue) Cap() int {
- ch := *(**byte)(v.addr)
- return int(chancap(ch))
-}
-
-// internal send; non-blocking if selected != nil
-func (v *chanValue) send(x Value, selected *bool) {
- t := v.Type()
- if t.ChanDir()&SendDir == 0 {
- panic("send on recv-only channel")
- }
- typesMustMatch(t.Elem(), x.Type())
- ch := *(**byte)(v.addr)
- chansend(ch, (*byte)(x.internal().getAddr()), selected)
-}
-
-// internal recv; non-blocking if selected != nil
-func (v *chanValue) recv(selected *bool) (Value, bool) {
- t := v.Type()
- if t.ChanDir()&RecvDir == 0 {
- panic("recv on send-only channel")
- }
- ch := *(**byte)(v.addr)
- x := Zero(t.Elem())
- var ok bool
- chanrecv(ch, (*byte)(x.internal().getAddr()), selected, &ok)
- return x, ok
-}
-
-// Send sends x on the channel v.
-func (v *chanValue) Send(x Value) { v.send(x, nil) }
-
-// Recv receives and returns a value from the channel v.
-// The receive blocks until a value is ready.
-// The boolean value ok is true if the value x corresponds to a send
-// on the channel, false if it is a zero value received because the channel is closed.
-func (v *chanValue) Recv() (x Value, ok bool) {
- return v.recv(nil)
-}
-
-// TrySend attempts to sends x on the channel v but will not block.
-// It returns true if the value was sent, false otherwise.
-func (v *chanValue) TrySend(x Value) bool {
- var selected bool
- v.send(x, &selected)
- return selected
-}
-
-// TryRecv attempts to receive a value from the channel v but will not block.
-// If the receive cannot finish without blocking, TryRecv instead returns x == nil.
-// If the receive can finish without blocking, TryRecv returns x != nil.
-// The boolean value ok is true if the value x corresponds to a send
-// on the channel, false if it is a zero value received because the channel is closed.
-func (v *chanValue) TryRecv() (x Value, ok bool) {
- var selected bool
- x, ok = v.recv(&selected)
- if !selected {
- return Value{}, false
- }
- return x, ok
-}
-
// MakeChan creates a new channel with the specified type and buffer size.
func MakeChan(typ Type, buffer int) Value {
if typ.Kind() != Chan {
@@ -1290,28 +1405,6 @@ type funcValue struct {
isInterface bool
}
-// IsNil returns whether v is a nil function.
-func (v *funcValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
-
-// Get returns the uintptr value of v.
-// It is mainly useful for printing.
-func (v *funcValue) Get() uintptr { return *(*uintptr)(v.addr) }
-
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *funcValue) Set(x *funcValue) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- typesMustMatch(v.typ, x.typ)
- *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
-}
-
-// Set sets v to the value x.
-func (v *funcValue) SetValue(x Value) {
- v.Set(x.panicIfNot(Func).(*funcValue))
-}
-
// Method returns a funcValue corresponding to v's i'th method.
// The arguments to a Call on the returned funcValue
// should not include a receiver; the funcValue will use v
@@ -1330,10 +1423,6 @@ func (v *value) Method(i int) Value {
// implemented in ../pkg/runtime/*/asm.s
func call(fn, arg *byte, n uint32)
-type tiny struct {
- b byte
-}
-
// Interface returns the fv as an interface value.
// If fv is a method obtained by invoking Value.Method
// (as opposed to Type.Method), Interface cannot return an
@@ -1345,111 +1434,6 @@ func (fv *funcValue) Interface() interface{} {
return fv.value.Interface()
}
-// Call calls the function fv with input parameters in.
-// It returns the function's output parameters as Values.
-func (fv *funcValue) Call(in []Value) []Value {
- t := fv.Type()
- nin := len(in)
- if fv.first != nil && !fv.isInterface {
- nin++
- }
- if nin != t.NumIn() {
- panic("funcValue: wrong argument count")
- }
- nout := t.NumOut()
-
- // Compute arg size & allocate.
- // This computation is 6g/8g-dependent
- // and probably wrong for gccgo, but so
- // is most of this function.
- size := uintptr(0)
- if fv.isInterface {
- // extra word for interface value
- size += ptrSize
- }
- for i := 0; i < nin; i++ {
- tv := t.In(i)
- a := uintptr(tv.Align())
- size = (size + a - 1) &^ (a - 1)
- size += tv.Size()
- }
- size = (size + ptrSize - 1) &^ (ptrSize - 1)
- for i := 0; i < nout; i++ {
- tv := t.Out(i)
- a := uintptr(tv.Align())
- size = (size + a - 1) &^ (a - 1)
- size += tv.Size()
- }
-
- // size must be > 0 in order for &args[0] to be valid.
- // the argument copying is going to round it up to
- // a multiple of ptrSize anyway, so make it ptrSize to begin with.
- if size < ptrSize {
- size = ptrSize
- }
-
- // round to pointer size
- size = (size + ptrSize - 1) &^ (ptrSize - 1)
-
- // Copy into args.
- //
- // TODO(rsc): revisit when reference counting happens.
- // The values are holding up the in references for us,
- // but something must be done for the out references.
- // For now make everything look like a pointer by pretending
- // to allocate a []*int.
- args := make([]*int, size/ptrSize)
- ptr := uintptr(unsafe.Pointer(&args[0]))
- off := uintptr(0)
- delta := 0
- if v := fv.first; v != nil {
- // Hard-wired first argument.
- if fv.isInterface {
- // v is a single uninterpreted word
- memmove(addr(ptr), v.getAddr(), ptrSize)
- off = ptrSize
- } else {
- // v is a real value
- tv := v.Type()
- typesMustMatch(t.In(0), tv)
- n := tv.Size()
- memmove(addr(ptr), v.getAddr(), n)
- off = n
- delta = 1
- }
- }
- for i, v := range in {
- tv := v.Type()
- typesMustMatch(t.In(i+delta), tv)
- a := uintptr(tv.Align())
- off = (off + a - 1) &^ (a - 1)
- n := tv.Size()
- memmove(addr(ptr+off), v.internal().getAddr(), n)
- off += n
- }
- off = (off + ptrSize - 1) &^ (ptrSize - 1)
-
- // Call
- call(*(**byte)(fv.addr), (*byte)(addr(ptr)), uint32(size))
-
- // Copy return values out of args.
- //
- // TODO(rsc): revisit like above.
- ret := make([]Value, nout)
- for i := 0; i < nout; i++ {
- tv := t.Out(i)
- a := uintptr(tv.Align())
- off = (off + a - 1) &^ (a - 1)
- v := Zero(tv)
- n := tv.Size()
- memmove(v.internal().getAddr(), addr(ptr+off), n)
- ret[i] = v
- off += n
- }
-
- return ret
-}
-
/*
* interface
*/
@@ -1459,44 +1443,9 @@ type interfaceValue struct {
value "interface"
}
-// IsNil returns whether v is a nil interface value.
-func (v *interfaceValue) IsNil() bool { return v.Interface() == nil }
-
-// No single uinptr Get because v.Interface() is available.
-
-// Get returns the two words that represent an interface in the runtime.
-// Those words are useful only when playing unsafe games.
-func (v *interfaceValue) Get() [2]uintptr {
- return *(*[2]uintptr)(v.addr)
-}
-
-// Elem returns the concrete value stored in the interface value v.
-func (v *interfaceValue) Elem() Value { return NewValue(v.Interface()) }
-
// ../runtime/reflect.cgo
func setiface(typ *interfaceType, x *interface{}, addr addr)
-// Set assigns x to v.
-func (v *interfaceValue) Set(x Value) {
- i := x.Interface()
- if !v.CanSet() {
- panic(cannotSet)
- }
- // Two different representations; see comment in Get.
- // Empty interface is easy.
- t := (*interfaceType)(unsafe.Pointer(v.typ.(*commonType)))
- if t.NumMethod() == 0 {
- *(*interface{})(v.addr) = i
- return
- }
-
- // Non-empty interface requires a runtime check.
- setiface(t, &i, v.addr)
-}
-
-// Set sets v to the value x.
-func (v *interfaceValue) SetValue(x Value) { v.Set(x) }
-
// Method returns a funcValue corresponding to v's i'th method.
// The arguments to a Call on the returned funcValue
// should not include a receiver; the funcValue will use v
@@ -1527,32 +1476,6 @@ type mapValue struct {
value "map"
}
-// IsNil returns whether v is a nil map value.
-func (v *mapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
-
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *mapValue) Set(x *mapValue) {
- if !v.CanSet() {
- panic(cannotSet)
- }
- if x == nil {
- *(**uintptr)(v.addr) = nil
- return
- }
- typesMustMatch(v.typ, x.typ)
- *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
-}
-
-// Set sets v to the value x.
-func (v *mapValue) SetValue(x Value) {
- v.Set(x.panicIfNot(Map).(*mapValue))
-}
-
-// Get returns the uintptr value of v.
-// It is mainly useful for printing.
-func (v *mapValue) Get() uintptr { return *(*uintptr)(v.addr) }
-
// implemented in ../pkg/runtime/reflect.cgo
func mapaccess(m, key, val *byte) bool
func mapassign(m, key, val *byte)
@@ -1562,68 +1485,6 @@ func mapiternext(it *byte)
func mapiterkey(it *byte, key *byte) bool
func makemap(t *runtime.MapType) *byte
-// Elem returns the value associated with key in the map v.
-// It returns nil if key is not found in the map.
-func (v *mapValue) Elem(key Value) Value {
- t := v.Type()
- typesMustMatch(t.Key(), key.Type())
- m := *(**byte)(v.addr)
- if m == nil {
- return Value{}
- }
- newval := Zero(t.Elem())
- if !mapaccess(m, (*byte)(key.internal().getAddr()), (*byte)(newval.internal().getAddr())) {
- return Value{}
- }
- return newval
-}
-
-// SetElem sets the value associated with key in the map v to val.
-// If val is nil, Put deletes the key from map.
-func (v *mapValue) SetElem(key, val Value) {
- t := v.Type()
- typesMustMatch(t.Key(), key.Type())
- var vaddr *byte
- if val.IsValid() {
- typesMustMatch(t.Elem(), val.Type())
- vaddr = (*byte)(val.internal().getAddr())
- }
- m := *(**byte)(v.addr)
- mapassign(m, (*byte)(key.internal().getAddr()), vaddr)
-}
-
-// Len returns the number of keys in the map v.
-func (v *mapValue) Len() int {
- m := *(**byte)(v.addr)
- if m == nil {
- return 0
- }
- return int(maplen(m))
-}
-
-// Keys returns a slice containing all the keys present in the map,
-// in unspecified order.
-func (v *mapValue) Keys() []Value {
- tk := v.Type().Key()
- m := *(**byte)(v.addr)
- mlen := int32(0)
- if m != nil {
- mlen = maplen(m)
- }
- it := mapiterinit(m)
- a := make([]Value, mlen)
- var i int
- for i = 0; i < len(a); i++ {
- k := Zero(tk)
- if !mapiterkey(it, (*byte)(k.internal().getAddr())) {
- break
- }
- a[i] = k
- mapiternext(it)
- }
- return a[0:i]
-}
-
// MakeMap creates a new map of the specified type.
func MakeMap(typ Type) Value {
if typ.Kind() != Map {
@@ -1644,66 +1505,6 @@ type ptrValue struct {
value "ptr"
}
-// IsNil returns whether v is a nil pointer.
-func (v *ptrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
-
-// Get returns the uintptr value of v.
-// It is mainly useful for printing.
-func (v *ptrValue) Get() uintptr { return *(*uintptr)(v.addr) }
-
-// Set assigns x to v.
-// The new value x must have the same type as v, and x.Elem().CanSet() must be true.
-func (v *ptrValue) Set(x *ptrValue) {
- if x == nil {
- *(**uintptr)(v.addr) = nil
- return
- }
- if !v.CanSet() {
- panic(cannotSet)
- }
- if x.flag&canStore == 0 {
- panic("cannot copy pointer obtained from unexported struct field")
- }
- typesMustMatch(v.typ, x.typ)
- // TODO: This will have to move into the runtime
- // once the new gc goes in
- *(*uintptr)(v.addr) = *(*uintptr)(x.addr)
-}
-
-// Set sets v to the value x.
-func (v *ptrValue) SetValue(x Value) {
- v.Set(x.panicIfNot(Ptr).(*ptrValue))
-}
-
-// PointTo changes v to point to x.
-// If x is a nil Value, PointTo sets v to nil.
-func (v *ptrValue) PointTo(x Value) {
- if !x.IsValid() {
- *(**uintptr)(v.addr) = nil
- return
- }
- if !x.CanSet() {
- panic("cannot set x; cannot point to x")
- }
- typesMustMatch(v.typ.Elem(), x.Type())
- // TODO: This will have to move into the runtime
- // once the new gc goes in.
- *(*uintptr)(v.addr) = x.UnsafeAddr()
-}
-
-// Elem returns the value that v points to.
-// If v is a nil pointer, Elem returns a nil Value.
-func (v *ptrValue) Elem() Value {
- if v.IsNil() {
- return Value{}
- }
- flag := canAddr
- if v.flag&canStore != 0 {
- flag |= canSet | canStore
- }
- return newValue(v.typ.Elem(), *(*addr)(v.addr), flag)
-}
-
// Indirect returns the value that v points to.
// If v is a nil pointer, Indirect returns a nil Value.
// If v is not a pointer, Indirect returns v.
@@ -1711,7 +1512,7 @@ func Indirect(v Value) Value {
if v.Kind() != Ptr {
return v
}
- return v.panicIfNot(Ptr).(*ptrValue).Elem()
+ return v.Elem()
}
/*
@@ -1723,77 +1524,6 @@ type structValue struct {
value "struct"
}
-// Set assigns x to v.
-// The new value x must have the same type as v.
-func (v *structValue) Set(x *structValue) {
- // TODO: This will have to move into the runtime
- // once the gc goes in.
- if !v.CanSet() {
- panic(cannotSet)
- }
- typesMustMatch(v.typ, x.typ)
- memmove(v.addr, x.addr, v.typ.Size())
-}
-
-// Set sets v to the value x.
-func (v *structValue) SetValue(x Value) {
- v.Set(x.panicIfNot(Struct).(*structValue))
-}
-
-// Field returns the i'th field of the struct.
-func (v *structValue) Field(i int) Value {
- t := v.typ
- if i < 0 || i >= t.NumField() {
- panic("reflect: Field index out of range")
- }
- f := t.Field(i)
- flag := v.flag
- if f.PkgPath != "" {
- // unexported field
- flag &^= canSet | canStore
- }
- return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), flag)
-}
-
-// FieldByIndex returns the nested field corresponding to index.
-func (t *structValue) FieldByIndex(index []int) (v Value) {
- v = Value{t}
- for i, x := range index {
- if i > 0 {
- if v.Kind() == Ptr {
- v = v.Elem()
- }
- if v.Kind() != Struct {
- return Value{}
- }
- }
- v = v.Field(x)
- }
- return
-}
-
-// FieldByName returns the struct field with the given name.
-// The result is nil if no field was found.
-func (t *structValue) FieldByName(name string) Value {
- if f, ok := t.Type().FieldByName(name); ok {
- return t.FieldByIndex(f.Index)
- }
- return Value{}
-}
-
-// FieldByNameFunc returns the struct field with a name that satisfies the
-// match function.
-// The result is nil if no field was found.
-func (t *structValue) FieldByNameFunc(match func(string) bool) Value {
- if f, ok := t.Type().FieldByNameFunc(match); ok {
- return t.FieldByIndex(f.Index)
- }
- return Value{}
-}
-
-// NumField returns the number of fields in the struct.
-func (v *structValue) NumField() int { return v.typ.NumField() }
-
/*
* constructors
*/