1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
|
//! The main event loop which performs I/O on the pseudoterminal.
use std::borrow::Cow;
use std::collections::VecDeque;
use std::fs::File;
use std::io::{self, ErrorKind, Read, Write};
use std::marker::Send;
use std::sync::Arc;
use std::thread::JoinHandle;
use std::time::Instant;
use log::error;
#[cfg(not(windows))]
use mio::unix::UnixReady;
use mio::{self, Events, PollOpt, Ready};
use mio_extras::channel::{self, Receiver, Sender};
use crate::event::{self, Event, EventListener};
use crate::sync::FairMutex;
use crate::term::{SizeInfo, Term};
use crate::{ansi, thread, tty};
/// Max bytes to read from the PTY before forced terminal synchronization.
const READ_BUFFER_SIZE: usize = 0x10_0000;
/// Max bytes to read from the PTY while the terminal is locked.
const MAX_LOCKED_READ: usize = u16::max_value() as usize;
/// Messages that may be sent to the `EventLoop`.
#[derive(Debug)]
pub enum Msg {
/// Data that should be written to the PTY.
Input(Cow<'static, [u8]>),
/// Indicates that the `EventLoop` should shut down, as Alacritty is shutting down.
Shutdown,
/// Instruction to resize the PTY.
Resize(SizeInfo),
}
/// The main event!.. loop.
///
/// Handles all the PTY I/O and runs the PTY parser which updates terminal
/// state.
pub struct EventLoop<T: tty::EventedPty, U: EventListener> {
poll: mio::Poll,
pty: T,
rx: Receiver<Msg>,
tx: Sender<Msg>,
terminal: Arc<FairMutex<Term<U>>>,
event_proxy: U,
hold: bool,
ref_test: bool,
}
/// Helper type which tracks how much of a buffer has been written.
struct Writing {
source: Cow<'static, [u8]>,
written: usize,
}
pub struct Notifier(pub Sender<Msg>);
impl event::Notify for Notifier {
fn notify<B>(&self, bytes: B)
where
B: Into<Cow<'static, [u8]>>,
{
let bytes = bytes.into();
// terminal hangs if we send 0 bytes through.
if bytes.len() == 0 {
return;
}
let _ = self.0.send(Msg::Input(bytes));
}
}
impl event::OnResize for Notifier {
fn on_resize(&mut self, size: &SizeInfo) {
let _ = self.0.send(Msg::Resize(*size));
}
}
/// All of the mutable state needed to run the event loop.
///
/// Contains list of items to write, current write state, etc. Anything that
/// would otherwise be mutated on the `EventLoop` goes here.
#[derive(Default)]
pub struct State {
write_list: VecDeque<Cow<'static, [u8]>>,
writing: Option<Writing>,
parser: ansi::Processor,
}
impl State {
#[inline]
fn ensure_next(&mut self) {
if self.writing.is_none() {
self.goto_next();
}
}
#[inline]
fn goto_next(&mut self) {
self.writing = self.write_list.pop_front().map(Writing::new);
}
#[inline]
fn take_current(&mut self) -> Option<Writing> {
self.writing.take()
}
#[inline]
fn needs_write(&self) -> bool {
self.writing.is_some() || !self.write_list.is_empty()
}
#[inline]
fn set_current(&mut self, new: Option<Writing>) {
self.writing = new;
}
}
impl Writing {
#[inline]
fn new(c: Cow<'static, [u8]>) -> Writing {
Writing { source: c, written: 0 }
}
#[inline]
fn advance(&mut self, n: usize) {
self.written += n;
}
#[inline]
fn remaining_bytes(&self) -> &[u8] {
&self.source[self.written..]
}
#[inline]
fn finished(&self) -> bool {
self.written >= self.source.len()
}
}
impl<T, U> EventLoop<T, U>
where
T: tty::EventedPty + event::OnResize + Send + 'static,
U: EventListener + Send + 'static,
{
/// Create a new event loop.
pub fn new(
terminal: Arc<FairMutex<Term<U>>>,
event_proxy: U,
pty: T,
hold: bool,
ref_test: bool,
) -> EventLoop<T, U> {
let (tx, rx) = channel::channel();
EventLoop {
poll: mio::Poll::new().expect("create mio Poll"),
pty,
tx,
rx,
terminal,
event_proxy,
hold,
ref_test,
}
}
pub fn channel(&self) -> Sender<Msg> {
self.tx.clone()
}
/// Drain the channel.
///
/// Returns `false` when a shutdown message was received.
fn drain_recv_channel(&mut self, state: &mut State) -> bool {
while let Ok(msg) = self.rx.try_recv() {
match msg {
Msg::Input(input) => state.write_list.push_back(input),
Msg::Resize(size) => self.pty.on_resize(&size),
Msg::Shutdown => return false,
}
}
true
}
/// Returns a `bool` indicating whether or not the event loop should continue running.
#[inline]
fn channel_event(&mut self, token: mio::Token, state: &mut State) -> bool {
if !self.drain_recv_channel(state) {
return false;
}
self.poll
.reregister(&self.rx, token, Ready::readable(), PollOpt::edge() | PollOpt::oneshot())
.unwrap();
true
}
#[inline]
fn pty_read<X>(
&mut self,
state: &mut State,
buf: &mut [u8],
mut writer: Option<&mut X>,
) -> io::Result<()>
where
X: Write,
{
let mut unprocessed = 0;
let mut processed = 0;
// Reserve the next terminal lock for PTY reading.
let _terminal_lease = Some(self.terminal.lease());
let mut terminal = None;
loop {
// Read from the PTY.
match self.pty.reader().read(&mut buf[unprocessed..]) {
// This is received on Windows/macOS when no more data is readable from the PTY.
Ok(0) if unprocessed == 0 => break,
Ok(got) => unprocessed += got,
Err(err) => match err.kind() {
ErrorKind::Interrupted | ErrorKind::WouldBlock => {
// Go back to mio if we're caught up on parsing and the PTY would block.
if unprocessed == 0 {
break;
}
},
_ => return Err(err),
},
}
// Attempt to lock the terminal.
let terminal = match &mut terminal {
Some(terminal) => terminal,
None => terminal.insert(match self.terminal.try_lock_unfair() {
// Force block if we are at the buffer size limit.
None if unprocessed >= READ_BUFFER_SIZE => self.terminal.lock_unfair(),
None => continue,
Some(terminal) => terminal,
}),
};
// Write a copy of the bytes to the ref test file.
if let Some(writer) = &mut writer {
writer.write_all(&buf[..unprocessed]).unwrap();
}
// Parse the incoming bytes.
for byte in &buf[..unprocessed] {
state.parser.advance(&mut **terminal, *byte);
}
processed += unprocessed;
unprocessed = 0;
// Assure we're not blocking the terminal too long unnecessarily.
if processed >= MAX_LOCKED_READ {
break;
}
}
// Queue terminal redraw unless all processed bytes were synchronized.
if state.parser.sync_bytes_count() < processed && processed > 0 {
self.event_proxy.send_event(Event::Wakeup);
}
Ok(())
}
#[inline]
fn pty_write(&mut self, state: &mut State) -> io::Result<()> {
state.ensure_next();
'write_many: while let Some(mut current) = state.take_current() {
'write_one: loop {
match self.pty.writer().write(current.remaining_bytes()) {
Ok(0) => {
state.set_current(Some(current));
break 'write_many;
},
Ok(n) => {
current.advance(n);
if current.finished() {
state.goto_next();
break 'write_one;
}
},
Err(err) => {
state.set_current(Some(current));
match err.kind() {
ErrorKind::Interrupted | ErrorKind::WouldBlock => break 'write_many,
_ => return Err(err),
}
},
}
}
}
Ok(())
}
pub fn spawn(mut self) -> JoinHandle<(Self, State)> {
thread::spawn_named("PTY reader", move || {
let mut state = State::default();
let mut buf = [0u8; READ_BUFFER_SIZE];
let mut tokens = (0..).map(Into::into);
let poll_opts = PollOpt::edge() | PollOpt::oneshot();
let channel_token = tokens.next().unwrap();
self.poll.register(&self.rx, channel_token, Ready::readable(), poll_opts).unwrap();
// Register TTY through EventedRW interface.
self.pty.register(&self.poll, &mut tokens, Ready::readable(), poll_opts).unwrap();
let mut events = Events::with_capacity(1024);
let mut pipe = if self.ref_test {
Some(File::create("./alacritty.recording").expect("create alacritty recording"))
} else {
None
};
'event_loop: loop {
// Wakeup the event loop when a synchronized update timeout was reached.
let sync_timeout = state.parser.sync_timeout();
let timeout = sync_timeout.map(|st| st.saturating_duration_since(Instant::now()));
if let Err(err) = self.poll.poll(&mut events, timeout) {
match err.kind() {
ErrorKind::Interrupted => continue,
_ => panic!("EventLoop polling error: {:?}", err),
}
}
// Handle synchronized update timeout.
if events.is_empty() {
state.parser.stop_sync(&mut *self.terminal.lock());
self.event_proxy.send_event(Event::Wakeup);
continue;
}
for event in events.iter() {
match event.token() {
token if token == channel_token => {
if !self.channel_event(channel_token, &mut state) {
break 'event_loop;
}
},
token if token == self.pty.child_event_token() => {
if let Some(tty::ChildEvent::Exited) = self.pty.next_child_event() {
if self.hold {
// With hold enabled, make sure the PTY is drained.
let _ = self.pty_read(&mut state, &mut buf, pipe.as_mut());
} else {
// Without hold, shutdown the terminal.
self.terminal.lock().exit();
}
self.event_proxy.send_event(Event::Wakeup);
break 'event_loop;
}
},
token
if token == self.pty.read_token()
|| token == self.pty.write_token() =>
{
#[cfg(unix)]
if UnixReady::from(event.readiness()).is_hup() {
// Don't try to do I/O on a dead PTY.
continue;
}
if event.readiness().is_readable() {
if let Err(err) = self.pty_read(&mut state, &mut buf, pipe.as_mut())
{
// On Linux, a `read` on the master side of a PTY can fail
// with `EIO` if the client side hangs up. In that case,
// just loop back round for the inevitable `Exited` event.
// This sucks, but checking the process is either racy or
// blocking.
#[cfg(target_os = "linux")]
if err.raw_os_error() == Some(libc::EIO) {
continue;
}
error!("Error reading from PTY in event loop: {}", err);
break 'event_loop;
}
}
if event.readiness().is_writable() {
if let Err(err) = self.pty_write(&mut state) {
error!("Error writing to PTY in event loop: {}", err);
break 'event_loop;
}
}
},
_ => (),
}
}
// Register write interest if necessary.
let mut interest = Ready::readable();
if state.needs_write() {
interest.insert(Ready::writable());
}
// Reregister with new interest.
self.pty.reregister(&self.poll, interest, poll_opts).unwrap();
}
// The evented instances are not dropped here so deregister them explicitly.
let _ = self.poll.deregister(&self.rx);
let _ = self.pty.deregister(&self.poll);
(self, state)
})
}
}
|