/* Copyright 2004 Roger Dingledine, Nick Mathewson. */
/* See LICENSE for licensing information */
/* $Id$ */
const char hibernate_c_id[] = "$Id$";
/**
* \file hibernate.c
* \brief Functions to close listeners, stop allowing new circuits,
* etc in preparation for closing down or going dormant; and to track
* bandwidth and time intervals to know when to hibernate and when to
* stop hibernating.
**/
/*
hibernating, phase 1:
- send destroy in response to create cells
- send end (policy failed) in response to begin cells
- close an OR conn when it has no circuits
hibernating, phase 2:
(entered when bandwidth hard limit reached)
- close all OR/AP/exit conns)
*/
#include "or.h"
#define HIBERNATE_STATE_LIVE 1
#define HIBERNATE_STATE_EXITING 2
#define HIBERNATE_STATE_LOWBANDWIDTH 3
#define HIBERNATE_STATE_DORMANT 4
#define SHUTDOWN_WAIT_LENGTH 30 /* seconds */
static int hibernate_state = HIBERNATE_STATE_LIVE;
/** If are hibernating, when do we plan to wake up? Set to 0 if we
* aren't hibernating. */
static time_t hibernate_end_time = 0;
typedef enum {
UNIT_MONTH=1, UNIT_WEEK=2, UNIT_DAY=3,
} time_unit_t;
/* Fields for accounting logic. Accounting overview:
*
* Accounting is designed to ensure that no more than N bytes are sent
* in either direction over a given interval (currently, one month,
* starting at 0:00 GMT an arbitrary day within the month). We could
* try to do this by choking our bandwidth to a trickle, but that
* would make our streams useless. Instead, we estimate what our
* bandwidth usage will be, and guess how long we'll be able to
* provide that much bandwidth before hitting our limit. We then
* choose a random time within the accounting interval to come up (so
* that we don't get 50 Tors running on the 1st of the month and none
* on the 30th).
*
* Each interval runs as follows:
*
* 1. We guess our bandwidth usage, based on how much we used
* last time. We choose a "wakeup time" within the interval to come up.
* 2. Until the chosen wakeup time, we hibernate.
* 3. We come up at the wakeup time, and provide bandwidth until we are
* "very close" to running out.
* 4. Then we go into low-bandwidth mode, and stop accepting new
* connections, but provide bandwidth until we run out.
* 5. Then we hibernate until the end of the interval.
*
* If the interval ends before we run out of bandwdith, we go back to
* step one.
*/
/** How many bytes have we read/written in this accounting interval? */
static uint64_t n_bytes_read_in_interval = 0;
static uint64_t n_bytes_written_in_interval = 0;
/** How many seconds have we been running this interval? */
static uint32_t n_seconds_active_in_interval = 0;
/** When did this accounting interval start? */
static time_t interval_start_time = 0;
/** When will this accounting interval end? */
static time_t interval_end_time = 0;
/** How far into the accounting interval should we hibernate? */
static time_t interval_wakeup_time = 0;
/** How much bandwidth do we 'expect' to use per minute? (0 if we have no
* info from the last period.) */
static uint32_t expected_bandwidth_usage = 0;
/** What unit are we using for our accounting? */
static time_unit_t cfg_unit = UNIT_MONTH;
/** How many days,hours,minutes into each unit does our accounting interval
* start? */
static int cfg_start_day = 0;
static int cfg_start_hour = 0;
static int cfg_start_min = 0;
static void reset_accounting(time_t now);
static int read_bandwidth_usage(void);
static time_t start_of_accounting_period_after(time_t now);
static time_t start_of_accounting_period_containing(time_t now);
static void accounting_set_wakeup_time(void);
/* ************
* Functions for bandwidth accounting.
* ************/
/** Configure accounting start/end time settings based on
* options->AccountingStart. Return 0 on success, -1 on failure. If
* validate_only is true, do not change the current settings. */
int
accounting_parse_options(or_options_t *options, int validate_only)
{
time_unit_t unit;
int ok, idx;
long d,h,m;
smartlist_t *items;
const char *v = options->AccountingStart;
const char *s;
char *cp;
if (!v) {
if (!validate_only) {
cfg_unit = UNIT_MONTH;
cfg_start_day = 1;
cfg_start_hour = 0;
cfg_start_min = 0;
}
return 0;
}
items = smartlist_create();
smartlist_split_string(items, v, " ", SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK,0);
if (smartlist_len(items)<2) {
log_fn(LOG_WARN, "Too few arguments to AccountingStart");
goto err;
}
s = smartlist_get(items,0);
if (0==strcasecmp(s, "month")) {
unit = UNIT_MONTH;
} else if (0==strcasecmp(s, "week")) {
unit = UNIT_WEEK;
} else if (0==strcasecmp(s, "day")) {
unit = UNIT_DAY;
} else {
log_fn(LOG_WARN, "Unrecognized accounting unit '%s': only 'month', 'week', and 'day' are supported.", s);
goto err;
}
switch (unit) {
case UNIT_WEEK:
d = tor_parse_long(smartlist_get(items,1), 10, 1, 7, &ok, NULL);
if (!ok) {
log_fn(LOG_WARN, "Weekly accounting must start begin on a day between 1(Monday) and 7 (Sunday)");
goto err;
}
break;
case UNIT_MONTH:
d = tor_parse_long(smartlist_get(items,1), 10, 1, 28, &ok, NULL);
if (!ok) {
log_fn(LOG_WARN, "Monthy accounting must start begin on a day between 1 and 28");
goto err;
}
break;
case UNIT_DAY:
d = 0;
break;
default:
tor_assert(0);
}
idx = unit==UNIT_DAY?1:2;
if (smartlist_len(items) != (idx+1)) {
log_fn(LOG_WARN, "Accounting unit '%s' requires %d arguments",
s, idx+1);
goto err;
}
s = smartlist_get(items, idx);
h = tor_parse_long(s, 10, 0, 23, &ok, &cp);
if (!ok) {
log_fn(LOG_WARN, "Accounting start time not parseable: bad hour.");
goto err;
}
if (!cp || *cp!=':') {
log_fn(LOG_WARN,"Accounting start time not parseable: not in HH:MM format");
goto err;
}
m = tor_parse_long(cp+1, 10, 0, 59, &ok, &cp);
if (!ok) {
log_fn(LOG_WARN, "Accounting start time not parseable: bad minute");
goto err;
}
if (!cp || *cp!='\0') {
log_fn(LOG_WARN,"Accounting start time not parseable: not in HH:MM format");
goto err;
}
if (!validate_only) {
cfg_unit = unit;
cfg_start_day = (int)d;
cfg_start_hour = (int)h;
cfg_start_min = (int)m;
}
SMARTLIST_FOREACH(items, char *, s, tor_free(s));
smartlist_free(items);
return 0;
err:
SMARTLIST_FOREACH(items, char *, s, tor_free(s));
smartlist_free(items);
return -1;
}
/** If we want to manage the accounting system and potentially
* hibernate, return 1, else return 0.
*/
int accounting_is_enabled(or_options_t *options) {
if (options->AccountingMax)
return 1;
return 0;
}
/** Called from main.c to tell us that seconds seconds have
* passed, n_read bytes have been read, and n_written
* bytes have been written. */
void
accounting_add_bytes(size_t n_read, size_t n_written, int seconds)
{
n_bytes_read_in_interval += n_read;
n_bytes_written_in_interval += n_written;
/* If we haven't been called in 10 seconds, we're probably jumping
* around in time. */
n_seconds_active_in_interval += (seconds < 10) ? seconds : 0;
}
/** If get_end, return the end of the accounting period that contains
* the time now. Else, return the start of the accounting
* period that contains the time now */
static time_t
edge_of_accounting_period_containing(time_t now, int get_end)
{
int before;
struct tm *tm;
tm = localtime(&now);
/* Set 'before' to true iff the current time is before the hh:mm
* changeover time for today. */
before = tm->tm_hour < cfg_start_hour ||
(tm->tm_hour == cfg_start_hour && tm->tm_min < cfg_start_min);
/* Dispatch by unit. First, find the start day of the given period;
* then, if get_end is true, increment to the end day. */
switch (cfg_unit)
{
case UNIT_MONTH: {
/* If this is before the Nth, we want the Nth of last month. */
if (tm->tm_mday < cfg_start_day ||
(tm->tm_mday < cfg_start_day && before)) {
--tm->tm_mon;
}
/* Otherwise, the month is correct. */
tm->tm_mday = cfg_start_day;
if (get_end)
++tm->tm_mon;
break;
}
case UNIT_WEEK: {
/* What is the 'target' day of the week in struct tm format? (We
say Sunday==7; struct tm says Sunday==0.) */
int wday = cfg_start_day % 7;
/* How many days do we subtract from today to get to the right day? */
int delta = (7+tm->tm_wday-wday)%7;
/* If we are on the right day, but the changeover hasn't happened yet,
* then subtract a whole week. */
if (delta == 0 && before)
delta = 7;
tm->tm_mday -= delta;
if (get_end)
tm->tm_mday += 7;
break;
}
case UNIT_DAY:
if (before)
--tm->tm_mday;
if (get_end)
++tm->tm_mday;
break;
default:
tor_assert(0);
}
tm->tm_hour = cfg_start_hour;
tm->tm_min = cfg_start_min;
tm->tm_sec = 0;
tm->tm_isdst = -1; /* Autodetect DST */
return mktime(tm);
}
/** Return the start of the accounting period containing the time
* now. */
static time_t
start_of_accounting_period_containing(time_t now)
{
return edge_of_accounting_period_containing(now, 0);
}
/** Return the start of the accounting period that comes after the one
* containing the time now. */
static time_t
start_of_accounting_period_after(time_t now)
{
return edge_of_accounting_period_containing(now, 1);
}
/** Initialize the accounting subsystem. */
void
configure_accounting(time_t now)
{
/* Try to remember our recorded usage. */
if (!interval_start_time)
read_bandwidth_usage(); /* If we fail, we'll leave values at zero, and
* reset below.*/
if (!interval_start_time ||
start_of_accounting_period_after(interval_start_time) <= now) {
/* We didn't have recorded usage, or we don't have recorded usage
* for this interval. Start a new interval. */
log_fn(LOG_INFO, "Starting new accounting interval.");
reset_accounting(now);
} else if (interval_start_time ==
start_of_accounting_period_containing(interval_start_time)) {
log_fn(LOG_INFO, "Continuing accounting interval.");
/* We are in the interval we thought we were in. Do nothing.*/
interval_end_time = start_of_accounting_period_after(interval_start_time);
} else {
log_fn(LOG_WARN, "Mismatched accounting interval; starting a fresh one.");
reset_accounting(now);
}
accounting_set_wakeup_time();
}
/** Set expected_bandwidth_usage based on how much we sent/received
* per minute last interval (if we were up for at least 30 minutes),
* or based on our declared bandwidth otherwise. */
static void
update_expected_bandwidth(void)
{
uint64_t used, expected;
uint64_t max_configured = (get_options()->BandwidthRate * 60);
if (n_seconds_active_in_interval < 1800) {
/* If we haven't gotten enough data last interval, set 'expected'
* to 0. This will set our wakeup to the start of the interval.
* Next interval, we'll choose our starting time based on how much
* we sent this interval.
*/
expected = 0;
} else {
used = n_bytes_written_in_interval < n_bytes_read_in_interval ?
n_bytes_read_in_interval : n_bytes_written_in_interval;
expected = used / (n_seconds_active_in_interval / 60);
if (expected > max_configured)
expected = max_configured;
}
if (expected > UINT32_MAX)
expected = UINT32_MAX;
expected_bandwidth_usage = (uint32_t) expected;
}
/** Called at the start of a new accounting interval: reset our
* expected bandwidth usage based on what happened last time, set up
* the start and end of the interval, and clear byte/time totals.
*/
static void
reset_accounting(time_t now) {
log_fn(LOG_INFO, "Starting new accounting interval.");
update_expected_bandwidth();
interval_start_time = start_of_accounting_period_containing(now);
interval_end_time = start_of_accounting_period_after(interval_start_time);
n_bytes_read_in_interval = 0;
n_bytes_written_in_interval = 0;
n_seconds_active_in_interval = 0;
}
/** Return true iff we should save our bandwidth usage to disk. */
static INLINE int
time_to_record_bandwidth_usage(time_t now)
{
/* Note every 60 sec */
#define NOTE_INTERVAL (60)
/* Or every 20 megabytes */
#define NOTE_BYTES 20*(1024*1024)
static uint64_t last_read_bytes_noted = 0;
static uint64_t last_written_bytes_noted = 0;
static time_t last_time_noted = 0;
if (last_time_noted + NOTE_INTERVAL <= now ||
last_read_bytes_noted + NOTE_BYTES <= n_bytes_read_in_interval ||
last_written_bytes_noted + NOTE_BYTES <= n_bytes_written_in_interval ||
(interval_end_time && interval_end_time <= now)) {
last_time_noted = now;
last_read_bytes_noted = n_bytes_read_in_interval;
last_written_bytes_noted = n_bytes_written_in_interval;
return 1;
}
return 0;
}
void
accounting_run_housekeeping(time_t now)
{
if (now >= interval_end_time) {
configure_accounting(now);
}
if (time_to_record_bandwidth_usage(now)) {
if (accounting_record_bandwidth_usage(now)) {
log_fn(LOG_ERR, "Couldn't record bandwidth usage; exiting.");
exit(1);
}
}
}
/** Based on our interval and our estimated bandwidth, choose a
* deterministic (but random-ish) time to wake up. */
static void
accounting_set_wakeup_time(void)
{
char buf[ISO_TIME_LEN+1];
char digest[DIGEST_LEN];
crypto_digest_env_t *d_env;
int time_in_interval;
int time_to_exhaust_bw;
int time_to_consider;
if (! identity_key_is_set()) {
if (init_keys() < 0) {
log_fn(LOG_ERR, "Error initializing keys");
tor_assert(0);
}
}
format_iso_time(buf, interval_start_time);
crypto_pk_get_digest(get_identity_key(), digest);
d_env = crypto_new_digest_env();
crypto_digest_add_bytes(d_env, buf, ISO_TIME_LEN);
crypto_digest_add_bytes(d_env, digest, DIGEST_LEN);
crypto_digest_get_digest(d_env, digest, DIGEST_LEN);
crypto_free_digest_env(d_env);
if (!expected_bandwidth_usage) {
char buf1[ISO_TIME_LEN+1];
char buf2[ISO_TIME_LEN+1];
format_local_iso_time(buf1, interval_start_time);
format_local_iso_time(buf2, interval_end_time);
time_to_exhaust_bw = 24*60*60;
interval_wakeup_time = interval_start_time;
log_fn(LOG_NOTICE, "Configured hibernation. This interval begins at %s "
"and ends at %s. We have no prior estimate for bandwidth, so "
"we will start out awake and hibernate when we exhaust our bandwidth.",
buf1, buf2);
return;
}
time_to_exhaust_bw = (int)
(get_options()->AccountingMax/expected_bandwidth_usage)*60;
time_in_interval = interval_end_time - interval_start_time;
time_to_consider = time_in_interval - time_to_exhaust_bw;
if (time_to_consider<=0) {
interval_wakeup_time = interval_start_time;
} else {
/* XXX can we simplify this just by picking a random (non-deterministic)
* time to be up? If we go down and come up, then we pick a new one. Is
* that good enough? -RD */
/* This is not a perfectly unbiased conversion, but it is good enough:
* in the worst case, the first half of the day is 0.06 percent likelier
* to be chosen than the last half. */
interval_wakeup_time = interval_start_time +
(get_uint32(digest) % time_to_consider);
format_iso_time(buf, interval_wakeup_time);
}
{
char buf1[ISO_TIME_LEN+1];
char buf2[ISO_TIME_LEN+1];
char buf3[ISO_TIME_LEN+1];
char buf4[ISO_TIME_LEN+1];
time_t down_time = interval_wakeup_time+time_to_exhaust_bw;
if (down_time>interval_end_time)
down_time = interval_end_time;
format_local_iso_time(buf1, interval_start_time);
format_local_iso_time(buf2, interval_wakeup_time);
format_local_iso_time(buf3,
down_timeDataDirectory);
return write_str_to_file(fname, buf, 0);
}
/** Read stored accounting information from disk. Return 0 on success;
* return -1 and change nothing on failure. */
static int
read_bandwidth_usage(void)
{
char *s = NULL;
char fname[512];
time_t t1, t2;
uint64_t n_read, n_written;
uint32_t expected_bw, n_seconds;
smartlist_t *elts;
int ok;
tor_snprintf(fname, sizeof(fname), "%s/bw_accounting",
get_options()->DataDirectory);
if (!(s = read_file_to_str(fname, 0))) {
return 0;
}
elts = smartlist_create();
smartlist_split_string(elts, s, "\n", SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK,0);
tor_free(s);
if (smartlist_len(elts)<1 ||
atoi(smartlist_get(elts,0)) != BW_ACCOUNTING_VERSION) {
log_fn(LOG_WARN, "Unrecognized bw_accounting file version: %s",
(const char*)smartlist_get(elts,0));
goto err;
}
if (smartlist_len(elts) < 7) {
log_fn(LOG_WARN, "Corrupted bw_accounting file: %d lines",
smartlist_len(elts));
goto err;
}
if (parse_iso_time(smartlist_get(elts,1), &t1)) {
log_fn(LOG_WARN, "Error parsing bandwidth usage start time.");
goto err;
}
if (parse_iso_time(smartlist_get(elts,2), &t2)) {
log_fn(LOG_WARN, "Error parsing bandwidth usage last-written time");
goto err;
}
n_read = tor_parse_uint64(smartlist_get(elts,3), 10, 0, UINT64_MAX,
&ok, NULL);
if (!ok) {
log_fn(LOG_WARN, "Error parsing number of bytes read");
goto err;
}
n_written = tor_parse_uint64(smartlist_get(elts,4), 10, 0, UINT64_MAX,
&ok, NULL);
if (!ok) {
log_fn(LOG_WARN, "Error parsing number of bytes read");
goto err;
}
n_seconds = (uint32_t)tor_parse_ulong(smartlist_get(elts,5), 10,0,ULONG_MAX,
&ok, NULL);
if (!ok) {
log_fn(LOG_WARN, "Error parsing number of seconds live");
goto err;
}
expected_bw =(uint32_t)tor_parse_ulong(smartlist_get(elts,6), 10,0,ULONG_MAX,
&ok, NULL);
if (!ok) {
log_fn(LOG_WARN, "Error parsing expected bandwidth");
goto err;
}
n_bytes_read_in_interval = n_read;
n_bytes_written_in_interval = n_written;
n_seconds_active_in_interval = n_seconds;
interval_start_time = t1;
expected_bandwidth_usage = expected_bw;
return 0;
err:
SMARTLIST_FOREACH(elts, char *, cp, tor_free(cp));
smartlist_free(elts);
return -1;
}
/** Return true iff we have sent/received all the bytes we are willing
* to send/receive this interval. */
static int
hibernate_hard_limit_reached(void)
{
uint64_t hard_limit = get_options()->AccountingMax;
if (!hard_limit)
return 0;
return n_bytes_read_in_interval >= hard_limit
|| n_bytes_written_in_interval >= hard_limit;
}
/** Return true iff we have sent/received almost all the bytes we are willing
* to send/receive this interval. */
static int hibernate_soft_limit_reached(void)
{
uint64_t soft_limit = (uint64_t) ((get_options()->AccountingMax) * .99);
if (!soft_limit)
return 0;
return n_bytes_read_in_interval >= soft_limit
|| n_bytes_written_in_interval >= soft_limit;
}
/** Called when we get a SIGINT, or when bandwidth soft limit is
* reached. Puts us into "loose hibernation": we don't accept new
* connections, but we continue handling old ones. */
static void hibernate_begin(int new_state, time_t now) {
connection_t *conn;
if (hibernate_state == HIBERNATE_STATE_EXITING) {
/* we've been called twice now. close immediately. */
log(LOG_NOTICE,"Second sigint received; exiting now.");
tor_cleanup();
exit(0);
}
/* close listeners. leave control listener(s). */
while ((conn = connection_get_by_type(CONN_TYPE_OR_LISTENER)) ||
(conn = connection_get_by_type(CONN_TYPE_AP_LISTENER)) ||
(conn = connection_get_by_type(CONN_TYPE_DIR_LISTENER))) {
log_fn(LOG_INFO,"Closing listener type %d", conn->type);
connection_mark_for_close(conn);
}
/* XXX kill intro point circs */
/* XXX upload rendezvous service descriptors with no intro points */
if (new_state == HIBERNATE_STATE_EXITING) {
log(LOG_NOTICE,"Interrupt: will shut down in %d seconds. Interrupt again to exit now.", SHUTDOWN_WAIT_LENGTH);
hibernate_end_time = time(NULL) + SHUTDOWN_WAIT_LENGTH;
} else { /* soft limit reached */
hibernate_end_time = interval_end_time;
}
hibernate_state = new_state;
accounting_record_bandwidth_usage(now);
}
/** Called when we've been hibernating and our timeout is reached. */
static void
hibernate_end(int new_state) {
tor_assert(hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH ||
hibernate_state == HIBERNATE_STATE_DORMANT);
/* listeners will be relaunched in run_scheduled_events() in main.c */
log_fn(LOG_NOTICE,"Hibernation period ended. Resuming normal activity.");
hibernate_state = new_state;
hibernate_end_time = 0; /* no longer hibernating */
}
/** A wrapper around hibernate_begin, for when we get SIGINT. */
void
hibernate_begin_shutdown(void) {
hibernate_begin(HIBERNATE_STATE_EXITING, time(NULL));
}
/** Return true iff we are currently hibernating. */
int
we_are_hibernating(void) {
return hibernate_state != HIBERNATE_STATE_LIVE;
}
/** If we aren't currently dormant, close all connections and become
* dormant. */
static void
hibernate_go_dormant(time_t now) {
connection_t *conn;
if (hibernate_state == HIBERNATE_STATE_DORMANT)
return;
else if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH)
hibernate_state = HIBERNATE_STATE_DORMANT;
else
hibernate_begin(HIBERNATE_STATE_DORMANT, now);
log_fn(LOG_NOTICE,"Going dormant. Blowing away remaining connections.");
/* Close all OR/AP/exit conns. Leave dir conns because we still want
* to be able to upload server descriptors so people know we're still
* running, and download directories so we can detect if we're obsolete.
* Leave control conns because we still want to be controllable.
*/
while ((conn = connection_get_by_type(CONN_TYPE_OR)) ||
(conn = connection_get_by_type(CONN_TYPE_AP)) ||
(conn = connection_get_by_type(CONN_TYPE_EXIT))) {
log_fn(LOG_INFO,"Closing conn type %d", conn->type);
connection_mark_for_close(conn);
}
accounting_record_bandwidth_usage(now);
}
/** Called when hibernate_end_time has arrived. */
static void
hibernate_end_time_elapsed(time_t now)
{
char buf[ISO_TIME_LEN+1];
/* The interval has ended, or it is wakeup time. Find out which. */
accounting_run_housekeeping(now);
if (interval_wakeup_time <= now) {
/* The interval hasn't changed, but interval_wakeup_time has passed.
* It's time to wake up and start being a server. */
hibernate_end(HIBERNATE_STATE_LIVE);
return;
} else {
/* The interval has changed, and it isn't time to wake up yet. */
hibernate_end_time = interval_wakeup_time;
format_iso_time(buf,interval_wakeup_time);
if (hibernate_state != HIBERNATE_STATE_DORMANT) {
/* We weren't sleeping before; we should sleep now. */
log_fn(LOG_NOTICE, "Accounting period ended. Commencing hibernation until %s GMT",buf);
hibernate_go_dormant(now);
} else {
log_fn(LOG_NOTICE, "Accounting period ended. This period, we will hibernate until %s GMT",buf);
}
}
}
/** The big function. Consider our environment and decide if it's time
* to start/stop hibernating.
*/
void consider_hibernation(time_t now) {
int accounting_enabled = get_options()->AccountingMax != 0;
char buf[ISO_TIME_LEN+1];
/* If we're in 'exiting' mode, then we just shut down after the interval
* elapses. */
if (hibernate_state == HIBERNATE_STATE_EXITING) {
tor_assert(hibernate_end_time);
if (hibernate_end_time <= now) {
log(LOG_NOTICE,"Clean shutdown finished. Exiting.");
tor_cleanup();
exit(0);
}
return; /* if exiting soon, don't worry about bandwidth limits */
}
if (hibernate_state == HIBERNATE_STATE_DORMANT) {
/* We've been hibernating because of bandwidth accounting. */
tor_assert(hibernate_end_time);
if (hibernate_end_time > now && accounting_enabled) {
/* If we're hibernating, don't wake up until it's time, regardless of
* whether we're in a new interval. */
return ;
} else {
hibernate_end_time_elapsed(now);
}
}
/* Else, we aren't hibernating. See if it's time to start hibernating, or to
* go dormant. */
if (hibernate_state == HIBERNATE_STATE_LIVE) {
if (hibernate_soft_limit_reached()) {
log_fn(LOG_NOTICE,"Bandwidth soft limit reached; commencing hibernation.");
hibernate_begin(HIBERNATE_STATE_LOWBANDWIDTH, now);
} else if (accounting_enabled && now < interval_wakeup_time) {
format_iso_time(buf,interval_wakeup_time);
log_fn(LOG_NOTICE, "Commencing hibernation. We will wake up at %s GMT",buf);
hibernate_go_dormant(now);
}
}
if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH) {
if (!accounting_enabled) {
hibernate_end_time_elapsed(now);
} else if (hibernate_hard_limit_reached()) {
hibernate_go_dormant(now);
} else if (hibernate_end_time <= now) {
/* The hibernation period ended while we were still in lowbandwidth.*/
hibernate_end_time_elapsed(now);
}
}
}