summaryrefslogtreecommitdiff
path: root/src/selection.rs
blob: 92410104751ece8d65a82ca7f05f6dcc097f2577 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
// Copyright 2016 Joe Wilm, The Alacritty Project Contributors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! State management for a selection in the grid
//!
//! A selection should start when the mouse is clicked, and it should be
//! finalized when the button is released. The selection should be cleared
//! when text is added/removed/scrolled on the screen. The selection should
//! also be cleared if the user clicks off of the selection.
use std::cmp::{min, max};

use index::{Point, Column, RangeInclusive, Side, Linear, Line};
use grid::ToRange;

/// Describes a region of a 2-dimensional area
///
/// Used to track a text selection. There are three supported modes, each with its own constructor:
/// [`simple`], [`semantic`], and [`lines`]. The [`simple`] mode precisely tracks which cells are
/// selected without any expansion. [`semantic`] mode expands the initial selection to the nearest
/// semantic escape char in either direction. [`lines`] will always select entire lines.
///
/// Calls to [`update`] operate different based on the selection kind. The [`simple`] mode does
/// nothing special, simply tracks points and sides. [`semantic`] will continue to expand out to
/// semantic boundaries as the selection point changes. Similarly, [`lines`] will always expand the
/// new point to encompass entire lines.
///
/// [`simple`]: enum.Selection.html#method.simple
/// [`semantic`]: enum.Selection.html#method.semantic
/// [`lines`]: enum.Selection.html#method.lines
pub enum Selection {
    Simple {
        /// The region representing start and end of cursor movement
        region: Region<Anchor>,
    },
    Semantic {
        /// The region representing start and end of cursor movement
        region: Region<Point>,

        /// When beginning a semantic selection, the grid is searched around the
        /// initial point to find semantic escapes, and this initial expansion
        /// marks those points.
        initial_expansion: Region<Point>
    },
    Lines {
        /// The region representing start and end of cursor movement
        region: Region<Point>,

        /// The line under the initial point. This is always selected regardless
        /// of which way the cursor is moved.
        initial_line: Line
    }
}

pub struct Region<T> {
    start: T,
    end: T
}

/// A Point and side within that point.
pub struct Anchor {
    point: Point,
    side: Side,
}

impl Anchor {
    fn new(point: Point, side: Side) -> Anchor {
        Anchor { point: point, side: side }
    }
}

/// A type that can expand a given point to a region
///
/// Usually this is implemented for some 2-D array type since
/// points are two dimensional indices.
pub trait SemanticSearch {
    /// Find the nearest semantic boundary _to the left_ of provided point.
    fn semantic_search_left(&self, _: Point) -> Point;
    /// Find the nearest semantic boundary _to the point_ of provided point.
    fn semantic_search_right(&self, _: Point) -> Point;
}

/// A type that has 2-dimensional boundaries
pub trait Dimensions {
    /// Get the size of the area
    fn dimensions(&self) -> Point;
}

impl Selection {
    pub fn simple(location: Point, side: Side) -> Selection {
        Selection::Simple {
            region: Region {
                start: Anchor::new(location, side),
                end: Anchor::new(location, side)
            }
        }
    }

    pub fn semantic<G: SemanticSearch>(point: Point, grid: &G) -> Selection {
        let (start, end) = (grid.semantic_search_left(point), grid.semantic_search_right(point));
        Selection::Semantic {
            region: Region {
                start: point,
                end: point,
            },
            initial_expansion: Region {
                start: start,
                end: end
            }
        }
    }

    pub fn lines(point: Point) -> Selection {
        Selection::Lines {
            region: Region {
                start: point,
                end: point
            },
            initial_line: point.line
        }
    }

    pub fn update(&mut self, location: Point, side: Side) {
        // Always update the `end`; can normalize later during span generation.
        match *self {
            Selection::Simple { ref mut region } => {
                region.end = Anchor::new(location, side);
            },
            Selection::Semantic { ref mut region, .. } |
                Selection::Lines { ref mut region, .. } =>
            {
                region.end = location;
            },
        }
    }

    pub fn to_span<G: SemanticSearch + Dimensions>(&self, grid: &G) -> Option<Span> {
        match *self {
            Selection::Simple { ref region } => {
                Selection::span_simple(grid, region)
            },
            Selection::Semantic { ref region, ref initial_expansion } => {
                Selection::span_semantic(grid, region, initial_expansion)
            },
            Selection::Lines { ref region, ref initial_line } => {
                Selection::span_lines(grid, region, initial_line)
            }
        }
    }
    fn span_semantic<G>(
        grid: &G,
        region: &Region<Point>,
        initial_expansion: &Region<Point>
    ) -> Option<Span>
        where G: SemanticSearch + Dimensions
    {
        let mut start = initial_expansion.start;
        let mut end = initial_expansion.end;

        // Normalize ordering of selected cells
        let (front, tail) = if region.start < region.end {
            (region.start, region.end)
        } else {
            (region.end, region.start)
        };

        // Update start of selection *if* front has moved beyond initial start
        if front < start {
            start = grid.semantic_search_left(front);
        }

        // Update end of selection *if* tail has moved beyond initial end.
        if tail > end {
            end = grid.semantic_search_right(tail);
        }

        Some(Span {
            cols: grid.dimensions().col,
            front: start,
            tail: end,
            ty: SpanType::Inclusive,
        })
    }

    fn span_lines<G>(grid: &G, region: &Region<Point>, initial_line: &Line) -> Option<Span>
        where G: Dimensions
    {
        // First, create start and end points based on initial line and the grid
        // dimensions.
        let mut start = Point {
            col: Column(0),
            line: *initial_line
        };
        let mut end = Point {
            col: grid.dimensions().col - 1,
            line: *initial_line
        };

        // Now, expand lines based on where cursor started and ended.
        if region.start.line < region.end.line {
            // Start is above end
            start.line = min(start.line, region.start.line);
            end.line = max(end.line, region.end.line);
        } else {
            // Start is below end
            start.line = min(start.line, region.end.line);
            end.line = max(end.line, region.start.line);
        }

        Some(Span {
            cols: grid.dimensions().col,
            front: start,
            tail: end,
            ty: SpanType::Inclusive
        })
    }

    fn span_simple<G: Dimensions>(grid: &G, region: &Region<Anchor>) -> Option<Span> {
        let start = region.start.point;
        let start_side = region.start.side;
        let end = region.end.point;
        let end_side = region.end.side;
        let cols = grid.dimensions().col;

        let (front, tail, front_side, tail_side) = if start > end {
            // Selected upward; start/end are swapped
            (end, start, end_side, start_side)
        } else {
            // Selected downward; no swapping
            (start, end, start_side, end_side)
        };

        debug_assert!(!(tail < front));

        // Single-cell selections are a special case
        if start == end {
            if start_side == end_side {
                return None;
            } else {
                return Some(Span {
                    cols: cols,
                    ty: SpanType::Inclusive,
                    front: front,
                    tail: tail
                });
            }
        }

        // The other special case is two adjacent cells with no
        // selection: [ B][E ] or [ E][B ]
        let adjacent = tail.line == front.line && tail.col - front.col == Column(1);
        if adjacent && front_side == Side::Right && tail_side == Side::Left {
            return None;
        }

        Some(match (front_side, tail_side) {
            // [FX][XX][XT]
            (Side::Left, Side::Right) => Span {
                cols: cols,
                front: front,
                tail: tail,
                ty: SpanType::Inclusive
            },
            // [ F][XX][T ]
            (Side::Right, Side::Left) => Span {
                cols: cols,
                front: front,
                tail: tail,
                ty: SpanType::Exclusive
            },
            // [FX][XX][T ]
            (Side::Left, Side::Left) => Span {
                cols: cols,
                front: front,
                tail: tail,
                ty: SpanType::ExcludeTail
            },
            // [ F][XX][XT]
            (Side::Right, Side::Right) => Span {
                cols: cols,
                front: front,
                tail: tail,
                ty: SpanType::ExcludeFront
            },
        })
    }
}

/// How to interpret the locations of a Span.
#[derive(Debug, Eq, PartialEq)]
pub enum SpanType {
    /// Includes the beginning and end locations
    Inclusive,

    /// Exclude both beginning and end
    Exclusive,

    /// Excludes last cell of selection
    ExcludeTail,

    /// Excludes first cell of selection
    ExcludeFront,
}

/// Represents a span of selected cells
#[derive(Debug, Eq, PartialEq)]
pub struct Span {
    front: Point,
    tail: Point,
    cols: Column,

    /// The type says whether ends are included or not.
    ty: SpanType,
}

impl Span {
    pub fn to_locations(&self) -> (Point, Point) {
        match self.ty {
            SpanType::Inclusive => (self.front, self.tail),
            SpanType::Exclusive => {
                (Span::wrap_start(self.front, self.cols), Span::wrap_end(self.tail, self.cols))
            },
            SpanType::ExcludeFront => (Span::wrap_start(self.front, self.cols), self.tail),
            SpanType::ExcludeTail => (self.front, Span::wrap_end(self.tail, self.cols))
        }
    }

    fn wrap_start(mut start: Point, cols: Column) -> Point {
        if start.col == cols - 1 {
            Point {
                line: start.line + 1,
                col: Column(0),
            }
        } else {
            start.col += 1;
            start
        }
    }

    fn wrap_end(end: Point, cols: Column) -> Point {
        if end.col == Column(0) && end.line != Line(0) {
            Point {
                line: end.line - 1,
                col: cols
            }
        } else {
            Point {
                line: end.line,
                col: end.col - 1
            }
        }
    }

    #[inline]
    fn exclude_start(start: Linear) -> Linear {
        start + 1
    }

    #[inline]
    fn exclude_end(end: Linear) -> Linear {
        if end > Linear(0) {
            end - 1
        } else {
            end
        }
    }
}

impl ToRange for Span {
    fn to_range(&self) -> RangeInclusive<Linear> {
        let cols = self.cols;
        let start = Linear(self.front.line.0 * cols.0 + self.front.col.0);
        let end = Linear(self.tail.line.0 * cols.0 + self.tail.col.0);

        let (start, end) = match self.ty {
            SpanType::Inclusive => (start, end),
            SpanType::Exclusive => (Span::exclude_start(start), Span::exclude_end(end)),
            SpanType::ExcludeFront => (Span::exclude_start(start), end),
            SpanType::ExcludeTail => (start, Span::exclude_end(end))
        };

        RangeInclusive::new(start, end)
    }
}

/// Tests for selection
///
/// There are comments on all of the tests describing the selection. Pictograms
/// are used to avoid ambiguity. Grid cells are represented by a [  ]. Only
/// cells that are completely covered are counted in a selection. Ends are
/// represented by `B` and `E` for begin and end, respectively.  A selected cell
/// looks like [XX], [BX] (at the start), [XB] (at the end), [XE] (at the end),
/// and [EX] (at the start), or [BE] for a single cell. Partially selected cells
/// look like [ B] and [E ].
#[cfg(test)]
mod test {
    use index::{Line, Column, Side, Point};
    use super::{Selection, Span, SpanType};

    struct Dimensions(Point);
    impl super::Dimensions for Dimensions {
        fn dimensions(&self) -> Point {
            self.0
        }
    }

    impl Dimensions {
        pub fn new(line: usize, col: usize) -> Self {
            Dimensions(Point {
                line: Line(line),
                col: Column(col)
            })
        }
    }

    impl super::SemanticSearch for Dimensions {
        fn semantic_search_left(&self, _: Point) -> Point { unimplemented!(); }
        fn semantic_search_right(&self, _: Point) -> Point { unimplemented!(); }
    }

    /// Test case of single cell selection
    ///
    /// 1. [  ]
    /// 2. [B ]
    /// 3. [BE]
    #[test]
    fn single_cell_left_to_right() {
        let location = Point { line: Line(0), col: Column(0) };
        let mut selection = Selection::simple(location, Side::Left);
        selection.update(location, Side::Right);

        assert_eq!(selection.to_span(&Dimensions::new(1, 1)).unwrap(), Span {
            cols: Column(1),
            ty: SpanType::Inclusive,
            front: location,
            tail: location
        });
    }

    /// Test case of single cell selection
    ///
    /// 1. [  ]
    /// 2. [ B]
    /// 3. [EB]
    #[test]
    fn single_cell_right_to_left() {
        let location = Point { line: Line(0), col: Column(0) };
        let mut selection = Selection::simple(location, Side::Right);
        selection.update(location, Side::Left);

        assert_eq!(selection.to_span(&Dimensions::new(1, 1)).unwrap(), Span {
            cols: Column(1),
            ty: SpanType::Inclusive,
            front: location,
            tail: location
        });
    }

    /// Test adjacent cell selection from left to right
    ///
    /// 1. [  ][  ]
    /// 2. [ B][  ]
    /// 3. [ B][E ]
    #[test]
    fn between_adjacent_cells_left_to_right() {
        let mut selection = Selection::simple(Point::new(Line(0), Column(0)), Side::Right);
        selection.update(Point::new(Line(0), Column(1)), Side::Left);

        assert_eq!(selection.to_span(&Dimensions::new(1, 2)), None);
    }

    /// Test adjacent cell selection from right to left
    ///
    /// 1. [  ][  ]
    /// 2. [  ][B ]
    /// 3. [ E][B ]
    #[test]
    fn between_adjacent_cells_right_to_left() {
        let mut selection = Selection::simple(Point::new(Line(0), Column(1)), Side::Left);
        selection.update(Point::new(Line(0), Column(0)), Side::Right);

        assert_eq!(selection.to_span(&Dimensions::new(1, 2)), None);
    }

    /// Test selection across adjacent lines
    ///
    ///
    /// 1.  [  ][  ][  ][  ][  ]
    ///     [  ][  ][  ][  ][  ]
    /// 2.  [  ][  ][  ][  ][  ]
    ///     [  ][ B][  ][  ][  ]
    /// 3.  [  ][ E][XX][XX][XX]
    ///     [XX][XB][  ][  ][  ]
    #[test]
    fn across_adjacent_lines_upward_final_cell_exclusive() {
        let mut selection = Selection::simple(Point::new(Line(1), Column(1)), Side::Right);
        selection.update(Point::new(Line(0), Column(1)), Side::Right);

        assert_eq!(selection.to_span(&Dimensions::new(2, 5)).unwrap(), Span {
            cols: Column(5),
            front: Point::new(Line(0), Column(1)),
            tail: Point::new(Line(1), Column(1)),
            ty: SpanType::ExcludeFront
        });
    }

    /// Test selection across adjacent lines
    ///
    ///
    /// 1.  [  ][  ][  ][  ][  ]
    ///     [  ][  ][  ][  ][  ]
    /// 2.  [  ][ B][  ][  ][  ]
    ///     [  ][  ][  ][  ][  ]
    /// 3.  [  ][ B][XX][XX][XX]
    ///     [XX][XE][  ][  ][  ]
    /// 4.  [  ][ B][XX][XX][XX]
    ///     [XE][  ][  ][  ][  ]
    #[test]
    fn selection_bigger_then_smaller() {
        let mut selection = Selection::simple(Point::new(Line(0), Column(1)), Side::Right);
        selection.update(Point::new(Line(1), Column(1)), Side::Right);
        selection.update(Point::new(Line(1), Column(0)), Side::Right);

        assert_eq!(selection.to_span(&Dimensions::new(2, 5)).unwrap(), Span {
            cols: Column(5),
            front: Point::new(Line(0), Column(1)),
            tail: Point::new(Line(1), Column(0)),
            ty: SpanType::ExcludeFront
        });
    }
}