/* Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2015, The Tor Project, Inc. */ /* See LICENSE for licensing information */ #include "orconfig.h" #define CRYPTO_CURVE25519_PRIVATE #include "or.h" #include "test.h" #include "aes.h" #include "util.h" #include "siphash.h" #include "crypto_curve25519.h" #include "crypto_ed25519.h" #include "ed25519_vectors.inc" #include extern const char AUTHORITY_SIGNKEY_3[]; extern const char AUTHORITY_SIGNKEY_A_DIGEST[]; extern const char AUTHORITY_SIGNKEY_A_DIGEST256[]; /** Run unit tests for Diffie-Hellman functionality. */ static void test_crypto_dh(void *arg) { crypto_dh_t *dh1 = crypto_dh_new(DH_TYPE_CIRCUIT); crypto_dh_t *dh2 = crypto_dh_new(DH_TYPE_CIRCUIT); char p1[DH_BYTES]; char p2[DH_BYTES]; char s1[DH_BYTES]; char s2[DH_BYTES]; ssize_t s1len, s2len; (void)arg; tt_int_op(crypto_dh_get_bytes(dh1),OP_EQ, DH_BYTES); tt_int_op(crypto_dh_get_bytes(dh2),OP_EQ, DH_BYTES); memset(p1, 0, DH_BYTES); memset(p2, 0, DH_BYTES); tt_mem_op(p1,OP_EQ, p2, DH_BYTES); tt_assert(! crypto_dh_get_public(dh1, p1, DH_BYTES)); tt_mem_op(p1,OP_NE, p2, DH_BYTES); tt_assert(! crypto_dh_get_public(dh2, p2, DH_BYTES)); tt_mem_op(p1,OP_NE, p2, DH_BYTES); memset(s1, 0, DH_BYTES); memset(s2, 0xFF, DH_BYTES); s1len = crypto_dh_compute_secret(LOG_WARN, dh1, p2, DH_BYTES, s1, 50); s2len = crypto_dh_compute_secret(LOG_WARN, dh2, p1, DH_BYTES, s2, 50); tt_assert(s1len > 0); tt_int_op(s1len,OP_EQ, s2len); tt_mem_op(s1,OP_EQ, s2, s1len); { /* XXXX Now fabricate some bad values and make sure they get caught, * Check 0, 1, N-1, >= N, etc. */ } done: crypto_dh_free(dh1); crypto_dh_free(dh2); } /** Run unit tests for our random number generation function and its wrappers. */ static void test_crypto_rng(void *arg) { int i, j, allok; char data1[100], data2[100]; double d; /* Try out RNG. */ (void)arg; tt_assert(! crypto_seed_rng()); crypto_rand(data1, 100); crypto_rand(data2, 100); tt_mem_op(data1,OP_NE, data2,100); allok = 1; for (i = 0; i < 100; ++i) { uint64_t big; char *host; j = crypto_rand_int(100); if (j < 0 || j >= 100) allok = 0; big = crypto_rand_uint64(U64_LITERAL(1)<<40); if (big >= (U64_LITERAL(1)<<40)) allok = 0; big = crypto_rand_uint64(U64_LITERAL(5)); if (big >= 5) allok = 0; d = crypto_rand_double(); tt_assert(d >= 0); tt_assert(d < 1.0); host = crypto_random_hostname(3,8,"www.",".onion"); if (strcmpstart(host,"www.") || strcmpend(host,".onion") || strlen(host) < 13 || strlen(host) > 18) allok = 0; tor_free(host); } tt_assert(allok); done: ; } static void test_crypto_rng_range(void *arg) { int got_smallest = 0, got_largest = 0; int i; (void)arg; for (i = 0; i < 1000; ++i) { int x = crypto_rand_int_range(5,9); tt_int_op(x, OP_GE, 5); tt_int_op(x, OP_LT, 9); if (x == 5) got_smallest = 1; if (x == 8) got_largest = 1; } /* These fail with probability 1/10^603. */ tt_assert(got_smallest); tt_assert(got_largest); done: ; } /** Run unit tests for our AES functionality */ static void test_crypto_aes(void *arg) { char *data1 = NULL, *data2 = NULL, *data3 = NULL; crypto_cipher_t *env1 = NULL, *env2 = NULL; int i, j; char *mem_op_hex_tmp=NULL; int use_evp = !strcmp(arg,"evp"); evaluate_evp_for_aes(use_evp); evaluate_ctr_for_aes(); data1 = tor_malloc(1024); data2 = tor_malloc(1024); data3 = tor_malloc(1024); /* Now, test encryption and decryption with stream cipher. */ data1[0]='\0'; for (i = 1023; i>0; i -= 35) strncat(data1, "Now is the time for all good onions", i); memset(data2, 0, 1024); memset(data3, 0, 1024); env1 = crypto_cipher_new(NULL); tt_ptr_op(env1, OP_NE, NULL); env2 = crypto_cipher_new(crypto_cipher_get_key(env1)); tt_ptr_op(env2, OP_NE, NULL); /* Try encrypting 512 chars. */ crypto_cipher_encrypt(env1, data2, data1, 512); crypto_cipher_decrypt(env2, data3, data2, 512); tt_mem_op(data1,OP_EQ, data3, 512); tt_mem_op(data1,OP_NE, data2, 512); /* Now encrypt 1 at a time, and get 1 at a time. */ for (j = 512; j < 560; ++j) { crypto_cipher_encrypt(env1, data2+j, data1+j, 1); } for (j = 512; j < 560; ++j) { crypto_cipher_decrypt(env2, data3+j, data2+j, 1); } tt_mem_op(data1,OP_EQ, data3, 560); /* Now encrypt 3 at a time, and get 5 at a time. */ for (j = 560; j < 1024-5; j += 3) { crypto_cipher_encrypt(env1, data2+j, data1+j, 3); } for (j = 560; j < 1024-5; j += 5) { crypto_cipher_decrypt(env2, data3+j, data2+j, 5); } tt_mem_op(data1,OP_EQ, data3, 1024-5); /* Now make sure that when we encrypt with different chunk sizes, we get the same results. */ crypto_cipher_free(env2); env2 = NULL; memset(data3, 0, 1024); env2 = crypto_cipher_new(crypto_cipher_get_key(env1)); tt_ptr_op(env2, OP_NE, NULL); for (j = 0; j < 1024-16; j += 17) { crypto_cipher_encrypt(env2, data3+j, data1+j, 17); } for (j= 0; j < 1024-16; ++j) { if (data2[j] != data3[j]) { printf("%d: %d\t%d\n", j, (int) data2[j], (int) data3[j]); } } tt_mem_op(data2,OP_EQ, data3, 1024-16); crypto_cipher_free(env1); env1 = NULL; crypto_cipher_free(env2); env2 = NULL; /* NIST test vector for aes. */ /* IV starts at 0 */ env1 = crypto_cipher_new("\x80\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00"); crypto_cipher_encrypt(env1, data1, "\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00", 16); test_memeq_hex(data1, "0EDD33D3C621E546455BD8BA1418BEC8"); /* Now test rollover. All these values are originally from a python * script. */ crypto_cipher_free(env1); env1 = crypto_cipher_new_with_iv( "\x80\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\x00\x00\x00\x00" "\xff\xff\xff\xff\xff\xff\xff\xff"); memset(data2, 0, 1024); crypto_cipher_encrypt(env1, data1, data2, 32); test_memeq_hex(data1, "335fe6da56f843199066c14a00a40231" "cdd0b917dbc7186908a6bfb5ffd574d3"); crypto_cipher_free(env1); env1 = crypto_cipher_new_with_iv( "\x80\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00", "\x00\x00\x00\x00\xff\xff\xff\xff" "\xff\xff\xff\xff\xff\xff\xff\xff"); memset(data2, 0, 1024); crypto_cipher_encrypt(env1, data1, data2, 32); test_memeq_hex(data1, "e627c6423fa2d77832a02b2794094b73" "3e63c721df790d2c6469cc1953a3ffac"); crypto_cipher_free(env1); env1 = crypto_cipher_new_with_iv( "\x80\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00", "\xff\xff\xff\xff\xff\xff\xff\xff" "\xff\xff\xff\xff\xff\xff\xff\xff"); memset(data2, 0, 1024); crypto_cipher_encrypt(env1, data1, data2, 32); test_memeq_hex(data1, "2aed2bff0de54f9328efd070bf48f70a" "0EDD33D3C621E546455BD8BA1418BEC8"); /* Now check rollover on inplace cipher. */ crypto_cipher_free(env1); env1 = crypto_cipher_new_with_iv( "\x80\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00", "\xff\xff\xff\xff\xff\xff\xff\xff" "\xff\xff\xff\xff\xff\xff\xff\xff"); crypto_cipher_crypt_inplace(env1, data2, 64); test_memeq_hex(data2, "2aed2bff0de54f9328efd070bf48f70a" "0EDD33D3C621E546455BD8BA1418BEC8" "93e2c5243d6839eac58503919192f7ae" "1908e67cafa08d508816659c2e693191"); crypto_cipher_free(env1); env1 = crypto_cipher_new_with_iv( "\x80\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00", "\xff\xff\xff\xff\xff\xff\xff\xff" "\xff\xff\xff\xff\xff\xff\xff\xff"); crypto_cipher_crypt_inplace(env1, data2, 64); tt_assert(tor_mem_is_zero(data2, 64)); done: tor_free(mem_op_hex_tmp); if (env1) crypto_cipher_free(env1); if (env2) crypto_cipher_free(env2); tor_free(data1); tor_free(data2); tor_free(data3); } /** Run unit tests for our SHA-1 functionality */ static void test_crypto_sha(void *arg) { crypto_digest_t *d1 = NULL, *d2 = NULL; int i; char key[160]; char digest[32]; char data[50]; char d_out1[DIGEST_LEN], d_out2[DIGEST512_LEN]; char *mem_op_hex_tmp=NULL; /* Test SHA-1 with a test vector from the specification. */ (void)arg; i = crypto_digest(data, "abc", 3); test_memeq_hex(data, "A9993E364706816ABA3E25717850C26C9CD0D89D"); tt_int_op(i, OP_EQ, 0); /* Test SHA-256 with a test vector from the specification. */ i = crypto_digest256(data, "abc", 3, DIGEST_SHA256); test_memeq_hex(data, "BA7816BF8F01CFEA414140DE5DAE2223B00361A3" "96177A9CB410FF61F20015AD"); tt_int_op(i, OP_EQ, 0); /* Test SHA-512 with a test vector from the specification. */ i = crypto_digest512(data, "abc", 3, DIGEST_SHA512); test_memeq_hex(data, "ddaf35a193617abacc417349ae20413112e6fa4e89a97" "ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3" "feebbd454d4423643ce80e2a9ac94fa54ca49f"); tt_int_op(i, OP_EQ, 0); /* Test HMAC-SHA256 with test cases from wikipedia and RFC 4231 */ /* Case empty (wikipedia) */ crypto_hmac_sha256(digest, "", 0, "", 0); tt_str_op(hex_str(digest, 32),OP_EQ, "B613679A0814D9EC772F95D778C35FC5FF1697C493715653C6C712144292C5AD"); /* Case quick-brown (wikipedia) */ crypto_hmac_sha256(digest, "key", 3, "The quick brown fox jumps over the lazy dog", 43); tt_str_op(hex_str(digest, 32),OP_EQ, "F7BC83F430538424B13298E6AA6FB143EF4D59A14946175997479DBC2D1A3CD8"); /* "Test Case 1" from RFC 4231 */ memset(key, 0x0b, 20); crypto_hmac_sha256(digest, key, 20, "Hi There", 8); test_memeq_hex(digest, "b0344c61d8db38535ca8afceaf0bf12b" "881dc200c9833da726e9376c2e32cff7"); /* "Test Case 2" from RFC 4231 */ memset(key, 0x0b, 20); crypto_hmac_sha256(digest, "Jefe", 4, "what do ya want for nothing?", 28); test_memeq_hex(digest, "5bdcc146bf60754e6a042426089575c7" "5a003f089d2739839dec58b964ec3843"); /* "Test case 3" from RFC 4231 */ memset(key, 0xaa, 20); memset(data, 0xdd, 50); crypto_hmac_sha256(digest, key, 20, data, 50); test_memeq_hex(digest, "773ea91e36800e46854db8ebd09181a7" "2959098b3ef8c122d9635514ced565fe"); /* "Test case 4" from RFC 4231 */ base16_decode(key, 25, "0102030405060708090a0b0c0d0e0f10111213141516171819", 50); memset(data, 0xcd, 50); crypto_hmac_sha256(digest, key, 25, data, 50); test_memeq_hex(digest, "82558a389a443c0ea4cc819899f2083a" "85f0faa3e578f8077a2e3ff46729665b"); /* "Test case 5" from RFC 4231 */ memset(key, 0x0c, 20); crypto_hmac_sha256(digest, key, 20, "Test With Truncation", 20); test_memeq_hex(digest, "a3b6167473100ee06e0c796c2955552b"); /* "Test case 6" from RFC 4231 */ memset(key, 0xaa, 131); crypto_hmac_sha256(digest, key, 131, "Test Using Larger Than Block-Size Key - Hash Key First", 54); test_memeq_hex(digest, "60e431591ee0b67f0d8a26aacbf5b77f" "8e0bc6213728c5140546040f0ee37f54"); /* "Test case 7" from RFC 4231 */ memset(key, 0xaa, 131); crypto_hmac_sha256(digest, key, 131, "This is a test using a larger than block-size key and a " "larger than block-size data. The key needs to be hashed " "before being used by the HMAC algorithm.", 152); test_memeq_hex(digest, "9b09ffa71b942fcb27635fbcd5b0e944" "bfdc63644f0713938a7f51535c3a35e2"); /* Incremental digest code. */ d1 = crypto_digest_new(); tt_assert(d1); crypto_digest_add_bytes(d1, "abcdef", 6); d2 = crypto_digest_dup(d1); tt_assert(d2); crypto_digest_add_bytes(d2, "ghijkl", 6); crypto_digest_get_digest(d2, d_out1, sizeof(d_out1)); crypto_digest(d_out2, "abcdefghijkl", 12); tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN); crypto_digest_assign(d2, d1); crypto_digest_add_bytes(d2, "mno", 3); crypto_digest_get_digest(d2, d_out1, sizeof(d_out1)); crypto_digest(d_out2, "abcdefmno", 9); tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN); crypto_digest_get_digest(d1, d_out1, sizeof(d_out1)); crypto_digest(d_out2, "abcdef", 6); tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN); crypto_digest_free(d1); crypto_digest_free(d2); /* Incremental digest code with sha256 */ d1 = crypto_digest256_new(DIGEST_SHA256); tt_assert(d1); crypto_digest_add_bytes(d1, "abcdef", 6); d2 = crypto_digest_dup(d1); tt_assert(d2); crypto_digest_add_bytes(d2, "ghijkl", 6); crypto_digest_get_digest(d2, d_out1, sizeof(d_out1)); crypto_digest256(d_out2, "abcdefghijkl", 12, DIGEST_SHA256); tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN); crypto_digest_assign(d2, d1); crypto_digest_add_bytes(d2, "mno", 3); crypto_digest_get_digest(d2, d_out1, sizeof(d_out1)); crypto_digest256(d_out2, "abcdefmno", 9, DIGEST_SHA256); tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN); crypto_digest_get_digest(d1, d_out1, sizeof(d_out1)); crypto_digest256(d_out2, "abcdef", 6, DIGEST_SHA256); tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN); crypto_digest_free(d1); crypto_digest_free(d2); /* Incremental digest code with sha512 */ d1 = crypto_digest512_new(DIGEST_SHA512); tt_assert(d1); crypto_digest_add_bytes(d1, "abcdef", 6); d2 = crypto_digest_dup(d1); tt_assert(d2); crypto_digest_add_bytes(d2, "ghijkl", 6); crypto_digest_get_digest(d2, d_out1, sizeof(d_out1)); crypto_digest512(d_out2, "abcdefghijkl", 12, DIGEST_SHA512); tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN); crypto_digest_assign(d2, d1); crypto_digest_add_bytes(d2, "mno", 3); crypto_digest_get_digest(d2, d_out1, sizeof(d_out1)); crypto_digest512(d_out2, "abcdefmno", 9, DIGEST_SHA512); tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN); crypto_digest_get_digest(d1, d_out1, sizeof(d_out1)); crypto_digest512(d_out2, "abcdef", 6, DIGEST_SHA512); tt_mem_op(d_out1,OP_EQ, d_out2, DIGEST_LEN); done: if (d1) crypto_digest_free(d1); if (d2) crypto_digest_free(d2); tor_free(mem_op_hex_tmp); } /** Run unit tests for our public key crypto functions */ static void test_crypto_pk(void *arg) { crypto_pk_t *pk1 = NULL, *pk2 = NULL; char *encoded = NULL; char data1[1024], data2[1024], data3[1024]; size_t size; int i, len; /* Public-key ciphers */ (void)arg; pk1 = pk_generate(0); pk2 = crypto_pk_new(); tt_assert(pk1 && pk2); tt_assert(! crypto_pk_write_public_key_to_string(pk1, &encoded, &size)); tt_assert(! crypto_pk_read_public_key_from_string(pk2, encoded, size)); tt_int_op(0,OP_EQ, crypto_pk_cmp_keys(pk1, pk2)); /* comparison between keys and NULL */ tt_int_op(crypto_pk_cmp_keys(NULL, pk1), OP_LT, 0); tt_int_op(crypto_pk_cmp_keys(NULL, NULL), OP_EQ, 0); tt_int_op(crypto_pk_cmp_keys(pk1, NULL), OP_GT, 0); tt_int_op(128,OP_EQ, crypto_pk_keysize(pk1)); tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk1)); tt_int_op(128,OP_EQ, crypto_pk_keysize(pk2)); tt_int_op(1024,OP_EQ, crypto_pk_num_bits(pk2)); tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk2, data1, sizeof(data1), "Hello whirled.", 15, PK_PKCS1_OAEP_PADDING)); tt_int_op(128,OP_EQ, crypto_pk_public_encrypt(pk1, data2, sizeof(data1), "Hello whirled.", 15, PK_PKCS1_OAEP_PADDING)); /* oaep padding should make encryption not match */ tt_mem_op(data1,OP_NE, data2, 128); tt_int_op(15,OP_EQ, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data1, 128, PK_PKCS1_OAEP_PADDING,1)); tt_str_op(data3,OP_EQ, "Hello whirled."); memset(data3, 0, 1024); tt_int_op(15,OP_EQ, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128, PK_PKCS1_OAEP_PADDING,1)); tt_str_op(data3,OP_EQ, "Hello whirled."); /* Can't decrypt with public key. */ tt_int_op(-1,OP_EQ, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data2, 128, PK_PKCS1_OAEP_PADDING,1)); /* Try again with bad padding */ memcpy(data2+1, "XYZZY", 5); /* This has fails ~ once-in-2^40 */ tt_int_op(-1,OP_EQ, crypto_pk_private_decrypt(pk1, data3, sizeof(data3), data2, 128, PK_PKCS1_OAEP_PADDING,1)); /* File operations: save and load private key */ tt_assert(! crypto_pk_write_private_key_to_filename(pk1, get_fname("pkey1"))); /* failing case for read: can't read. */ tt_assert(crypto_pk_read_private_key_from_filename(pk2, get_fname("xyzzy")) < 0); write_str_to_file(get_fname("xyzzy"), "foobar", 6); /* Failing case for read: no key. */ tt_assert(crypto_pk_read_private_key_from_filename(pk2, get_fname("xyzzy")) < 0); tt_assert(! crypto_pk_read_private_key_from_filename(pk2, get_fname("pkey1"))); tt_int_op(15,OP_EQ, crypto_pk_private_decrypt(pk2, data3, sizeof(data3), data1, 128, PK_PKCS1_OAEP_PADDING,1)); /* Now try signing. */ strlcpy(data1, "Ossifrage", 1024); tt_int_op(128,OP_EQ, crypto_pk_private_sign(pk1, data2, sizeof(data2), data1, 10)); tt_int_op(10,OP_EQ, crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128)); tt_str_op(data3,OP_EQ, "Ossifrage"); /* Try signing digests. */ tt_int_op(128,OP_EQ, crypto_pk_private_sign_digest(pk1, data2, sizeof(data2), data1, 10)); tt_int_op(20,OP_EQ, crypto_pk_public_checksig(pk1, data3, sizeof(data3), data2, 128)); tt_int_op(0,OP_EQ, crypto_pk_public_checksig_digest(pk1, data1, 10, data2, 128)); tt_int_op(-1,OP_EQ, crypto_pk_public_checksig_digest(pk1, data1, 11, data2, 128)); /*XXXX test failed signing*/ /* Try encoding */ crypto_pk_free(pk2); pk2 = NULL; i = crypto_pk_asn1_encode(pk1, data1, 1024); tt_int_op(i, OP_GT, 0); pk2 = crypto_pk_asn1_decode(data1, i); tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0); /* Try with hybrid encryption wrappers. */ crypto_rand(data1, 1024); for (i = 85; i < 140; ++i) { memset(data2,0,1024); memset(data3,0,1024); len = crypto_pk_public_hybrid_encrypt(pk1,data2,sizeof(data2), data1,i,PK_PKCS1_OAEP_PADDING,0); tt_int_op(len, OP_GE, 0); len = crypto_pk_private_hybrid_decrypt(pk1,data3,sizeof(data3), data2,len,PK_PKCS1_OAEP_PADDING,1); tt_int_op(len,OP_EQ, i); tt_mem_op(data1,OP_EQ, data3,i); } /* Try copy_full */ crypto_pk_free(pk2); pk2 = crypto_pk_copy_full(pk1); tt_assert(pk2 != NULL); tt_ptr_op(pk1, OP_NE, pk2); tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0); done: if (pk1) crypto_pk_free(pk1); if (pk2) crypto_pk_free(pk2); tor_free(encoded); } static void test_crypto_pk_fingerprints(void *arg) { crypto_pk_t *pk = NULL; char encoded[512]; char d[DIGEST_LEN], d2[DIGEST_LEN]; char fingerprint[FINGERPRINT_LEN+1]; int n; unsigned i; char *mem_op_hex_tmp=NULL; (void)arg; pk = pk_generate(1); tt_assert(pk); n = crypto_pk_asn1_encode(pk, encoded, sizeof(encoded)); tt_int_op(n, OP_GT, 0); tt_int_op(n, OP_GT, 128); tt_int_op(n, OP_LT, 256); /* Is digest as expected? */ crypto_digest(d, encoded, n); tt_int_op(0, OP_EQ, crypto_pk_get_digest(pk, d2)); tt_mem_op(d,OP_EQ, d2, DIGEST_LEN); /* Is fingerprint right? */ tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 0)); tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2); test_memeq_hex(d, fingerprint); /* Are spaces right? */ tt_int_op(0, OP_EQ, crypto_pk_get_fingerprint(pk, fingerprint, 1)); for (i = 4; i < strlen(fingerprint); i += 5) { tt_int_op(fingerprint[i], OP_EQ, ' '); } tor_strstrip(fingerprint, " "); tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2); test_memeq_hex(d, fingerprint); /* Now hash again and check crypto_pk_get_hashed_fingerprint. */ crypto_digest(d2, d, sizeof(d)); tt_int_op(0, OP_EQ, crypto_pk_get_hashed_fingerprint(pk, fingerprint)); tt_int_op(strlen(fingerprint), OP_EQ, DIGEST_LEN * 2); test_memeq_hex(d2, fingerprint); done: crypto_pk_free(pk); tor_free(mem_op_hex_tmp); } static void test_crypto_pk_base64(void *arg) { crypto_pk_t *pk1 = NULL; crypto_pk_t *pk2 = NULL; char *encoded = NULL; (void)arg; /* Test Base64 encoding a key. */ pk1 = pk_generate(0); tt_assert(pk1); tt_int_op(0, OP_EQ, crypto_pk_base64_encode(pk1, &encoded)); tt_assert(encoded); /* Test decoding a valid key. */ pk2 = crypto_pk_base64_decode(encoded, strlen(encoded)); tt_assert(pk2); tt_assert(crypto_pk_cmp_keys(pk1,pk2) == 0); crypto_pk_free(pk2); /* Test decoding a invalid key (not Base64). */ static const char *invalid_b64 = "The key is in another castle!"; pk2 = crypto_pk_base64_decode(invalid_b64, strlen(invalid_b64)); tt_assert(!pk2); /* Test decoding a truncated Base64 blob. */ pk2 = crypto_pk_base64_decode(encoded, strlen(encoded)/2); tt_assert(!pk2); done: crypto_pk_free(pk1); crypto_pk_free(pk2); tor_free(encoded); } /** Sanity check for crypto pk digests */ static void test_crypto_digests(void *arg) { crypto_pk_t *k = NULL; ssize_t r; digests_t pkey_digests; char digest[DIGEST_LEN]; (void)arg; k = crypto_pk_new(); tt_assert(k); r = crypto_pk_read_private_key_from_string(k, AUTHORITY_SIGNKEY_3, -1); tt_assert(!r); r = crypto_pk_get_digest(k, digest); tt_assert(r == 0); tt_mem_op(hex_str(digest, DIGEST_LEN),OP_EQ, AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN); r = crypto_pk_get_all_digests(k, &pkey_digests); tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA1], DIGEST_LEN),OP_EQ, AUTHORITY_SIGNKEY_A_DIGEST, HEX_DIGEST_LEN); tt_mem_op(hex_str(pkey_digests.d[DIGEST_SHA256], DIGEST256_LEN),OP_EQ, AUTHORITY_SIGNKEY_A_DIGEST256, HEX_DIGEST256_LEN); done: crypto_pk_free(k); } /** Encode src into dest with OpenSSL's EVP Encode interface, returning the * length of the encoded data in bytes. */ static int base64_encode_evp(char *dest, char *src, size_t srclen) { const unsigned char *s = (unsigned char*)src; EVP_ENCODE_CTX ctx; int len, ret; EVP_EncodeInit(&ctx); EVP_EncodeUpdate(&ctx, (unsigned char *)dest, &len, s, (int)srclen); EVP_EncodeFinal(&ctx, (unsigned char *)(dest + len), &ret); return ret+ len; } /** Run unit tests for misc crypto formatting functionality (base64, base32, * fingerprints, etc) */ static void test_crypto_formats(void *arg) { char *data1 = NULL, *data2 = NULL, *data3 = NULL; int i, j, idx; (void)arg; data1 = tor_malloc(1024); data2 = tor_malloc(1024); data3 = tor_malloc(1024); tt_assert(data1 && data2 && data3); /* Base64 tests */ memset(data1, 6, 1024); for (idx = 0; idx < 10; ++idx) { i = base64_encode(data2, 1024, data1, idx, 0); tt_int_op(i, OP_GE, 0); tt_int_op(i, OP_EQ, strlen(data2)); j = base64_decode(data3, 1024, data2, i); tt_int_op(j,OP_EQ, idx); tt_mem_op(data3,OP_EQ, data1, idx); i = base64_encode_nopad(data2, 1024, (uint8_t*)data1, idx); tt_int_op(i, OP_GE, 0); tt_int_op(i, OP_EQ, strlen(data2)); tt_assert(! strchr(data2, '=')); j = base64_decode_nopad((uint8_t*)data3, 1024, data2, i); tt_int_op(j, OP_EQ, idx); tt_mem_op(data3,OP_EQ, data1, idx); } strlcpy(data1, "Test string that contains 35 chars.", 1024); strlcat(data1, " 2nd string that contains 35 chars.", 1024); i = base64_encode(data2, 1024, data1, 71, 0); tt_int_op(i, OP_GE, 0); j = base64_decode(data3, 1024, data2, i); tt_int_op(j,OP_EQ, 71); tt_str_op(data3,OP_EQ, data1); tt_int_op(data2[i], OP_EQ, '\0'); crypto_rand(data1, DIGEST_LEN); memset(data2, 100, 1024); digest_to_base64(data2, data1); tt_int_op(BASE64_DIGEST_LEN,OP_EQ, strlen(data2)); tt_int_op(100,OP_EQ, data2[BASE64_DIGEST_LEN+2]); memset(data3, 99, 1024); tt_int_op(digest_from_base64(data3, data2),OP_EQ, 0); tt_mem_op(data1,OP_EQ, data3, DIGEST_LEN); tt_int_op(99,OP_EQ, data3[DIGEST_LEN+1]); tt_assert(digest_from_base64(data3, "###") < 0); for (i = 0; i < 256; i++) { /* Test the multiline format Base64 encoder with 0 .. 256 bytes of * output against OpenSSL. */ const size_t enclen = base64_encode_size(i, BASE64_ENCODE_MULTILINE); data1[i] = i; j = base64_encode(data2, 1024, data1, i, BASE64_ENCODE_MULTILINE); tt_int_op(j, OP_EQ, enclen); j = base64_encode_evp(data3, data1, i); tt_int_op(j, OP_EQ, enclen); tt_mem_op(data2, OP_EQ, data3, enclen); tt_int_op(j, OP_EQ, strlen(data2)); } /* Encoding SHA256 */ crypto_rand(data2, DIGEST256_LEN); memset(data2, 100, 1024); digest256_to_base64(data2, data1); tt_int_op(BASE64_DIGEST256_LEN,OP_EQ, strlen(data2)); tt_int_op(100,OP_EQ, data2[BASE64_DIGEST256_LEN+2]); memset(data3, 99, 1024); tt_int_op(digest256_from_base64(data3, data2),OP_EQ, 0); tt_mem_op(data1,OP_EQ, data3, DIGEST256_LEN); tt_int_op(99,OP_EQ, data3[DIGEST256_LEN+1]); /* Base32 tests */ strlcpy(data1, "5chrs", 1024); /* bit pattern is: [35 63 68 72 73] -> * [00110101 01100011 01101000 01110010 01110011] * By 5s: [00110 10101 10001 10110 10000 11100 10011 10011] */ base32_encode(data2, 9, data1, 5); tt_str_op(data2,OP_EQ, "gvrwq4tt"); strlcpy(data1, "\xFF\xF5\x6D\x44\xAE\x0D\x5C\xC9\x62\xC4", 1024); base32_encode(data2, 30, data1, 10); tt_str_op(data2,OP_EQ, "772w2rfobvomsywe"); /* Base16 tests */ strlcpy(data1, "6chrs\xff", 1024); base16_encode(data2, 13, data1, 6); tt_str_op(data2,OP_EQ, "3663687273FF"); strlcpy(data1, "f0d678affc000100", 1024); i = base16_decode(data2, 8, data1, 16); tt_int_op(i,OP_EQ, 0); tt_mem_op(data2,OP_EQ, "\xf0\xd6\x78\xaf\xfc\x00\x01\x00",8); /* now try some failing base16 decodes */ tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 15)); /* odd input len */ tt_int_op(-1,OP_EQ, base16_decode(data2, 7, data1, 16)); /* dest too short */ strlcpy(data1, "f0dz!8affc000100", 1024); tt_int_op(-1,OP_EQ, base16_decode(data2, 8, data1, 16)); tor_free(data1); tor_free(data2); tor_free(data3); /* Add spaces to fingerprint */ { data1 = tor_strdup("ABCD1234ABCD56780000ABCD1234ABCD56780000"); tt_int_op(strlen(data1),OP_EQ, 40); data2 = tor_malloc(FINGERPRINT_LEN+1); crypto_add_spaces_to_fp(data2, FINGERPRINT_LEN+1, data1); tt_str_op(data2, OP_EQ, "ABCD 1234 ABCD 5678 0000 ABCD 1234 ABCD 5678 0000"); tor_free(data1); tor_free(data2); } done: tor_free(data1); tor_free(data2); tor_free(data3); } /** Test AES-CTR encryption and decryption with IV. */ static void test_crypto_aes_iv(void *arg) { char *plain, *encrypted1, *encrypted2, *decrypted1, *decrypted2; char plain_1[1], plain_15[15], plain_16[16], plain_17[17]; char key1[16], key2[16]; ssize_t encrypted_size, decrypted_size; int use_evp = !strcmp(arg,"evp"); evaluate_evp_for_aes(use_evp); plain = tor_malloc(4095); encrypted1 = tor_malloc(4095 + 1 + 16); encrypted2 = tor_malloc(4095 + 1 + 16); decrypted1 = tor_malloc(4095 + 1); decrypted2 = tor_malloc(4095 + 1); crypto_rand(plain, 4095); crypto_rand(key1, 16); crypto_rand(key2, 16); crypto_rand(plain_1, 1); crypto_rand(plain_15, 15); crypto_rand(plain_16, 16); crypto_rand(plain_17, 17); key1[0] = key2[0] + 128; /* Make sure that contents are different. */ /* Encrypt and decrypt with the same key. */ encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 4095, plain, 4095); tt_int_op(encrypted_size,OP_EQ, 16 + 4095); tt_assert(encrypted_size > 0); /* This is obviously true, since 4111 is * greater than 0, but its truth is not * obvious to all analysis tools. */ decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095, encrypted1, encrypted_size); tt_int_op(decrypted_size,OP_EQ, 4095); tt_assert(decrypted_size > 0); tt_mem_op(plain,OP_EQ, decrypted1, 4095); /* Encrypt a second time (with a new random initialization vector). */ encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted2, 16 + 4095, plain, 4095); tt_int_op(encrypted_size,OP_EQ, 16 + 4095); tt_assert(encrypted_size > 0); decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted2, 4095, encrypted2, encrypted_size); tt_int_op(decrypted_size,OP_EQ, 4095); tt_assert(decrypted_size > 0); tt_mem_op(plain,OP_EQ, decrypted2, 4095); tt_mem_op(encrypted1,OP_NE, encrypted2, encrypted_size); /* Decrypt with the wrong key. */ decrypted_size = crypto_cipher_decrypt_with_iv(key2, decrypted2, 4095, encrypted1, encrypted_size); tt_int_op(decrypted_size,OP_EQ, 4095); tt_mem_op(plain,OP_NE, decrypted2, decrypted_size); /* Alter the initialization vector. */ encrypted1[0] += 42; decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 4095, encrypted1, encrypted_size); tt_int_op(decrypted_size,OP_EQ, 4095); tt_mem_op(plain,OP_NE, decrypted2, 4095); /* Special length case: 1. */ encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 1, plain_1, 1); tt_int_op(encrypted_size,OP_EQ, 16 + 1); tt_assert(encrypted_size > 0); decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 1, encrypted1, encrypted_size); tt_int_op(decrypted_size,OP_EQ, 1); tt_assert(decrypted_size > 0); tt_mem_op(plain_1,OP_EQ, decrypted1, 1); /* Special length case: 15. */ encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 15, plain_15, 15); tt_int_op(encrypted_size,OP_EQ, 16 + 15); tt_assert(encrypted_size > 0); decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 15, encrypted1, encrypted_size); tt_int_op(decrypted_size,OP_EQ, 15); tt_assert(decrypted_size > 0); tt_mem_op(plain_15,OP_EQ, decrypted1, 15); /* Special length case: 16. */ encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 16, plain_16, 16); tt_int_op(encrypted_size,OP_EQ, 16 + 16); tt_assert(encrypted_size > 0); decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 16, encrypted1, encrypted_size); tt_int_op(decrypted_size,OP_EQ, 16); tt_assert(decrypted_size > 0); tt_mem_op(plain_16,OP_EQ, decrypted1, 16); /* Special length case: 17. */ encrypted_size = crypto_cipher_encrypt_with_iv(key1, encrypted1, 16 + 17, plain_17, 17); tt_int_op(encrypted_size,OP_EQ, 16 + 17); tt_assert(encrypted_size > 0); decrypted_size = crypto_cipher_decrypt_with_iv(key1, decrypted1, 17, encrypted1, encrypted_size); tt_int_op(decrypted_size,OP_EQ, 17); tt_assert(decrypted_size > 0); tt_mem_op(plain_17,OP_EQ, decrypted1, 17); done: /* Free memory. */ tor_free(plain); tor_free(encrypted1); tor_free(encrypted2); tor_free(decrypted1); tor_free(decrypted2); } /** Test base32 decoding. */ static void test_crypto_base32_decode(void *arg) { char plain[60], encoded[96 + 1], decoded[60]; int res; (void)arg; crypto_rand(plain, 60); /* Encode and decode a random string. */ base32_encode(encoded, 96 + 1, plain, 60); res = base32_decode(decoded, 60, encoded, 96); tt_int_op(res,OP_EQ, 0); tt_mem_op(plain,OP_EQ, decoded, 60); /* Encode, uppercase, and decode a random string. */ base32_encode(encoded, 96 + 1, plain, 60); tor_strupper(encoded); res = base32_decode(decoded, 60, encoded, 96); tt_int_op(res,OP_EQ, 0); tt_mem_op(plain,OP_EQ, decoded, 60); /* Change encoded string and decode. */ if (encoded[0] == 'A' || encoded[0] == 'a') encoded[0] = 'B'; else encoded[0] = 'A'; res = base32_decode(decoded, 60, encoded, 96); tt_int_op(res,OP_EQ, 0); tt_mem_op(plain,OP_NE, decoded, 60); /* Bad encodings. */ encoded[0] = '!'; res = base32_decode(decoded, 60, encoded, 96); tt_int_op(0, OP_GT, res); done: ; } static void test_crypto_kdf_TAP(void *arg) { uint8_t key_material[100]; int r; char *mem_op_hex_tmp = NULL; (void)arg; #define EXPAND(s) \ r = crypto_expand_key_material_TAP( \ (const uint8_t*)(s), strlen(s), \ key_material, 100) /* Test vectors generated with a little python script; feel free to write * your own. */ memset(key_material, 0, sizeof(key_material)); EXPAND(""); tt_int_op(r, OP_EQ, 0); test_memeq_hex(key_material, "5ba93c9db0cff93f52b521d7420e43f6eda2784fbf8b4530d8" "d246dd74ac53a13471bba17941dff7c4ea21bb365bbeeaf5f2" "c654883e56d11e43c44e9842926af7ca0a8cca12604f945414" "f07b01e13da42c6cf1de3abfdea9b95f34687cbbe92b9a7383"); EXPAND("Tor"); tt_int_op(r, OP_EQ, 0); test_memeq_hex(key_material, "776c6214fc647aaa5f683c737ee66ec44f03d0372e1cce6922" "7950f236ddf1e329a7ce7c227903303f525a8c6662426e8034" "870642a6dabbd41b5d97ec9bf2312ea729992f48f8ea2d0ba8" "3f45dfda1a80bdc8b80de01b23e3e0ffae099b3e4ccf28dc28"); EXPAND("AN ALARMING ITEM TO FIND ON A MONTHLY AUTO-DEBIT NOTICE"); tt_int_op(r, OP_EQ, 0); test_memeq_hex(key_material, "a340b5d126086c3ab29c2af4179196dbf95e1c72431419d331" "4844bf8f6afb6098db952b95581fb6c33625709d6f4400b8e7" "ace18a70579fad83c0982ef73f89395bcc39493ad53a685854" "daf2ba9b78733b805d9a6824c907ee1dba5ac27a1e466d4d10"); done: tor_free(mem_op_hex_tmp); #undef EXPAND } static void test_crypto_hkdf_sha256(void *arg) { uint8_t key_material[100]; const uint8_t salt[] = "ntor-curve25519-sha256-1:key_extract"; const size_t salt_len = strlen((char*)salt); const uint8_t m_expand[] = "ntor-curve25519-sha256-1:key_expand"; const size_t m_expand_len = strlen((char*)m_expand); int r; char *mem_op_hex_tmp = NULL; (void)arg; #define EXPAND(s) \ r = crypto_expand_key_material_rfc5869_sha256( \ (const uint8_t*)(s), strlen(s), \ salt, salt_len, \ m_expand, m_expand_len, \ key_material, 100) /* Test vectors generated with ntor_ref.py */ memset(key_material, 0, sizeof(key_material)); EXPAND(""); tt_int_op(r, OP_EQ, 0); test_memeq_hex(key_material, "d3490ed48b12a48f9547861583573fe3f19aafe3f81dc7fc75" "eeed96d741b3290f941576c1f9f0b2d463d1ec7ab2c6bf71cd" "d7f826c6298c00dbfe6711635d7005f0269493edf6046cc7e7" "dcf6abe0d20c77cf363e8ffe358927817a3d3e73712cee28d8"); EXPAND("Tor"); tt_int_op(r, OP_EQ, 0); test_memeq_hex(key_material, "5521492a85139a8d9107a2d5c0d9c91610d0f95989975ebee6" "c02a4f8d622a6cfdf9b7c7edd3832e2760ded1eac309b76f8d" "66c4a3c4d6225429b3a016e3c3d45911152fc87bc2de9630c3" "961be9fdb9f93197ea8e5977180801926d3321fa21513e59ac"); EXPAND("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT"); tt_int_op(r, OP_EQ, 0); test_memeq_hex(key_material, "a2aa9b50da7e481d30463adb8f233ff06e9571a0ca6ab6df0f" "b206fa34e5bc78d063fc291501beec53b36e5a0e434561200c" "5f8bd13e0f88b3459600b4dc21d69363e2895321c06184879d" "94b18f078411be70b767c7fc40679a9440a0c95ea83a23efbf"); done: tor_free(mem_op_hex_tmp); #undef EXPAND } static void test_crypto_curve25519_impl(void *arg) { /* adapted from curve25519_donna, which adapted it from test-curve25519 version 20050915, by D. J. Bernstein, Public domain. */ const int randomize_high_bit = (arg != NULL); #ifdef SLOW_CURVE25519_TEST const int loop_max=10000; const char e1_expected[] = "4faf81190869fd742a33691b0e0824d5" "7e0329f4dd2819f5f32d130f1296b500"; const char e2k_expected[] = "05aec13f92286f3a781ccae98995a3b9" "e0544770bc7de853b38f9100489e3e79"; const char e1e2k_expected[] = "cd6e8269104eb5aaee886bd2071fba88" "bd13861475516bc2cd2b6e005e805064"; #else const int loop_max=200; const char e1_expected[] = "bc7112cde03f97ef7008cad1bdc56be3" "c6a1037d74cceb3712e9206871dcf654"; const char e2k_expected[] = "dd8fa254fb60bdb5142fe05b1f5de44d" "8e3ee1a63c7d14274ea5d4c67f065467"; const char e1e2k_expected[] = "7ddb98bd89025d2347776b33901b3e7e" "c0ee98cb2257a4545c0cfb2ca3e1812b"; #endif unsigned char e1k[32]; unsigned char e2k[32]; unsigned char e1e2k[32]; unsigned char e2e1k[32]; unsigned char e1[32] = {3}; unsigned char e2[32] = {5}; unsigned char k[32] = {9}; int loop, i; char *mem_op_hex_tmp = NULL; for (loop = 0; loop < loop_max; ++loop) { curve25519_impl(e1k,e1,k); curve25519_impl(e2e1k,e2,e1k); curve25519_impl(e2k,e2,k); if (randomize_high_bit) { /* We require that the high bit of the public key be ignored. So if * we're doing this variant test, we randomize the high bit of e2k, and * make sure that the handshake still works out the same as it would * otherwise. */ uint8_t byte; crypto_rand((char*)&byte, 1); e2k[31] |= (byte & 0x80); } curve25519_impl(e1e2k,e1,e2k); tt_mem_op(e1e2k,OP_EQ, e2e1k, 32); if (loop == loop_max-1) { break; } for (i = 0;i < 32;++i) e1[i] ^= e2k[i]; for (i = 0;i < 32;++i) e2[i] ^= e1k[i]; for (i = 0;i < 32;++i) k[i] ^= e1e2k[i]; } test_memeq_hex(e1, e1_expected); test_memeq_hex(e2k, e2k_expected); test_memeq_hex(e1e2k, e1e2k_expected); done: tor_free(mem_op_hex_tmp); } static void test_crypto_curve25519_basepoint(void *arg) { uint8_t secret[32]; uint8_t public1[32]; uint8_t public2[32]; const int iters = 2048; int i; (void) arg; for (i = 0; i < iters; ++i) { crypto_rand((char*)secret, 32); curve25519_set_impl_params(1); /* Use optimization */ curve25519_basepoint_impl(public1, secret); curve25519_set_impl_params(0); /* Disable optimization */ curve25519_basepoint_impl(public2, secret); tt_mem_op(public1, OP_EQ, public2, 32); } done: ; } static void test_crypto_curve25519_wrappers(void *arg) { curve25519_public_key_t pubkey1, pubkey2; curve25519_secret_key_t seckey1, seckey2; uint8_t output1[CURVE25519_OUTPUT_LEN]; uint8_t output2[CURVE25519_OUTPUT_LEN]; (void)arg; /* Test a simple handshake, serializing and deserializing some stuff. */ curve25519_secret_key_generate(&seckey1, 0); curve25519_secret_key_generate(&seckey2, 1); curve25519_public_key_generate(&pubkey1, &seckey1); curve25519_public_key_generate(&pubkey2, &seckey2); tt_assert(curve25519_public_key_is_ok(&pubkey1)); tt_assert(curve25519_public_key_is_ok(&pubkey2)); curve25519_handshake(output1, &seckey1, &pubkey2); curve25519_handshake(output2, &seckey2, &pubkey1); tt_mem_op(output1,OP_EQ, output2, sizeof(output1)); done: ; } static void test_crypto_curve25519_encode(void *arg) { curve25519_secret_key_t seckey; curve25519_public_key_t key1, key2, key3; char buf[64]; (void)arg; curve25519_secret_key_generate(&seckey, 0); curve25519_public_key_generate(&key1, &seckey); tt_int_op(0, OP_EQ, curve25519_public_to_base64(buf, &key1)); tt_int_op(CURVE25519_BASE64_PADDED_LEN, OP_EQ, strlen(buf)); tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key2, buf)); tt_mem_op(key1.public_key,OP_EQ, key2.public_key, CURVE25519_PUBKEY_LEN); buf[CURVE25519_BASE64_PADDED_LEN - 1] = '\0'; tt_int_op(CURVE25519_BASE64_PADDED_LEN-1, OP_EQ, strlen(buf)); tt_int_op(0, OP_EQ, curve25519_public_from_base64(&key3, buf)); tt_mem_op(key1.public_key,OP_EQ, key3.public_key, CURVE25519_PUBKEY_LEN); /* Now try bogus parses. */ strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$=", sizeof(buf)); tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf)); strlcpy(buf, "$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$", sizeof(buf)); tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf)); strlcpy(buf, "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx", sizeof(buf)); tt_int_op(-1, OP_EQ, curve25519_public_from_base64(&key3, buf)); done: ; } static void test_crypto_curve25519_persist(void *arg) { curve25519_keypair_t keypair, keypair2; char *fname = tor_strdup(get_fname("curve25519_keypair")); char *tag = NULL; char *content = NULL; const char *cp; struct stat st; size_t taglen; (void)arg; tt_int_op(0,OP_EQ,curve25519_keypair_generate(&keypair, 0)); tt_int_op(0,OP_EQ, curve25519_keypair_write_to_file(&keypair, fname, "testing")); tt_int_op(0,OP_EQ,curve25519_keypair_read_from_file(&keypair2, &tag, fname)); tt_str_op(tag,OP_EQ,"testing"); tor_free(tag); tt_mem_op(keypair.pubkey.public_key,OP_EQ, keypair2.pubkey.public_key, CURVE25519_PUBKEY_LEN); tt_mem_op(keypair.seckey.secret_key,OP_EQ, keypair2.seckey.secret_key, CURVE25519_SECKEY_LEN); content = read_file_to_str(fname, RFTS_BIN, &st); tt_assert(content); taglen = strlen("== c25519v1: testing =="); tt_u64_op((uint64_t)st.st_size, OP_EQ, 32+CURVE25519_PUBKEY_LEN+CURVE25519_SECKEY_LEN); tt_assert(fast_memeq(content, "== c25519v1: testing ==", taglen)); tt_assert(tor_mem_is_zero(content+taglen, 32-taglen)); cp = content + 32; tt_mem_op(keypair.seckey.secret_key,OP_EQ, cp, CURVE25519_SECKEY_LEN); cp += CURVE25519_SECKEY_LEN; tt_mem_op(keypair.pubkey.public_key,OP_EQ, cp, CURVE25519_SECKEY_LEN); tor_free(fname); fname = tor_strdup(get_fname("bogus_keypair")); tt_int_op(-1, OP_EQ, curve25519_keypair_read_from_file(&keypair2, &tag, fname)); tor_free(tag); content[69] ^= 0xff; tt_int_op(0, OP_EQ, write_bytes_to_file(fname, content, (size_t)st.st_size, 1)); tt_int_op(-1, OP_EQ, curve25519_keypair_read_from_file(&keypair2, &tag, fname)); done: tor_free(fname); tor_free(content); tor_free(tag); } static void test_crypto_ed25519_simple(void *arg) { ed25519_keypair_t kp1, kp2; ed25519_public_key_t pub1, pub2; ed25519_secret_key_t sec1, sec2; ed25519_signature_t sig1, sig2; const uint8_t msg[] = "GNU will be able to run Unix programs, " "but will not be identical to Unix."; const uint8_t msg2[] = "Microsoft Windows extends the features of the DOS operating system, " "yet is compatible with most existing applications that run under DOS."; size_t msg_len = strlen((const char*)msg); size_t msg2_len = strlen((const char*)msg2); (void)arg; tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec1, 0)); tt_int_op(0, OP_EQ, ed25519_secret_key_generate(&sec2, 1)); tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub1, &sec1)); tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec1)); tt_mem_op(pub1.pubkey, OP_EQ, pub2.pubkey, sizeof(pub1.pubkey)); tt_assert(ed25519_pubkey_eq(&pub1, &pub2)); tt_assert(ed25519_pubkey_eq(&pub1, &pub1)); memcpy(&kp1.pubkey, &pub1, sizeof(pub1)); memcpy(&kp1.seckey, &sec1, sizeof(sec1)); tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp1)); tt_int_op(0, OP_EQ, ed25519_sign(&sig2, msg, msg_len, &kp1)); /* Ed25519 signatures are deterministic */ tt_mem_op(sig1.sig, OP_EQ, sig2.sig, sizeof(sig1.sig)); /* Basic signature is valid. */ tt_int_op(0, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1)); /* Altered signature doesn't work. */ sig1.sig[0] ^= 3; tt_int_op(-1, OP_EQ, ed25519_checksig(&sig1, msg, msg_len, &pub1)); /* Wrong public key doesn't work. */ tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pub2, &sec2)); tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub2)); tt_assert(! ed25519_pubkey_eq(&pub1, &pub2)); /* Wrong message doesn't work. */ tt_int_op(0, OP_EQ, ed25519_checksig(&sig2, msg, msg_len, &pub1)); tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg, msg_len-1, &pub1)); tt_int_op(-1, OP_EQ, ed25519_checksig(&sig2, msg2, msg2_len, &pub1)); /* Batch signature checking works with some bad. */ tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp2, 0)); tt_int_op(0, OP_EQ, ed25519_sign(&sig1, msg, msg_len, &kp2)); { ed25519_checkable_t ch[] = { { &pub1, sig2, msg, msg_len }, /*ok*/ { &pub1, sig2, msg, msg_len-1 }, /*bad*/ { &kp2.pubkey, sig2, msg2, msg2_len }, /*bad*/ { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/ }; int okay[4]; tt_int_op(-2, OP_EQ, ed25519_checksig_batch(okay, ch, 4)); tt_int_op(okay[0], OP_EQ, 1); tt_int_op(okay[1], OP_EQ, 0); tt_int_op(okay[2], OP_EQ, 0); tt_int_op(okay[3], OP_EQ, 1); tt_int_op(-2, OP_EQ, ed25519_checksig_batch(NULL, ch, 4)); } /* Batch signature checking works with all good. */ { ed25519_checkable_t ch[] = { { &pub1, sig2, msg, msg_len }, /*ok*/ { &kp2.pubkey, sig1, msg, msg_len }, /*ok*/ }; int okay[2]; tt_int_op(0, OP_EQ, ed25519_checksig_batch(okay, ch, 2)); tt_int_op(okay[0], OP_EQ, 1); tt_int_op(okay[1], OP_EQ, 1); tt_int_op(0, OP_EQ, ed25519_checksig_batch(NULL, ch, 2)); } done: ; } static void test_crypto_ed25519_test_vectors(void *arg) { char *mem_op_hex_tmp=NULL; int i; struct { const char *sk; const char *pk; const char *sig; const char *msg; } items[] = { /* These test vectors were generated with the "ref" implementation of * ed25519 from SUPERCOP-20130419 */ { "4c6574277320686f706520746865726520617265206e6f206275677320696e20", "f3e0e493b30f56e501aeb868fc912fe0c8b76621efca47a78f6d75875193dd87", "b5d7fd6fd3adf643647ce1fe87a2931dedd1a4e38e6c662bedd35cdd80bfac51" "1b2c7d1ee6bd929ac213014e1a8dc5373854c7b25dbe15ec96bf6c94196fae06", "506c6561736520657863757365206d7920667269656e642e2048652069736e2774" "204e554c2d7465726d696e617465642e" }, { "74686520696d706c656d656e746174696f6e20776869636820617265206e6f74", "407f0025a1e1351a4cb68e92f5c0ebaf66e7aaf93a4006a4d1a66e3ede1cfeac", "02884fde1c3c5944d0ecf2d133726fc820c303aae695adceabf3a1e01e95bf28" "da88c0966f5265e9c6f8edc77b3b96b5c91baec3ca993ccd21a3f64203600601", "506c6561736520657863757365206d7920667269656e642e2048652069736e2774" "204e554c2d7465726d696e617465642e" }, { "6578706f73656420627920456e676c697368207465787420617320696e707574", "61681cb5fbd69f9bc5a462a21a7ab319011237b940bc781cdc47fcbe327e7706", "6a127d0414de7510125d4bc214994ffb9b8857a46330832d05d1355e882344ad" "f4137e3ca1f13eb9cc75c887ef2309b98c57528b4acd9f6376c6898889603209", "506c6561736520657863757365206d7920667269656e642e2048652069736e2774" "204e554c2d7465726d696e617465642e" }, /* These come from "sign.input" in ed25519's page */ { "5b5a619f8ce1c66d7ce26e5a2ae7b0c04febcd346d286c929e19d0d5973bfef9", "6fe83693d011d111131c4f3fbaaa40a9d3d76b30012ff73bb0e39ec27ab18257", "0f9ad9793033a2fa06614b277d37381e6d94f65ac2a5a94558d09ed6ce922258" "c1a567952e863ac94297aec3c0d0c8ddf71084e504860bb6ba27449b55adc40e", "5a8d9d0a22357e6655f9c785" }, { "940c89fe40a81dafbdb2416d14ae469119869744410c3303bfaa0241dac57800", "a2eb8c0501e30bae0cf842d2bde8dec7386f6b7fc3981b8c57c9792bb94cf2dd", "d8bb64aad8c9955a115a793addd24f7f2b077648714f49c4694ec995b330d09d" "640df310f447fd7b6cb5c14f9fe9f490bcf8cfadbfd2169c8ac20d3b8af49a0c", "b87d3813e03f58cf19fd0b6395" }, { "9acad959d216212d789a119252ebfe0c96512a23c73bd9f3b202292d6916a738", "cf3af898467a5b7a52d33d53bc037e2642a8da996903fc252217e9c033e2f291", "6ee3fe81e23c60eb2312b2006b3b25e6838e02106623f844c44edb8dafd66ab0" "671087fd195df5b8f58a1d6e52af42908053d55c7321010092748795ef94cf06", "55c7fa434f5ed8cdec2b7aeac173", }, { "d5aeee41eeb0e9d1bf8337f939587ebe296161e6bf5209f591ec939e1440c300", "fd2a565723163e29f53c9de3d5e8fbe36a7ab66e1439ec4eae9c0a604af291a5", "f68d04847e5b249737899c014d31c805c5007a62c0a10d50bb1538c5f3550395" "1fbc1e08682f2cc0c92efe8f4985dec61dcbd54d4b94a22547d24451271c8b00", "0a688e79be24f866286d4646b5d81c" }, { NULL, NULL, NULL, NULL} }; (void)arg; for (i = 0; items[i].pk; ++i) { ed25519_keypair_t kp; ed25519_signature_t sig; uint8_t sk_seed[32]; uint8_t *msg; size_t msg_len; base16_decode((char*)sk_seed, sizeof(sk_seed), items[i].sk, 64); ed25519_secret_key_from_seed(&kp.seckey, sk_seed); tt_int_op(0, OP_EQ, ed25519_public_key_generate(&kp.pubkey, &kp.seckey)); test_memeq_hex(kp.pubkey.pubkey, items[i].pk); msg_len = strlen(items[i].msg) / 2; msg = tor_malloc(msg_len); base16_decode((char*)msg, msg_len, items[i].msg, strlen(items[i].msg)); tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, msg_len, &kp)); test_memeq_hex(sig.sig, items[i].sig); tor_free(msg); } done: tor_free(mem_op_hex_tmp); } static void test_crypto_ed25519_encode(void *arg) { char buf[ED25519_SIG_BASE64_LEN+1]; ed25519_keypair_t kp; ed25519_public_key_t pk; ed25519_signature_t sig1, sig2; char *mem_op_hex_tmp = NULL; (void) arg; /* Test roundtrip. */ tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, 0)); tt_int_op(0, OP_EQ, ed25519_public_to_base64(buf, &kp.pubkey)); tt_int_op(ED25519_BASE64_LEN, OP_EQ, strlen(buf)); tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk, buf)); tt_mem_op(kp.pubkey.pubkey, OP_EQ, pk.pubkey, ED25519_PUBKEY_LEN); tt_int_op(0, OP_EQ, ed25519_sign(&sig1, (const uint8_t*)"ABC", 3, &kp)); tt_int_op(0, OP_EQ, ed25519_signature_to_base64(buf, &sig1)); tt_int_op(0, OP_EQ, ed25519_signature_from_base64(&sig2, buf)); tt_mem_op(sig1.sig, OP_EQ, sig2.sig, ED25519_SIG_LEN); /* Test known value. */ tt_int_op(0, OP_EQ, ed25519_public_from_base64(&pk, "lVIuIctLjbGZGU5wKMNXxXlSE3cW4kaqkqm04u6pxvM")); test_memeq_hex(pk.pubkey, "95522e21cb4b8db199194e7028c357c57952137716e246aa92a9b4e2eea9c6f3"); done: tor_free(mem_op_hex_tmp); } static void test_crypto_ed25519_convert(void *arg) { const uint8_t msg[] = "The eyes are not here / There are no eyes here."; const int N = 30; int i; (void)arg; for (i = 0; i < N; ++i) { curve25519_keypair_t curve25519_keypair; ed25519_keypair_t ed25519_keypair; ed25519_public_key_t ed25519_pubkey; int bit=0; ed25519_signature_t sig; tt_int_op(0,OP_EQ,curve25519_keypair_generate(&curve25519_keypair, i&1)); tt_int_op(0,OP_EQ,ed25519_keypair_from_curve25519_keypair( &ed25519_keypair, &bit, &curve25519_keypair)); tt_int_op(0,OP_EQ,ed25519_public_key_from_curve25519_public_key( &ed25519_pubkey, &curve25519_keypair.pubkey, bit)); tt_mem_op(ed25519_pubkey.pubkey, OP_EQ, ed25519_keypair.pubkey.pubkey, 32); tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg), &ed25519_keypair)); tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg), &ed25519_pubkey)); tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1, &ed25519_pubkey)); sig.sig[0] ^= 15; tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg), &ed25519_pubkey)); } done: ; } static void test_crypto_ed25519_blinding(void *arg) { const uint8_t msg[] = "Eyes I dare not meet in dreams / In death's dream kingdom"; const int N = 30; int i; (void)arg; for (i = 0; i < N; ++i) { uint8_t blinding[32]; ed25519_keypair_t ed25519_keypair; ed25519_keypair_t ed25519_keypair_blinded; ed25519_public_key_t ed25519_pubkey_blinded; ed25519_signature_t sig; crypto_rand((char*) blinding, sizeof(blinding)); tt_int_op(0,OP_EQ,ed25519_keypair_generate(&ed25519_keypair, 0)); tt_int_op(0,OP_EQ,ed25519_keypair_blind(&ed25519_keypair_blinded, &ed25519_keypair, blinding)); tt_int_op(0,OP_EQ,ed25519_public_blind(&ed25519_pubkey_blinded, &ed25519_keypair.pubkey, blinding)); tt_mem_op(ed25519_pubkey_blinded.pubkey, OP_EQ, ed25519_keypair_blinded.pubkey.pubkey, 32); tt_int_op(0,OP_EQ,ed25519_sign(&sig, msg, sizeof(msg), &ed25519_keypair_blinded)); tt_int_op(0,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg), &ed25519_pubkey_blinded)); tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg)-1, &ed25519_pubkey_blinded)); sig.sig[0] ^= 15; tt_int_op(-1,OP_EQ,ed25519_checksig(&sig, msg, sizeof(msg), &ed25519_pubkey_blinded)); } done: ; } static void test_crypto_ed25519_testvectors(void *arg) { unsigned i; char *mem_op_hex_tmp = NULL; (void)arg; for (i = 0; i < ARRAY_LENGTH(ED25519_SECRET_KEYS); ++i) { uint8_t sk[32]; ed25519_secret_key_t esk; ed25519_public_key_t pk, blind_pk, pkfromcurve; ed25519_keypair_t keypair, blind_keypair; curve25519_keypair_t curvekp; uint8_t blinding_param[32]; ed25519_signature_t sig; int sign; #define DECODE(p,s) base16_decode((char*)(p),sizeof(p),(s),strlen(s)) #define EQ(a,h) test_memeq_hex((const char*)(a), (h)) tt_int_op(0, OP_EQ, DECODE(sk, ED25519_SECRET_KEYS[i])); tt_int_op(0, OP_EQ, DECODE(blinding_param, ED25519_BLINDING_PARAMS[i])); tt_int_op(0, OP_EQ, ed25519_secret_key_from_seed(&esk, sk)); EQ(esk.seckey, ED25519_EXPANDED_SECRET_KEYS[i]); tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &esk)); EQ(pk.pubkey, ED25519_PUBLIC_KEYS[i]); memcpy(&curvekp.seckey.secret_key, esk.seckey, 32); curve25519_public_key_generate(&curvekp.pubkey, &curvekp.seckey); tt_int_op(0, OP_EQ, ed25519_keypair_from_curve25519_keypair(&keypair, &sign, &curvekp)); tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key( &pkfromcurve, &curvekp.pubkey, sign)); tt_mem_op(keypair.pubkey.pubkey, OP_EQ, pkfromcurve.pubkey, 32); EQ(curvekp.pubkey.public_key, ED25519_CURVE25519_PUBLIC_KEYS[i]); /* Self-signing */ memcpy(&keypair.seckey, &esk, sizeof(esk)); memcpy(&keypair.pubkey, &pk, sizeof(pk)); tt_int_op(0, OP_EQ, ed25519_sign(&sig, pk.pubkey, 32, &keypair)); EQ(sig.sig, ED25519_SELF_SIGNATURES[i]); /* Blinding */ tt_int_op(0, OP_EQ, ed25519_keypair_blind(&blind_keypair, &keypair, blinding_param)); tt_int_op(0, OP_EQ, ed25519_public_blind(&blind_pk, &pk, blinding_param)); EQ(blind_keypair.seckey.seckey, ED25519_BLINDED_SECRET_KEYS[i]); EQ(blind_pk.pubkey, ED25519_BLINDED_PUBLIC_KEYS[i]); tt_mem_op(blind_pk.pubkey, OP_EQ, blind_keypair.pubkey.pubkey, 32); #undef DECODE #undef EQ } done: tor_free(mem_op_hex_tmp); } static void test_crypto_ed25519_fuzz_donna(void *arg) { const unsigned iters = 1024; uint8_t msg[1024]; unsigned i; (void)arg; tt_assert(sizeof(msg) == iters); crypto_rand((char*) msg, sizeof(msg)); /* Fuzz Ed25519-donna vs ref10, alternating the implementation used to * generate keys/sign per iteration. */ for (i = 0; i < iters; ++i) { const int use_donna = i & 1; uint8_t blinding[32]; curve25519_keypair_t ckp; ed25519_keypair_t kp, kp_blind, kp_curve25519; ed25519_public_key_t pk, pk_blind, pk_curve25519; ed25519_signature_t sig, sig_blind; int bit = 0; crypto_rand((char*) blinding, sizeof(blinding)); /* Impl. A: * 1. Generate a keypair. * 2. Blinded the keypair. * 3. Sign a message (unblinded). * 4. Sign a message (blinded). * 5. Generate a curve25519 keypair, and convert it to Ed25519. */ ed25519_set_impl_params(use_donna); tt_int_op(0, OP_EQ, ed25519_keypair_generate(&kp, i&1)); tt_int_op(0, OP_EQ, ed25519_keypair_blind(&kp_blind, &kp, blinding)); tt_int_op(0, OP_EQ, ed25519_sign(&sig, msg, i, &kp)); tt_int_op(0, OP_EQ, ed25519_sign(&sig_blind, msg, i, &kp_blind)); tt_int_op(0, OP_EQ, curve25519_keypair_generate(&ckp, i&1)); tt_int_op(0, OP_EQ, ed25519_keypair_from_curve25519_keypair( &kp_curve25519, &bit, &ckp)); /* Impl. B: * 1. Validate the public key by rederiving it. * 2. Validate the blinded public key by rederiving it. * 3. Validate the unblinded signature (and test a invalid signature). * 4. Validate the blinded signature. * 5. Validate the public key (from Curve25519) by rederiving it. */ ed25519_set_impl_params(!use_donna); tt_int_op(0, OP_EQ, ed25519_public_key_generate(&pk, &kp.seckey)); tt_mem_op(pk.pubkey, OP_EQ, kp.pubkey.pubkey, 32); tt_int_op(0, OP_EQ, ed25519_public_blind(&pk_blind, &kp.pubkey, blinding)); tt_mem_op(pk_blind.pubkey, OP_EQ, kp_blind.pubkey.pubkey, 32); tt_int_op(0, OP_EQ, ed25519_checksig(&sig, msg, i, &pk)); sig.sig[0] ^= 15; tt_int_op(-1, OP_EQ, ed25519_checksig(&sig, msg, sizeof(msg), &pk)); tt_int_op(0, OP_EQ, ed25519_checksig(&sig_blind, msg, i, &pk_blind)); tt_int_op(0, OP_EQ, ed25519_public_key_from_curve25519_public_key( &pk_curve25519, &ckp.pubkey, bit)); tt_mem_op(pk_curve25519.pubkey, OP_EQ, kp_curve25519.pubkey.pubkey, 32); } done: ; } static void test_crypto_siphash(void *arg) { /* From the reference implementation, taking k = 00 01 02 ... 0f and in = 00; 00 01; 00 01 02; ... */ const uint8_t VECTORS[64][8] = { { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, }, { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, }, { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, }, { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, }, { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, }, { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, }, { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, }, { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, }, { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, }, { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, }, { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, }, { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, }, { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, }, { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, }, { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, }, { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, }, { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, }, { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, }, { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, }, { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, }, { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, }, { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, }, { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, }, { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, }, { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, }, { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, }, { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, }, { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, }, { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, }, { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, }, { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, }, { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, }, { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, }, { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, }, { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, }, { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, }, { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, }, { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, }, { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, }, { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, }, { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, }, { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, }, { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, }, { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, }, { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, }, { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, }, { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, }, { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, }, { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, }, { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, }, { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, }, { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, }, { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, }, { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, }, { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, }, { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, }, { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, }, { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, }, { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, }, { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, }, { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, }, { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, }, { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, }, { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, } }; const struct sipkey K = { U64_LITERAL(0x0706050403020100), U64_LITERAL(0x0f0e0d0c0b0a0908) }; uint8_t input[64]; int i, j; (void)arg; for (i = 0; i < 64; ++i) input[i] = i; for (i = 0; i < 64; ++i) { uint64_t r = siphash24(input, i, &K); for (j = 0; j < 8; ++j) { tt_int_op( (r >> (j*8)) & 0xff, OP_EQ, VECTORS[i][j]); } } done: ; } /* We want the likelihood that the random buffer exhibits any regular pattern * to be far less than the memory bit error rate in the int return value. * Using 2048 bits provides a failure rate of 1/(3 * 10^616), and we call * 3 functions, leading to an overall error rate of 1/10^616. * This is comparable with the 1/10^603 failure rate of test_crypto_rng_range. */ #define FAILURE_MODE_BUFFER_SIZE (2048/8) /** Check crypto_rand for a failure mode where it does nothing to the buffer, * or it sets the buffer to all zeroes. Return 0 when the check passes, * or -1 when it fails. */ static int crypto_rand_check_failure_mode_zero(void) { char buf[FAILURE_MODE_BUFFER_SIZE]; memset(buf, 0, FAILURE_MODE_BUFFER_SIZE); crypto_rand(buf, FAILURE_MODE_BUFFER_SIZE); for (size_t i = 0; i < FAILURE_MODE_BUFFER_SIZE; i++) { if (buf[i] != 0) { return 0; } } return -1; } /** Check crypto_rand for a failure mode where every int64_t in the buffer is * the same. Return 0 when the check passes, or -1 when it fails. */ static int crypto_rand_check_failure_mode_identical(void) { /* just in case the buffer size isn't a multiple of sizeof(int64_t) */ #define FAILURE_MODE_BUFFER_SIZE_I64 \ (FAILURE_MODE_BUFFER_SIZE/SIZEOF_INT64_T) #define FAILURE_MODE_BUFFER_SIZE_I64_BYTES \ (FAILURE_MODE_BUFFER_SIZE_I64*SIZEOF_INT64_T) #if FAILURE_MODE_BUFFER_SIZE_I64 < 2 #error FAILURE_MODE_BUFFER_SIZE needs to be at least 2*SIZEOF_INT64_T #endif int64_t buf[FAILURE_MODE_BUFFER_SIZE_I64]; memset(buf, 0, FAILURE_MODE_BUFFER_SIZE_I64_BYTES); crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE_I64_BYTES); for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE_I64; i++) { if (buf[i] != buf[i-1]) { return 0; } } return -1; } /** Check crypto_rand for a failure mode where it increments the "random" * value by 1 for every byte in the buffer. (This is OpenSSL's PREDICT mode.) * Return 0 when the check passes, or -1 when it fails. */ static int crypto_rand_check_failure_mode_predict(void) { unsigned char buf[FAILURE_MODE_BUFFER_SIZE]; memset(buf, 0, FAILURE_MODE_BUFFER_SIZE); crypto_rand((char *)buf, FAILURE_MODE_BUFFER_SIZE); for (size_t i = 1; i < FAILURE_MODE_BUFFER_SIZE; i++) { /* check if the last byte was incremented by 1, including integer * wrapping */ if (buf[i] - buf[i-1] != 1 && buf[i-1] - buf[i] != 255) { return 0; } } return -1; } #undef FAILURE_MODE_BUFFER_SIZE static void test_crypto_failure_modes(void *arg) { int rv = 0; (void)arg; rv = crypto_early_init(); tt_assert(rv == 0); /* Check random works */ rv = crypto_rand_check_failure_mode_zero(); tt_assert(rv == 0); rv = crypto_rand_check_failure_mode_identical(); tt_assert(rv == 0); rv = crypto_rand_check_failure_mode_predict(); tt_assert(rv == 0); done: ; } #define CRYPTO_LEGACY(name) \ { #name, test_crypto_ ## name , 0, NULL, NULL } struct testcase_t crypto_tests[] = { CRYPTO_LEGACY(formats), CRYPTO_LEGACY(rng), { "rng_range", test_crypto_rng_range, 0, NULL, NULL }, { "aes_AES", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"aes" }, { "aes_EVP", test_crypto_aes, TT_FORK, &passthrough_setup, (void*)"evp" }, CRYPTO_LEGACY(sha), CRYPTO_LEGACY(pk), { "pk_fingerprints", test_crypto_pk_fingerprints, TT_FORK, NULL, NULL }, { "pk_base64", test_crypto_pk_base64, TT_FORK, NULL, NULL }, CRYPTO_LEGACY(digests), CRYPTO_LEGACY(dh), { "aes_iv_AES", test_crypto_aes_iv, TT_FORK, &passthrough_setup, (void*)"aes" }, { "aes_iv_EVP", test_crypto_aes_iv, TT_FORK, &passthrough_setup, (void*)"evp" }, CRYPTO_LEGACY(base32_decode), { "kdf_TAP", test_crypto_kdf_TAP, 0, NULL, NULL }, { "hkdf_sha256", test_crypto_hkdf_sha256, 0, NULL, NULL }, { "curve25519_impl", test_crypto_curve25519_impl, 0, NULL, NULL }, { "curve25519_impl_hibit", test_crypto_curve25519_impl, 0, NULL, (void*)"y"}, { "curve25519_basepoint", test_crypto_curve25519_basepoint, TT_FORK, NULL, NULL }, { "curve25519_wrappers", test_crypto_curve25519_wrappers, 0, NULL, NULL }, { "curve25519_encode", test_crypto_curve25519_encode, 0, NULL, NULL }, { "curve25519_persist", test_crypto_curve25519_persist, 0, NULL, NULL }, { "ed25519_simple", test_crypto_ed25519_simple, 0, NULL, NULL }, { "ed25519_test_vectors", test_crypto_ed25519_test_vectors, 0, NULL, NULL }, { "ed25519_encode", test_crypto_ed25519_encode, 0, NULL, NULL }, { "ed25519_convert", test_crypto_ed25519_convert, 0, NULL, NULL }, { "ed25519_blinding", test_crypto_ed25519_blinding, 0, NULL, NULL }, { "ed25519_testvectors", test_crypto_ed25519_testvectors, 0, NULL, NULL }, { "ed25519_fuzz_donna", test_crypto_ed25519_fuzz_donna, TT_FORK, NULL, NULL }, { "siphash", test_crypto_siphash, 0, NULL, NULL }, { "failure_modes", test_crypto_failure_modes, TT_FORK, NULL, NULL }, END_OF_TESTCASES };